Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone
Abstract
:1. Introduction
- (1)
- What are the spatiotemporal distribution characteristics, regional differences, and variation trends of PM2.5 in CPEZ?
- (2)
- What is the influence of socioeconomic factors on PM2.5 concentration in CPEZ and how does it work?
- (3)
- What are the policy implications for the formulation of PM2.5 pollution control in CPEZ as well as other inland cities?
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Spatial Autocorrelation Analysis
2.3. Socioeconomic Factor Selection
2.4. Spatial Econometric Model
3. Results
3.1. Spatiotemporal Variation of PM2.5
3.2. Spatial Econometric Regression
- (1)
- SDM time fixed effect: for different spatial individuals, differences caused by time are consistent.
- (2)
- SDM spatial fixed effect: among cross-sectional data of different time series, differences caused by spatial characteristics are consistent.
- (3)
- SDM time and spatial fixed effect: among cross-sectional data of different time series, differences caused by space are consistent, and among different spatial individuals, differences caused by time are consistent.
- (4)
- SDM random effect: the differences caused by space and time is random.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BR | The ratio of urban built-up area |
BTH | Beijing-Tianjin-Hebei |
CPEZ | Chengdu Plain Economic Zone |
EC | Energy consumption per unit of output |
GDP | Gross regional product |
GDPP | Per capita gross regional product |
GR | Ratio of green space |
PD | Population density |
PP | Per capita park area |
PRD | Pearl River Delta |
SDM | Spatial model |
SEDAC | Socioeconomic data and applications center |
SEM | Spatial error model |
SIR | The ratio of secondary industry |
SLM | Spatial lag model |
STIRPAT | Stochastic impacts by regression on population, affluence, and technology |
YRD | Yangtze River Delta |
Appendix A
Cities | lnGDP | lnGDPP | lnSIR | lnPD | lnBR | lnEC | lnGR | lnPP | |
---|---|---|---|---|---|---|---|---|---|
Chengdu | Min | 7.92 | 10.01 | −0.85 | 6.82 | −3.41 | −0.90 | −1.12 | 0.48 |
Max | 9.64 | 11.47 | −0.76 | 7.10 | −2.84 | −0.38 | −1.00 | 0.72 | |
Mean | 8.88 | 10.84 | −0.80 | 7.01 | −3.18 | −0.61 | −1.04 | 0.62 | |
SD | 0.51 | 0.44 | 0.03 | 0.10 | 0.18 | 0.16 | 0.03 | 0.07 | |
Deyang | Min | 6.29 | 9.60 | −0.62 | 6.39 | −5.01 | −0.49 | −1.31 | −0.74 |
Max | 7.70 | 11.05 | −0.51 | 6.46 | −4.37 | 0.06 | −1.03 | 0.18 | |
Mean | 7.05 | 10.38 | −0.56 | 6.41 | −4.65 | −0.19 | −1.14 | −0.24 | |
SD | 0.41 | 0.42 | 0.04 | 0.03 | 0.25 | 0.17 | 0.11 | 0.32 | |
Mianyang | Min | 6.33 | 9.34 | −0.83 | 5.43 | −5.52 | −0.66 | −1.21 | −0.47 |
Max | 7.64 | 10.77 | −0.65 | 5.59 | −4.98 | 0.003 | −1.01 | 0.31 | |
Mean | 7.10 | 10.13 | −0.73 | 5.49 | −5.29 | −0.27 | −1.07 | −0.04 | |
SD | 0.41 | 0.42 | 0.07 | 0.06 | 0.19 | 0.20 | 0.08 | 0.22 | |
Suining | Min | 5.48 | 8.82 | −0.93 | 6.42 | −4.76 | −0.53 | −1.18 | −0.82 |
Max | 7.11 | 10.54 | −0.58 | 6.64 | −4.21 | 0.05 | −0.96 | 0.60 | |
Mean | 6.41 | 9.81 | −0.69 | 6.50 | −4.46 | −0.21 | −1.08 | −0.02 | |
SD | 0.47 | 0.51 | 0.12 | 0.09 | 0.23 | 0.19 | 0.07 | 0.45 | |
Leshan | Min | 5.90 | 9.29 | −0.61 | 5.52 | −5.63 | 0.03 | −1.23 | −0.20 |
Max | 7.39 | 10.81 | −0.48 | 5.60 | −5.12 | 0.61 | −1.04 | 0.60 | |
Mean | 6.80 | 10.21 | −0.54 | 5.55 | −5.38 | 0.35 | −1.13 | 0.07 | |
SD | 0.45 | 0.46 | 0.05 | 0.03 | 0.19 | 0.19 | 0.07 | 0.24 | |
Meishan | Min | 5.64 | 9.13 | −0.72 | 6.03 | −5.20 | −0.40 | −1.46 | −2.04 |
Max | 7.14 | 10.65 | −0.56 | 6.20 | −4.72 | 0.28 | −1.12 | −0.49 | |
Mean | 6.53 | 10.03 | −0.62 | 6.07 | −5.01 | 0.002 | −1.28 | −1.39 | |
SD | 0.47 | 0.47 | 0.06 | 0.06 | 0.18 | 0.21 | 0.15 | 0.57 | |
Ya’an | Min | 5.00 | 9.19 | −0.77 | 4.61 | −6.66 | −0.23 | −1.57 | −0.28 |
Max | 6.47 | 10.65 | −0.53 | 4.63 | −6.10 | 0.29 | −0.99 | 0.28 | |
Mean | 5.85 | 10.04 | −0.62 | 4.62 | −6.42 | 0.06 | −1.19 | 0.07 | |
SD | 0.44 | 0.43 | 0.08 | 0.01 | 0.22 | 0.16 | 0.26 | 0.26 | |
Ziyang | Min | 5.70 | 8.86 | −0.89 | 6.10 | −5.79 | −0.86 | −1.54 | −1.52 |
Max | 7.15 | 10.64 | −0.58 | 6.42 | −4.76 | −0.17 | −0.98 | 0.24 | |
Mean | 6.63 | 9.96 | −0.67 | 6.19 | −5.37 | −0.43 | −1.16 | −0.93 | |
SD | 0.49 | 0.59 | 0.11 | 0.13 | 0.30 | 0.20 | 0.21 | 0.51 |
References
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM 2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qian, J.; Ou, C.Q.; Zhou, Y.X.; Guo, C.; Guo, Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Pollut. 2014, 190, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mažeikis, A. Urbanization influence on meteorological parameters of air pollution: Vilnius case study. Baltica 2013, 26, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, K.; Su, L. Contribution of Atmospheric Diffusion Conditions to the Recent Improvement in Air Quality in China. Sci. Rep. 2016, 6, 36404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 61–75. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM 2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Filho, M.S.; Lehmann, C.; Fornaro, A. Influence of local sources and topography on air quality and rainwater composition in Cubatão and São Paulo, Brazil. Atmos. Environ. 2015, 101, 200–208. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China—A case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef]
- Yun, G.; He, Y.; Jiang, Y.; Dou, P.; Dai, S. PM 2.5 spatiotemporal evolution and drivers in the Yangtze River Delta between 2005 and 2015. Atmosphere 2019, 10, 55. [Google Scholar]
- Yin, X.; Huang, Z.; Zheng, J.; Yuan, Z.; Zhu, W.; Huang, X.; Chen, D. Source contributions to PM2.5 in Guangdong province, China by numerical modeling: Results and implications. Atmos. Res. 2017, 186, 63–71. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Zhu, G.; Yuan, Q. Spatio–temporal relationship and evolvement of socioeconomic factors and PM2.5 in China during 1998–2016. Int. J. Environ. Res. Public Health 2019, 16, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, S.; Li, G.; Zhang, H.; Jin, L.; Su, Y.; Wu, K. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Appl. Geogr. 2017, 79, 26–36. [Google Scholar] [CrossRef]
- Xu, B.; Luo, L.; Lin, B. A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models. Ecol. Indic. 2016, 63, 346–358. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Y. Exploring the Spatial Variation Characteristics and Influencing Factors of PM2.5 Pollution in China: Evidence from 289 Chinese Cities. Sustainability 2019, 11, 4751. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Chang, G.H.; Sachs, J.D.; Woo, W.T. Geographic factors and China’s regional development under market reforms, 1978-1998. China Econ. Rev. 2002, 13, 89–111. [Google Scholar] [CrossRef]
- Xuemei, Z.; Yi, W.; Xiaoying, W.; Xi, Q.; Xinhua, Q. Comparison of heat wave vulnerability between coastal and inland cities of Fujian Province in the past 20 years. Prog. Geogr. 2016, 35, 1197–1205. [Google Scholar]
- Zhang, L.; Hui, E.C.; Wen, H. Housing price-volume dynamics under the regulation policy: Difference between Chinese coastal and inland cities. Habitat Int. 2015, 17, 29–40. [Google Scholar] [CrossRef]
- Xu, F.; Yang, H. Comparative analysis of entrepreneurial environment among coastal and inland cities in China. J. Comput. Theor. Nanosci. 2016, 13, 1897–1904. [Google Scholar] [CrossRef]
- Cheng, Z.; Luo, L.; Wang, S.; Wang, Y.; Sharma, S.; Shimadera, H.; Wang, X.; Bressi, M.; de Miranda, R.M.; Jiang, J.; et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 2016, 89, 212–221. [Google Scholar] [CrossRef]
- Kan, Y.; Jin, Z.; Li, L.; Yang, Z.; Zhang, Z.; Bao, H. Distribution Characteristics and Reserves Estimation of Soil Organic Carbon of Different Physiognomy in Chengdu Economic Zone. Adv. Earth Sci. 2012, 27, 1126–1133. [Google Scholar]
- Zhan, C.C.; Xie, M.; Fang, D.X.; Wang, T.J.; Wu, Z.; Lu, H.; Li, M.M.; Chen, P.L.; Zhuang, B.L.; Li, S.; et al. Synoptic weather patterns and their impacts on regional particle pollution in the city cluster of the Sichuan Basin, China. Atmos. Environ. 2019, 208, 34–47. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; Qin, D.; He, J.; Dong, L. Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Sci. Total Environ. 2018, 624, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997. [CrossRef] [Green Version]
- Yang, R.; Chen, W. Spatial correlation, influencing factors and environmental supervision mechanism construction of atmospheric pollution: An empirical study on SO2 emissions in China. Sustainability 2019, 11, 1742. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, X.; Li, Z. Using the STIRPAT model to explore the factors driving regional CO2 emissions: a case of Tianjin, China. Nat. Hazards 2015, 76, 1667–1685. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM 2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, C.; Lam, P.T.I.; Sha, Y.; Feng, Y. Using urban-carrying capacity as a benchmark for sustainable urban development: An empirical study of Beijing. Sustainability 2015, 7, 3244–3268. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L.; Remais, J.V. Urbanisation and health in China. Lancet 2012, 379, 843–852. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Ioannidis, J.P.A.; Li, H.; Jones, K.C.; Martin, F.L. Understanding and Harnessing the Health Effects of Rapid Urbanization in China. Environ. Sci. Technol. 2011, 45, 5099–5104. [Google Scholar] [CrossRef]
- Huang, T.; Yu, Y.; Wei, Y.; Wang, H.; Huang, W.; Chen, X. Spatial–seasonal characteristics and critical impact factors of PM2.5 concentration in the Beijing–Tianjin–Hebei urban agglomeration. PLoS ONE 2018, 13, e0201364. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Gu, J.; Wang, H.; Yao, T.; Wu, Z. Uncovering the culprits of air pollution: Evidence from China’s economic sectors and regional heterogeneities. J. Clean. Prod. 2018, 171, 1481–1493. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.-M. The influential factors of urban PM2.5 concentrations in China: a spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Lonati, G.; Giugliano, M.; Butelli, P.; Romele, L.; Tardivo, R. Major chemical components of PM2.5 in Milan (Italy). Atmos. Environ. 2005, 39, 1925–1934. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Sharp, B.; Xu, S.C. Does economic growth and energy consumption drive environmental degradation in China’s 31 provinces? New evidence from a spatial econometric perspective. Appl. Econ. 2019, 51, 4658–4671. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, M.; Zhang, B. The effects of urbanization on PM2.5 concentrations in China’s Yangtze River Economic Belt: New evidence from spatial econometric analysis. J. Clean. Prod. 2019, 239, 118065. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G.; Sun, D.; Miao, Z. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability 2015, 7, 15570–15592. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- LeSage, J.P. An introduction to spatial econometrics. Rev. Econ. Ind. 2008, 123, 19–44. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 23, 97–115. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, L.; Fang, X.; Ji, H.; Li, X.; Zhao, Z. Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China. Sci. Total. Environ. 2019, 655, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, W.; Han, L.; Locke, D. Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China’s major cities. Environ. Int. 2019, 133, 10145. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Sun, T.; Peng, J.; Fang, K.; Liu, Y.; Yang, Y.; Wang, Y. Direct and spillover effects of urbanization on PM2.5 concentrations in China’s top three urban agglomerations. J. Clean. Prod. 2018, 190, 72–83. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Ouyang, X.; Shao, Q.; Zhu, X.; He, Q.; Xiang, C.; Wei, G. Environmental regulation, economic growth and air pollution: Panel threshold analysis for OECD countries. Sci. Total. Environ. 2019, 657, 234–241. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Qin, D.; Yin, D.; Dong, L.; He, J. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China. Atmos. Pollut. Res. 2019, 10, 374–385. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.-W.; Cheng, H.-R.; Lv, X.-P.; Gong, W.; Wang, X.-M.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total. Environ. 2015, 518, 97–105. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, X.; Liu, X. Is there an EKC between economic growth and smog pollution in China? New evidence from semiparametric spatial autoregressive models. J. Clean. Prod. 2019, 220, 873–883. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Wang, S.; Li, S. Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Appl. Energy 2018, 230, 94–105. [Google Scholar] [CrossRef]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y.; He, K. The socioeconomic drivers of China’s primary PM2.5emissions. Environ. Res. Lett. 2014, 9, 024010. [Google Scholar] [CrossRef] [Green Version]
- Lyu, W.; Li, Y.; Guan, D.; Zhao, H.; Zhang, Q.; Liu, Z. Driving forces of Chinese primary air pollution emissions: an index decomposition analysis. J. Clean. Prod. 2016, 133, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S. Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries. Energy Policy 2011, 39, 6991–6999. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S.; Sun, S. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- Ma, L.M.; Zhang, X. A Spatial Econometric Approach to Studying Regional Air Pollution in China. China Econ. 2014, 9, 42–56. [Google Scholar]
- Wang, J.; Wang, S.; Li, S. Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling. Environ. Pollut. 2019, 248, 792–803. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, C. Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere 2016, 148, 148–162. [Google Scholar] [CrossRef]
- Cui, H.; Chen, W.; Dai, W.; Liu, H.; Wang, X.; He, K. Source apportionment of PM2.5 in Guangzhou combining observation data analysis and chemical transport model simulation. Atmos. Environ. 2015, 116, 262–271. [Google Scholar] [CrossRef]
- Dong, S.; Li, Z.; Li, B.; Xue, M. Problems and strategies of industrial transformation of China’s resource-based cities. Zhongguo Renkou Ziyuan Yu Huan Jing. China Popul. Resour. Environ. 2007, 17, 12–17. [Google Scholar]
- Yan, Y.; Li, K. Threshold Effect of Urbanization on PM2.5 Concentration. Environ. Econ. Res. 2016, 36, 739–743. [Google Scholar]
References | Time | Location | Socioeconomic Variables | Methodologies | Key Findings |
---|---|---|---|---|---|
Dan Yan [9] | 2018 | BTH | Population density, Energy structure, urbanization | Spatial interpolation method, spatial clustering analysis. | PM2.5 in BTH region has significant spatial autocorrelation due to high population density. |
Shen Zhao [15] | 2019 | 289 Chinese cities | Human activity intensity, the secondary industry’s proportion, emissions of motor vehicles. | Spatial clustering analysis, regression analysis. | vehicle population is the most critical driver of increasing PM2.5 concentration |
Guoliang Yun [10] | 2019 | YRD | Population density, GDP | Geographical detector model. | Population density is the dominant socioeconomic factors affecting the formation of PM2.5. |
Xiaohong Yin [11] | 2016 | PRD | Vehicle ownership; industrial production; residential; travel distance. | CAMx (v5.4) modeling system | Vehicle ownership, average travel distance, and industrial production are the major contributors to PM2.5 in PRD. |
Yi Yang [12] | 2019 | China | GDP per capita, industrial added values, urban population density, private car ownership. | Spatial econometric analysis. | GDP per capita, industrial added value and private car ownership are significantly positive to PM2.5 concentration, and urban population density |
Variable | Full Name | Abbreviation Definition | Unit | Types | Reference |
---|---|---|---|---|---|
lnPD | Logarithm of the population density | PD: the number of people city divided by area | Pop./km2 | P (Population) | [9,10,27,28,29,30,31] |
lnGDP | Logarithm of gross regional product | GDP: gross regional product of cities | 100 million yuan | A (Affluence level) | [29,31,32] |
lnGDPP | Logarithm of gross regional product per capita | GDPP: per capita gross regional product | yuan/capita | A (Affluence level) | [12,29,30,31,32,33,34] |
lnSIR | Logarithm of the ratio of secondary industry | SIR: the secondary industry divided by total industry output | % | T (Technical level) | [11,29,30,32,33] |
lnEC | Logarithm of energy consumption per unit of output | EC: Energy consumption divided by the corresponding output | Tons of standard carbon/10 thousand yuan | T (Technical level) | [13,14], |
lnBR | Logarithm of the ratio of urban built-up area | BR: the built-up area divided by city area | % | E (Urban environment) | [35,36] |
lnGR | Logarithm of the ratio of green space | GR: the green area divided by city area | % | E (Urban environment) | [28,37] |
lnPP | Logarithm of per capita park area | PP: park area divided by population | km2/capital | E (Urban environment) | [37] |
Time | Moran’ I | Standard Error | Z-Score | p-Value |
---|---|---|---|---|
2006 | 0.191 ** | 0.386 | 1.655 | 0.049 |
2007 | 0.096 * | 0.360 | 1.461 | 0.072 |
2008 | 0.091 * | 0.361 | 1.379 | 0.084 |
2009 | 0.103 * | 0.371 | 1.522 | 0.064 |
2010 | 0.150 ** | 0.372 | 1.728 | 0.042 |
2011 | 0.101 * | 0.344 | 1.405 | 0.080 |
2012 | 0.094 * | 0.352 | 1.580 | 0.057 |
2013 | 0.132 * | 0.372 | 1.607 | 0.054 |
2014 | 0.093 * | 0.304 | 1.379 | 0.084 |
2015 | 0.089 * | 0.319 | 1.491 | 0.068 |
2016 | 0.083 * | 0.308 | 1.483 | 0.069 |
Models | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
Variables | SDM Time Fixed Effect | SDM Spatial Fixed Effect | SDM Time and Spatial Fixed Effect | SDM Random Effect |
lnPD | 0.3606 (0.5552) *** | 0.1420 (0.1486) | 0.2378 (0.1737) * | 0.2214 (0.1878) * |
lnGDP | 0.0770 (0.1186) ** | 0.0531 (0.0556) | 0.2155 (0.1574) * | 0.2293 (0.1945) |
lnGDPP | 0.2068 (0.3184) * | 0.0231 (0.0242) | 0.0201 (0.0147) | 0.0407 (0.0345) |
lnSIR | 0.0149 (0.0229) | 0.1046 (0.1095) | 0.0011 (0.0008) | 0.0300 (0.0254) |
lnEC | 0.1350 (0.2079) *** | 0.5369 (0.5620) ** | 0.6741 (0.4925) ** | 0.5738 (0.4866) ** |
lnBR | 0.0389 (0.0599) | 0.0252 (0.0264) | 0.1709 (0.1249) * | 0.1848 (0.1567) |
lnGR | −0.1259 (0.1938) ** | −0.1317 (0.1378) ** | −0.1519 (0.1110) ** | −0.1447 (0.1227) *** |
lnPP | −0.1118 (0.1721) *** | −0.0027 (−0.0028) | −0.0144 (0.0105) | −0.0021 (0.0018) |
W lnPD | 0.10818 (0.16656) *** | 0.0426 (0.04458) | 0.07134 (0.05211) ** | 0.06642 (0.05634) * |
W lnGDP | 0.0231 (0.03558) *** | 0.01593 (0.01668) | 0.06465 (0.04722) * | 0.06879 (0.05835) |
W lnGDPP | 0.06204 (0.09552) ** | 0.00693 (0.00726) | 0.00603 (0.00441) | 0.01221 (0.01035) |
W lnSIR | 0.00447 (0.00687) | 0.03138 (0.03285) | 0.00033 (0.00024) | 0.009 (0.00762) |
W lnEC | 0.0405 (0.06237) ** | 0.16107 (0.1686) *** | 0.20223 (0.14775) ** | 0.17214 (0.14598) ** |
W lnBR | 0.01167 (0.01797) | 0.00756 (0.00792) | 0.05127 (0.03747) | 0.05544 (0.04701) |
W lnGR | −0.08777 (0.10814) *** | −0.03951 (0.04134) ** | −0.04557 (0.0333) ** | −0.04341 (0.03681) *** |
W lnPP | −0.09354 (0.11163) ** | −0.00081 (0.00084) | −0.00432 (0.00315) | −0.00063 (0.00054) |
0.154 (0.1831) *** | 0.2049 (0.2145) *** | 0.2155 (0.1574) | 0.146 (0.1390) | |
R2 | 0.9495 | 0.8272 | 0.8601 | 0.8110 |
Sig. | 0.0061 | 0.0041 | 0.0057 | 0.0063 |
AdjR2 | 0.6323 | 0.4416 | 0.5216 | 0.4012 |
observations | 88 | 88 | 88 | 88 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
lnPD | 0.3606 *** (0.5552) | 0.10818 *** (0.1665) | 0.46878 *** (0.7217) |
lnGDP | 0.0770 ** (0.1186) | 0.0231 *** (0.0355) | 0.1001 ** (0.1541) |
lnGDPP | 0.2068 * (0.3184) | 0.06204 ** (0.0955) | 0.26884 * (0.4139) |
lnSIR | 0.0149 (0.0229) | 0.00447 (0.0068) | 0.01937 (0.0297) |
lnEC | 0.1350 *** (0.2079) | 0.0405 ** (0.06237) | 0.1755 ** (0.27027) |
lnBR | 0.0389 (0.0599) | 0.01167 (0.0179) | 0.05057 (0.0778) |
lnGR | −0.1259 ** (0.1938) | −0.08777 *** (0.1081) | −0.16367 ** (0.3019) |
lnPP | −0.1118 *** (0.1721) | −0.09354 ** (0.1116) | −0.14534 *** (0.2837) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Lan, H.; Li, J. Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone. Int. J. Environ. Res. Public Health 2020, 17, 74. https://doi.org/10.3390/ijerph17010074
Yang Y, Lan H, Li J. Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone. International Journal of Environmental Research and Public Health. 2020; 17(1):74. https://doi.org/10.3390/ijerph17010074
Chicago/Turabian StyleYang, Ye, Haifeng Lan, and Jing Li. 2020. "Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone" International Journal of Environmental Research and Public Health 17, no. 1: 74. https://doi.org/10.3390/ijerph17010074
APA StyleYang, Y., Lan, H., & Li, J. (2020). Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone. International Journal of Environmental Research and Public Health, 17(1), 74. https://doi.org/10.3390/ijerph17010074