Availability of Real-World Data in Italy: A Tool to Navigate Regional Healthcare Utilization Databases
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Health. Available online: http://www.salute.gov.it/portale/temi/p2_6.jsp?lingua=english&id=3879&area=healthcareUE&menu=vuoto (accessed on 17 January 2019).
- Lo Scalzo, A.; Donatini, A.; Orzella, L.; Cicchetti, A.; Profili, S.; Maresso, A. Italy: Health system review. Health Syst. Transit. 2009, 11, 1–216. [Google Scholar]
- Gazzetta Ufficiale. Decreto Legislativo 10 agosto 2018, n. 101. Available online: https://www.gazzettaufficiale.it/eli/id/2018/09/04/18G00129/sg (accessed on 2 December 2019).
- EUR-Lex. Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN (accessed on 2 December 2019).
- Ministero della Salute. Decreto 26 Luglio. 1993. Available online: http://www.sanita.basilicata.it/dnnsanita/mattonissn/SDO_DRG/resources/SDO/DM%20260793.pdf (accessed on 18 February 2019).
- LexItaliait. Decreto-legge 30 settembre 2003, n. 269. Available online: http://www.lexitalia.it/leggi/dl_2003-269.htm (accessed on 18 February 2019).
- Sorensen, H.T.; Sabroe, S.; Olsen, J. A framework for evaluation of secondary data sources for epidemiological research. Int. J. Epidemiol. 1996, 25, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, S.; Avorn, J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J. Clin. Epidemiol. 2005, 58, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Suissa, S.; Garbe, E. Primer: Administrative health databases in observational studies of drug effects—advantages and disadvantages. Nat. Clin. Rheumatol. 2007, 3, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Strom, B.L.; Kimmel, S.E.; Hennessy, S. Pharmacoepidemiology, 5th ed.; John Wiley & Sons Ltd.: Chichester, UK, 2012. [Google Scholar]
- Corrao, G.; Mancia, G. Generating evidence from computerized healthcare utilization databases. Hypertension 2015, 65, 490–498. [Google Scholar] [CrossRef]
- Baujat, G.; Choquet, R.; Bouée, S.; Jeanbat, V.; Courouve, L.; Ruel, A.; Michot, C.; Le Quan Sang, K.H.; Lapidus, D.; Messiaen, C.; et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in France: An estimate based on a record linkage of two national databases. Orphanet J. Rare Dis. 2017, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Asghari, S.; Courteau, J.; Carpentier, A.C.; Vanasse, A. Optimal strategy to identify incidence of diagnostic of diabetes using administrative data. BMC Med. Res. Methodol. 2009, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, P.; Heintjes, E.M.; Williams, R.; Hoti, F.; Christopher, S.; Majak, M.; Kool-Houweling, L.; Strongman, H.; Linder, M.; Dolin, P.; et al. Pioglitazone use and risk of bladder cancer in patients with type 2 diabetes: Retrospective cohort study using datasets from four European countries. BMJ 2016, 354, i3903. [Google Scholar] [CrossRef] [Green Version]
- Cars, T.; Lindhagen, L.; Malmström, R.E.; Neovius, M.; Schwieler, J.; Wettermark, B.; Sundström, J. Effectiveness of Drugs in Routine Care: A Model for Sequential Monitoring of New Medicines Using Dronedarone as Example. Clin. Pharmacol. Ther. 2017, 30, 493–501. [Google Scholar] [CrossRef]
- Zeiger, R.S.; Schatz, M.; Li, Q.; Chen, W.; Khatry, D.B.; Gossage, D.; Tran, T.N. High blood eosinophil count is a risk factor for future asthma exacerbations in adult persistent asthma. J. Allergy Clin. Immunol. Pract. 2014, 2, 741–750. [Google Scholar] [CrossRef]
- Buscarini, E.; Carle, F.; Tamburini, C.; Balzano, A.; Milazzo, G.; Soncini, M.; Milan, G.; Spolaore, P. Hospital care services for digestive diseases in Italy: The first quantitative assessment. Dig. Liver Dis. 2014, 46, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Raftery, J.; Roderick, P.; Stevens, A. Potential use of routine databases in health technology assessment. Health Technol. Assess. 2005, 9, 1–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saokaew, S.; Sugimoto, T.; Kamae, I.; Pratoomsoot, C.; Chaiyakunapruk, N. Healthcare Databases in Thailand and Japan: Potential Sources for Health Technology Assessment Research. PLoS ONE 2015, 11, e0141993. [Google Scholar] [CrossRef] [PubMed]
- Società Italiana di Statistica Medica ed Epidemiologia Clinica. Available online: https://www.sismec.info/arches (accessed on 4 April 2019).
- WHO Collaborating Centre for Drug Statistics Methodology. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 5 February 2019).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nchs/icd/index.htm (accessed on 5 February 2019).
- Agenzia Italiana del Farmaco. Available online: https://farmaci.agenziafarmaco.gov.it/bancadatifarmaci/cerca-farmaco (accessed on 5 February 2019).
- Carle, F.; Granella, P.; Ceccolini, C.; Lispi, L. The national hospital discharge database: New information for health performance assessment. Epidemiol. Prev. 2018, 42, 190–191. [Google Scholar] [CrossRef]
- Thygesen, L.C.; Daasnes, C.; Thaulow, I.; Brønnum-Hansen, H. Introduction to Danish (nationwide) registers on health and social issues: Structure, access, legislation, and archiving. Scand. J. Public Health 2011, 39, 12–16. [Google Scholar] [CrossRef]
- Emilsson, L.; Lindahl, B.; Köster, M.; Lambe, M.; Ludvigsson, J.F. Review of 103 Swedish Healthcare Quality Registries. J. Intern. Med. 2015, 277, 94–136. [Google Scholar] [CrossRef]
- Kilpeläinen, K.; Parikka, S.; Koponen, P.; Koskinen, S.; Rotko, T.; Koskela, T.; Gissler, M. Finnish experiences of health monitoring: Local, regional, and national data sources for policy evaluation. Glob. Health Action 2016, 9, 28824. [Google Scholar] [CrossRef]
- Hernán, M.A. With great data comes great responsibility: Publishing comparative effectiveness research in epidemiology. Epidemiology 2011, 22, 290–291. [Google Scholar] [CrossRef] [Green Version]
- Carle, F.; Di Minco, L.; Skrami, E.; Gesuita, R.; Palmieri, L.; Giampaoli, S.; Corrao, G. Quality assessment of healthcare databases. Epidemiol. Biostat. Public Health 2017, 14, e12901-1.-11. [Google Scholar] [CrossRef]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; von Elm, E.; Langan, S.M.; RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2015, 6, e1001885. [Google Scholar] [CrossRef]
- Dreyer, N.A.; Schneeweiss, S.; McNeil, B.J.; Berger, M.L.; Walker, A.M.; Ollendorf, D.A.; Gliklich, R.E.; GRACE Initiative. GRACE principles: Recognizing high-quality observational studies of comparative effectiveness. Am. J. Manag. Care 2010, 16, 467–471. [Google Scholar] [PubMed]
- Dreyer, N.A.; Bryant, A.; Velentgas, P. The GRACE Checklist: A Validated Assessment Tool for High Quality Observational Studies of Comparative Effectiveness. J. Manag. Care Spec. Pharm. 2016, 22, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol. Drug Saf. 2006, 15, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Borah, B.J.; Moriarty, J.P.; Crown, W.H.; Doshi, J.A. Applications of propensity score methods in observational comparative effectiveness and safety research: Where have we come and where should we go? J. Comp. Eff. Res. 2014, 3, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Maclure, M.; Fireman, B.; Nelson, J.C.; Hua, W.; Shoaibi, A.; Paredes, A.; Madigan, D. When should case-only designs be used for safety monitoring of medical products? Pharmacoepidemiol. Drug Saf. 2012, 21, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Ladouceur, M.; Rahme, E.; Pineau, C.A.; Joseph, L. Robustness of prevalence estimates derived from misclassified data from administrative databases. Biometrics 2007, 63, 272–279. [Google Scholar] [CrossRef]
- Cox, E.; Martin, B.C.; Van Staa, T.; Garbe, E.; Siebert, U.; Johnson, M.L. Good research practices for comparative effectiveness research: Approaches to mitigate bias and confounding in the design of nonrandomized studies of treatment effects using secondary data sources: The International Society for Pharmacoeconomics and Outcomes Research Good Research Practices for Retrospective Database Analysis Task Force Report—Part II. Value Health 2009, 12, 1053–1061. [Google Scholar] [CrossRef]
- Stendardo, A.; Preite, F.; Gesuita, R.; Villani, S.; Zambon, A.; Observational Studies working group. Legal aspects regarding the use and integration of electronic medical records for epidemiological purposes with focus on the Italian situation. Epidemiol. Biostat. Public Health 2013, 10, e8971-1-15. [Google Scholar] [CrossRef]
- Preite, F.; Salardi, S.; Gesuita, R.; Villani, S.; Trerotoli, P.; Guardabasso, V.; Zambon, A.; SISMEC Observational Studies working group. The new European regulation on personal data protection: Significant aspects for data processing for scientific research purposes. Epidemiol. Biostat. Public Health 2017, 14, e12286-1-13. [Google Scholar] [CrossRef]
- European Commission. Available online: https://ec.europa.eu/health/indicators_data/overview_en (accessed on 25 November 2019).
Geographical Area | Regions | Population Covered * | HUD Categories | Total | ||
---|---|---|---|---|---|---|
Healthcare Services | Conditions, Diseases, Other Events | Other Databases | ||||
North | Piemonte | 4422 | 10 (37; 5.6) | 11 (40.7; 11.7) | 6 (22.2; 7.7) | 27 (7.7) |
Valle d’Aosta | 128 | 9 (42.9; 5) | 7 (33.3; 7.4) | 5 (23.8; 6.4) | 21 (6) | |
Liguria | 1582 | 11 (73.3; 6.1) | 1 (6.7; 1.1) | 3 (20; 3.8) | 15 (4.3) | |
Lombardia | 9995 | 6 (42.9; 3.3) | 2 (14.3; 2.1) | 6 (42.9; 7.7) | 14 (4) | |
Province of Trento | 537 | 15 (38.5; 8.3) | 17 (43.6; 18.1) | 7 (17.9; 9) | 39 (11.1) | |
Province of Bolzano | 518 | 6 (66.7; 3.3) | 1 (11.1; 1.1) | 2 (22.2; 2.6) | 9 (2.6) | |
Veneto | 4923 | 12 (52.2; 6.7) | 6 (26.1; 6.4) | 5 (21.7; 6.4) | 23 (6.5) | |
Friuli Venezia Giulia | 1226 | 7 (46.7; 3.9) | 4 (26.7; 4.3) | 4 (26.7; 5.1) | 15 (4.3) | |
Emilia-Romagna | 4448 | 14 (77.8; 7.8) | 2 (11.1; 2.1) | 2 (11.1; 2.6) | 18 (5.1) | |
Center | Marche | 1549 | 11 (40.7; 6.1) | 10 (37; 10.6) | 6 (22.2; 7.7) | 27 (7.7) |
Toscana | 3749 | 10 (50; 5.6) | 4 (20; 4.3) | 6 (30; 7.7) | 20 (5.7) | |
Umbria | 894 | 7 (58.3; 3.9) | 3 (25; 3.2) | 2 (16.7; 2.6) | 12 (3.4) | |
Lazio | 5884 | 6 (50; 3.3) | 4 (33.3; 4.3) | 2 (16.7; 2.6) | 12 (3.4) | |
South and Islands | Campania | 5861 | 6 (66.7; 3.3) | - | 3 (33.3; 3.8) | 9 (2.6) |
Abruzzo | 1331 | 7 (63.6; 3.9) | 2 (18.2; 2.1) | 2 (18.2; 2.6) | 11 (3.1) | |
Molise | 313 | 4 (40; 2.2) | 4 (40; 4.3) | 2 (20; 2.6) | 10 (2.8) | |
Puglia | 4086 | 4 (36.4; 2.2) | 4 (36.4; 4.3) | 3 (27.3; 3.8) | 11 (3.1) | |
Basilicata | 576 | 15 (75; 8.3) | 1 (5; 1.1) | 4 (20; 5.1) | 20 (5.7) | |
Calabria | 1976 | 5 (35.7; 2.8) | 7 (50; 7.4) | 2 (14.3; 2.6) | 14 (4) | |
Sardegna | 1662 | 4 (66.7; 2.2) | 1 (16.7; 1.1) | 1 (16.7; 1.3) | 6 (1.7) | |
Sicilia | 5087 | 11 (57.9; 6.1) | 3 (15.8; 3.2) | 5 (26.3; 6.4) | 19 (5.4) | |
Total | 60,748 | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
HUD Categories | Start Year | Total | |||
---|---|---|---|---|---|
<2000 | 2000–2006 | ≥2006 | Not Reported | ||
Healthcare services | 37 (19.9; 39.8) | 31 (16.7; 40.3) | 97 (52.2; 65.5) | 21 (11.3; 61.8) | 186 (52.8) |
Conditions, diseases, other events | 42 (44.7; 45.2) | 28 (29.8; 36.4) | 19 (20.2; 12.8) | 5 (5.3; 14.7) | 94 (26.7) |
Other databases | 14 (19.4; 15.1) | 18 (25; 23.4) | 32 (44.4; 21.6) | 8 (11.1; 23.5) | 72 (20.5) |
Total | 93 (26.4) | 77 (21.9) | 148 (42) | 34 (9.7) | 352 (100) |
DMS | HUD Categories | Total | ||
---|---|---|---|---|
Healthcare Services | Conditions, Diseases, Other Events | Other Databases | ||
Oracle | 37 (48.7; 20.6) | 24 (31.6; 25.5) | 15 (19.7; 19.2) | 76 (21.6) |
SQL | 35 (53; 19.4) | 11 (16.7; 11.7) | 20 (30.3; 25.6) | 66 (18.8) |
SAS § | 22 (57.9; 12.2) | 9 (23.7; 9.6) | 7 (18.4; 9) | 38 (10.8) |
Other # | 17 (34; 9.4) | 24 (48; 25.5) | 9 (18; 11.5) | 50 (14.2) |
More than one | 25 (62.5; 13.9) | 5 (12.5; 5.3) | 10 (25; 12.8) | 40 (11.4) |
Not reported | 44 (53.7; 24.4) | 21 (25.6; 22.3) | 17 (20.7; 21.8) | 82 (23.3) |
Total | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
Type of Identification Code | HUD Categories | Total | ||
---|---|---|---|---|
Healthcare Services | Conditions, Diseases, Other Events | Other Databases | ||
Unique identification code § | 90 (55.2; 50) | 39 (23.9; 41.5) | 34 (20.9; 43.6) | 163 (46.3) |
Fiscal code # | 49 (52.7; 27.2) | 20 (21.5; 21.3) | 24 (25.8; 30.8) | 93 (26.4) |
No code | 38 (50.7; 21.1) | 20 (26.7; 21.3) | 17 (22.7; 21.8) | 21 (6) |
Not reported | 3 (14.3; 1.7) | 15 (71.4; 16) | 3 (14.3; 3.8) | 75 (21.3) |
Total | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
Anonymization Method | HUD Categories | Total | ||
---|---|---|---|---|
Healthcare Services | Conditions, Diseases, Other Events | Other Databases | ||
Separation | 54 (64.3; 30) | 15 (17.9; 16) | 15 (17.9; 19.2) | 84 (23.9) |
Pseudonymization | 16 (57.1; 8.9) | 8 (28.6; 8.5) | 4 (14.3; 5.1) | 28 (8.0) |
Internal procedure | 38 (48.1; 21.1) | 18 (22.8; 19.1) | 23 (29.1; 29.5) | 79 (22.4) |
Encryption | 15 (57.7; 8.3) | 5 (19.2; 5.3) | 6 (23.1; 7.7) | 26 (7.4) |
No anonymization | 8 (20; 4.4) | 24 (60; 25.5) | 8 (20; 10.3) | 40 (11.4) |
Not reported | 49 (51.6; 27.2) | 24 (25.3; 25.5) | 22 (23.2; 28.2) | 95 (27.0) |
Total | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
Classification Systems | HUD Categories | Total | ||
---|---|---|---|---|
Healthcare Services | Condition, Diseases, Other Events | Other Databases | ||
ICD9/10 CM | 97 (64.2; 53.9) | 48 (31.8; 51.1) | 6 (4; 7.7) | 151 (42.9) |
ATC/AIC § | 0 | 0 | 21 (100; 26.9) | 21 (6.0) |
Other * | 2 (10.5; 1.1) | 9 (47.4; 9.6) | 8 (42.1; 10.3) | 19 (5.4) |
No codes | 4 (21.1; 2.2) | 10 (52.6; 10.6) | 5 (26.3; 6.4) | 19 (5.4) |
Not Reported | 77 (54.2; 42.8) | 27 (19; 28.7) | 38 (26.8; 48.7) | 142 (40.3) |
Total | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
Data Quality Control | HUD Categories | Total | ||
---|---|---|---|---|
Healthcare Services | Condition, Diseases, Other Events | Other Databases | ||
At the time of data recording | 80 (56.3; 44.4) | 32 (22.5; 34) | 30 (21.1; 38.5) | 142 (40.3) |
≤1 month | 45 (52.9; 25) | 13 (15.3; 13.8) | 27 (31.8; 34.6) | 85 (24.1) |
3 ≤ months ≤ 12 | 37 (53.6; 20.6) | 24 (34.8; 25.5) | 8 (11.6; 10.3) | 69 (19.6) |
No control | 0 | 6 (100; 6.4) | 0 | 6 (1.7) |
Not reported | 18 (36; 10) | 19 (38; 20.2) | 13 (26; 16.7) | 50 (14.2) |
Total | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
Data Transmission | HUD Categories | Total | ||
---|---|---|---|---|
Healthcare Services | Condition, Diseases, Other Events | Other Databases | ||
At the time of data recording | 8 (21.1; 4.4) | 23 (60.5; 24.5) | 7 (18.4; 9) | 38 (10.8) |
<1 month | 95 (55.2; 52.8) | 25 (14.5; 26.6) | 52 (30.2; 66.7) | 172 (48.9) |
3 ≤ months ≤ 12 | 52 (57.8; 28.9) | 29 (32.2; 30.9) | 9 (10; 11.5) | 90 (25.6) |
Not defined | 5 (41.7; 2.8) | 6 (50; 6.4) | 1 (8.3; 1.3) | 12 (3.4) |
Not reported | 20 (50; 11.1) | 11 (27.5; 11.7) | 9 (22.5; 11.5) | 40 (11.4) |
Total | 180 (51.1) | 94 (26.7) | 78 (22.2) | 352 (100) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrami, E.; Carle, F.; Villani, S.; Borrelli, P.; Zambon, A.; Corrao, G.; Trerotoli, P.; Guardabasso, V.; Gesuita, R. Availability of Real-World Data in Italy: A Tool to Navigate Regional Healthcare Utilization Databases. Int. J. Environ. Res. Public Health 2020, 17, 8. https://doi.org/10.3390/ijerph17010008
Skrami E, Carle F, Villani S, Borrelli P, Zambon A, Corrao G, Trerotoli P, Guardabasso V, Gesuita R. Availability of Real-World Data in Italy: A Tool to Navigate Regional Healthcare Utilization Databases. International Journal of Environmental Research and Public Health. 2020; 17(1):8. https://doi.org/10.3390/ijerph17010008
Chicago/Turabian StyleSkrami, Edlira, Flavia Carle, Simona Villani, Paola Borrelli, Antonella Zambon, Giovanni Corrao, Paolo Trerotoli, Vincenzo Guardabasso, and Rosaria Gesuita. 2020. "Availability of Real-World Data in Italy: A Tool to Navigate Regional Healthcare Utilization Databases" International Journal of Environmental Research and Public Health 17, no. 1: 8. https://doi.org/10.3390/ijerph17010008
APA StyleSkrami, E., Carle, F., Villani, S., Borrelli, P., Zambon, A., Corrao, G., Trerotoli, P., Guardabasso, V., & Gesuita, R. (2020). Availability of Real-World Data in Italy: A Tool to Navigate Regional Healthcare Utilization Databases. International Journal of Environmental Research and Public Health, 17(1), 8. https://doi.org/10.3390/ijerph17010008