Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Changes in Total SOC Content
3.2. Changes in Active SOC Content
3.3. Changes in Soil Enzyme Activity
3.4. Correlation Analysis of Various Indicators
4. Discussion
4.1. Effects of Biochar Application on SOC and Its Active Components in Paddy Fields under Water-Saving Irrigation
4.2. Effects of Biochar Application on Soil Enzyme Activity in Paddy Fields under Water-Saving Irrigation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Córdoba, P.; Caramanna, G.; Maroto-Valer, M.; Nathaniel, P.; Steven, M. Influence of a CO2 long term exposure on the mobilisation and speciation of metals in soils. Chem. Erde-Geochem. 2015, 75, 475–482. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Brunetti, P.; Radicetti, E.; Campiglia, E. Organic mulching, irrigation and fertilization affect soil CO2 emission and C storage in tomato crop in the Mediterranean environment. Soil Tillage Res. 2015, 152, 39–51. [Google Scholar] [CrossRef]
- Pan, G.; Li, L.; Zhang, X.; Dai, J.; Zhou, Y.; Zhang, P. Soil organic carbon storage of china and the sequestration dynamics in agricultural lands. Adv. Earth Sci. 2003, 18, 609–618. [Google Scholar]
- Wander, M.; Traina, S.; Stinner, B.; Peters, S. Organic and Conventional Management Effects on Biologically Active Soil Organic Matter Pools. Soil Sci. Soc. Am. J. 1994, 58, 1130. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, R. Dynamics of soil organic carbon under uncertain climate change and elevated atmospheric CO2. Pedosphere 2012, 22, 489–496. [Google Scholar] [CrossRef]
- Yu, G. Global Change Carbon Cycle and Storage in Terrestrial Ecosystem, 1st ed.; China Meteorological Press: Beijing, China, 2003; pp. 61–89.
- Pan, G.; Zhao, Q. Study on evolution of organic carbon stock agricultural soils of China: Facing the challenge of global change and food security. Adv. Earth Sci. 2005, 20, 384–393. [Google Scholar]
- Lal, R. Beyond Copenhagen: Mitigating climate change and achieving food security through soil carbon sequestration. Food Secur. 2010, 2, 169–177. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agricultural: Towards 2015/2030. An FAO Perspective, 1st ed.; Earthscan Publications Ltd.: London, UK, 2002; pp. 358–360. [Google Scholar]
- Chen, J.; Chen, D.; Xu, Q.; Fuhrmann, J.; Li, L.; Pan, G.; Li, Y.; Qin, H.; Liang, C.; Sun, X. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol. Fertil. Soils 2019, 55, 185–197. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Chang. Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Li, T.; Gao, J.; Bai, L.; Wang, Y.; Huang, J.; Kumar, M.; Zeng, X. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil. Soil Tillage Res. 2019, 195, 104428. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Pei, J.; Zhuang, S.; Cui, J.; Li, J.; Li, B.; Wu, J.; Fang, C. Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field. Agric. Ecosyst. Environ. 2017, 249, 156–164. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Xu, J.; Liu, X. Changes of soil respiration of paddy fields with water-saving irrigation and its influencing factors analysis. Trans. Chin. Soc. Agric. Eng. 2015, 31, 140–146. [Google Scholar]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Butterly, C.; McNeill, A.; Baldock, J.; Marschner, P. Rapid changes in carbon and phosphorus after rewetting of dry coil. Biol. Fertil. Soils 2011, 47, 41–50. [Google Scholar] [CrossRef]
- Golberg, E.D. Black Carbon in the Environment: Properties and Distribution, 1st ed.; John Wiley: New York, NY, USA, 1985; pp. 109–113. [Google Scholar]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems- a review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.; Street-perrott, F.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.; Fleming, P.; Davis, D.; Horton, R.; Wang, B.; Karlen, D. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Whalley, W.; Clark, L.; Gowing, D.; Cope, R.; Lodge, R.; Leeds-Harrison, P. Does soil strength play a role in wheat yield losses caused by soil drying. Plant Soil 2006, 280, 279–290. [Google Scholar] [CrossRef]
- Piccolo, A.; Pietramellara, G.; Mbagwu, J. Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manag. 1996, 12, 209–213. [Google Scholar] [CrossRef]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Peng, S.; Li, D.; Xu, J.; Ding, J.; He, Y.; Yu, J. Effect of water-saving irrigation on the law of CH4 emission from paddy field. Chin. J. Environ. Sci. 2007, 28, 9–13. [Google Scholar]
- Xiao, Y.; Yang, S.; Xu, J.; Ding, J.; Sun, X.; Jiang, Z. Effect of Biochar Amendment on Methane Emissions from Paddy Field under Water-Saving Irrigation. Sustainability 2018, 10, 1371. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Xiao, Y.; Xu, J. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation. Environ. Sci. Pollut. Res. 2018, 25, 9958–9968. [Google Scholar] [CrossRef]
- Nelson, D.; Sommers, L. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, 2nd ed.; Sparks, D., Page, A., Eds.; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1982; Volume 9, pp. 562–564. [Google Scholar]
- Li, S.; Zhang, S.; Luo, H.; Zhou, L.; Wang, G.; Shen, Y. Concentration characteristics and dynamic changes of water soluble organic carbon in soil under different fertilization treatments. J. Agro-Environ. Sci. 2013, 32, 314–319. [Google Scholar]
- Wu, J.; Lin, Q.; Huang, Q.; Xiao, H. Soil Microbial Biomass—Methods and Application; China Meteorological Press: Beijing, China, 2006; pp. 117–141.
- Ma, L.; Lv, N.; Ye, J.; Ru, S.; Li, G.; Hou, Z. Effects of biochar on organic carbon content and fractions of gray desert soil. Chin. J. Eco-Agric. 2012, 20, 976–981. [Google Scholar] [CrossRef]
- Nguyen, B.; Lenmann, J.; Kinyangi, J.; Smernik, R.; Riha, S.; Engelhard, M. Long-term black carbon dynamics in cultivated soil. Biogeochemistry 2008, 89, 295–308. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomom, D.; Sohi, S.; Thies, J.; Skjemstad, J.; Luizão, F.; Engelhard, M.; Neves, E.; Wirick, S. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Durenkamp, M.; Luo, Y.; Brookes, P. Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol. Biochem. 2010, 42, 2026–2029. [Google Scholar] [CrossRef]
- Davidson, E.; Belk, E.; Boone, R. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, L.; Johnson, B. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agric. For. Meteorol. 2005, 130, 237–253. [Google Scholar] [CrossRef]
- Qi, R.; Li, J.; Lin, Z.; Li, Z.; Li, Y.; Yang, X.; Zhang, J.; Zhao, B. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Wei, L.; Razavi, B.S.; Wang, W.; Zhu, Z.; Liu, S.; Wu, J.; Kuzyakov, Y.; Ge, T. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biol. Biochem. 2019, 135, 134–143. [Google Scholar] [CrossRef]
- Qu, J. Influence of Biochar Amendment on Paddy Soil Carbon Sequestration and GHGS Emission Reduction and Rice Productivity. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2012. [Google Scholar]
- Huang, J. The Effect of Biochar on Soil Microbial Biomass and Soil Enzymes. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2012. [Google Scholar]
- Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive priming of black carbon and glucose mineralisation. Org. Geochem. 2004, 35, 823–830. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Mcgrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z.; et al. Effect of biochar on the extract ability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 2015, 23, 974–984. [Google Scholar] [CrossRef]
- Gao, J. Oxidase Activities and Organic Carbon Transformation of Paddy Soils. Master’s Thesis, Huazhong Agricutural University, Wuhan, China, 2010. [Google Scholar]
- Wan, Z.; Song, C.; Guo, Y.; Wang, L.; Huang, J. Effects of water gradient on soil enzyme activity and active organic carbon composition under Carex lasiocarpa marsh. Acta Ecol. Sin. 2008, 28, 5980–5986. [Google Scholar]
- Xiao, X.; Zhu, W.; Xiao, L.; Deng, Y.; Zhao, Y.; Wang, J. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field. Trans. Chin. Soc. Agric. Eng. 2013, 29, 91–98. [Google Scholar]
Soil Depth | Treatments | Before Transplantation | Tillering Stage | Jointing and Booting Stage | Milk Stage |
---|---|---|---|---|---|
0–10 | C0 | 10.12b | 10.58c | 10.33c | 9.56d |
C20 | 10.55b | 12.64b | 12.30b | 10.36c | |
C40 | 12.07a | 14.00a | 13.63a | 12.03b | |
F40 | 12.15a | 14.12a | 13.96a | 13.97a | |
10–20 | C0 | 9.08c | 10.03d | 9.84c | 8.25d |
C20 | 9.64b | 11.81 | 10.10b | 9.02c | |
C40 | 11.07a | 12.68b | 12.43a | 10.86b | |
F40 | 11.22a | 13.74a | 12.97a | 11.60a | |
20–40 | C0 | 7.76b | 8.67b | 7.24c | 7.06d |
C20 | 7.71b | 7.48c | 8.51b | 7.60c | |
C40 | 9.02a | 8.97b | 8.38b | 8.62b | |
F40 | 9.36a | 9.77a | 9.84a | 10.34a | |
Two-way ANOVA | |||||
Biochar application | 0.013 * | 0.096 | 0.042 * | 0.006 ** | |
Irrigation | 0.748 | 0.492 | 0.387 | 0.031 * |
Soil Depth | Treatments | Before Transplantation | Tillering Stage | Jointing and Booting Stage | Milk Stage |
---|---|---|---|---|---|
0–10 | C0 | 208.39ab | 221.50c | 305.76c | 245.78c |
C20 | 205.10b | 259.77b | 364.24b | 301.05b | |
C40 | 218.01a | 303.63a | 403.86a | 365.58a | |
F40 | 201.39b | 263.61b | 369.31b | 310.30b | |
10–20 | C0 | 177.60a | 206.58c | 259.63c | 199.94c |
C20 | 175.55a | 251.48b | 320.91b | 284.36b | |
C40 | 185.19a | 280.39a | 368.34a | 326.44a | |
F40 | 184.14a | 206.85c | 338.45b | 273.64b | |
20–40 | C0 | 164.63b | 190.16b | 228.89c | 198.96c |
C20 | 166.12b | 169.94c | 308.71b | 259.01b | |
C40 | 169.33b | 225.32a | 332.96a | 290.42a | |
F40 | 176.11a | 166.57c | 295.23b | 211.41c | |
Two-way ANOVA | |||||
Biochar application | 0.573 | 0.002 ** | 0.000 ** | 0.000 ** | |
Irrigation | 0.679 | 0.002 ** | 0.029 * | 0.000 ** |
Soil Depth | Treatments | Before Transplantation | Tillering Stage | Jointing and Booting Stage | Milk Stage |
---|---|---|---|---|---|
0–10 | C0 | 102.12b | 117.78c | 121.41c | 105.40c |
C20 | 111.13a | 129.05bc | 143.82b | 140.32b | |
C40 | 113.06a | 149.01a | 168.65a | 161.60a | |
F40 | 109.54a | 135.57ab | 147.80b | 142.63b | |
10–20 | C0 | 89.37c | 91.59c | 104.25c | 99.24d |
C20 | 99.43b | 106.61b | 124.05b | 108.69c | |
C40 | 103.60b | 129.84a | 133.67ab | 133.71a | |
F40 | 110.29a | 127.10a | 146.43a | 120.18b | |
20–40 | C0 | 86.35a | 83.36c | 92.37b | 87.36bc |
C20 | 86.83a | 100.44b | 96.47b | 81.00c | |
C40 | 90.61a | 119.58a | 126.47a | 115.73a | |
F40 | 89.03a | 109.42b | 123.78a | 94.19b | |
Two-way ANOVA | |||||
Biochar application | 0.120 | 0.000 ** | 0.001 ** | 0.001 ** | |
Irrigation | 0.911 | 0.205 | 0.676 | 0.067 |
Soil Depth | Treatments | Tillering Stage | Jointing and Booting Stage | Milk Stage |
---|---|---|---|---|
0–10 | C0 | 8.45a | 8.38d | 8.15c |
C20 | 8.32a | 8.75c | 8.69b | |
C40 | 8.67a | 9.04b | 8.97a | |
F40 | 7.90b | 8.12a | 7.94d | |
10–20 | C0 | 8.49c | 8.71c | 8.65c |
C20 | 8.99b | 9.03ab | 8.81b | |
C40 | 9.40a | 9.25a | 9.21a | |
F40 | 9.35a | 8.98b | 8.55c | |
20–40 | C0 | 8.44c | 8.12c | 7.89c |
C20 | 8.55c | 8.59a | 8.26b | |
C40 | 9.09a | 8.59a | 8.66a | |
F40 | 8.81b | 8.45b | 7.39d | |
Two-way ANOVA | ||||
Biochar application | 0.011 * | 0.001 ** | 0.001 ** | |
Irrigation | 0.064 | 0.004 ** | 0.000 ** |
Soil Depth | Treatments | Tillering Stage | Jointing and Booting Stage | Milk Stage |
---|---|---|---|---|
0–10 | C0 | 0.187c | 0.186c | 0.187b |
C20 | 0.248b | 0.201c | 0.203b | |
C40 | 0.284a | 0.269a | 0.304a | |
F40 | 0.248b | 0.238b | 0.284a | |
10–20 | C0 | 0.155c | 0.158c | 0.156b |
C20 | 0.185b | 0.153c | 0.135c | |
C40 | 0.226a | 0.218a | 0.211a | |
F40 | 0.217a | 0.191b | 0.226a | |
20–40 | C0 | 0.119c | 0.123b | 0.085d |
C20 | 0.138ab | 0.128b | 0.124b | |
C40 | 0.134bc | 0.147a | 0.230a | |
F40 | 0.150a | 0.146a | 0.104c | |
Two-way ANOVA | ||||
Biochar application | 0.041 * | 0.010 ** | 0.001 ** | |
Irrigation | 0.678 | 0.304 | 0.11 |
Growth Period | Tillering Stage | Jointing and Booting Stage | Milk Stage | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | SOC | WSOC | SMBC | CAT | INV | SOC | WSOC | SMBC | CAT | INV | SOC | WSOC | SMBC | CAT | INV | |
Tillering stage | SOC | 1 | ||||||||||||||
WSOC | 0.757 ** | 1 | ||||||||||||||
SMBC | 0.784 ** | 0.720 ** | 1 | |||||||||||||
CAT | 0.039 | 0.025 | 0.087 | 1 | ||||||||||||
INV | 0.920 ** | 0.816 ** | 0.863 ** | - | 1 | |||||||||||
Jointing and booting stage | SOC | 0.942 ** | 0.699 ** | 0.827 ** | - | - | 1 | |||||||||
WSOC | 0.736 ** | 0.775 ** | 0.911 ** | - | - | 0.802 ** | 1 | |||||||||
SMBC | 0.845 ** | 0.711 ** | 0.907 ** | - | - | 0.836 ** | 0.859 ** | 1 | ||||||||
CAT | - | - | - | 0.691 ** | - | 0.382 * | 0.481 ** | 0.382 * | 1 | |||||||
INV | - | - | - | - | 0.943 ** | 0.910 ** | 0.821 ** | 0.842 ** | - | 1 | ||||||
Milk stage | SOC | 0.868 ** | 0.584 ** | 0.827 ** | - | - | 0.921 ** | 0.755 ** | 0.830 ** | - | - | 1 | ||||
WSOC | 0.675 ** | 0.846 ** | 0.847 ** | - | - | 0.702 ** | 0.936 ** | 0.765 ** | - | - | 0.628 ** | 1 | ||||
SMBC | 0.860 ** | 0.895 ** | 0.879 ** | - | - | 0.851 ** | 0.869 ** | 0.879 ** | - | - | 0.782 ** | 0.853 ** | 1 | |||
CAT | - | - | - | 0.456 ** | - | - | - | - | 0.820 ** | - | 0.070 | 0.626 ** | 0.517 ** | 1 | ||
INV | - | - | - | - | 0.765 ** | - | - | - | - | 0.847 ** | 0.754 ** | 0.791 ** | 0.859 ** | - | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Chen, X.; Jiang, Z.; Ding, J.; Sun, X.; Xu, J. Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation. Int. J. Environ. Res. Public Health 2020, 17, 333. https://doi.org/10.3390/ijerph17010333
Yang S, Chen X, Jiang Z, Ding J, Sun X, Xu J. Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation. International Journal of Environmental Research and Public Health. 2020; 17(1):333. https://doi.org/10.3390/ijerph17010333
Chicago/Turabian StyleYang, Shihong, Xi Chen, Zewei Jiang, Jie Ding, Xiao Sun, and Junzeng Xu. 2020. "Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation" International Journal of Environmental Research and Public Health 17, no. 1: 333. https://doi.org/10.3390/ijerph17010333
APA StyleYang, S., Chen, X., Jiang, Z., Ding, J., Sun, X., & Xu, J. (2020). Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation. International Journal of Environmental Research and Public Health, 17(1), 333. https://doi.org/10.3390/ijerph17010333