The Impact of Mother’s Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns
Abstract
:1. Introduction
2. Materials and Subjects
2.1. Micronucleus Assay
2.2. Sex Hormones
2.3. Interleukin 6 (IL-6)
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.I.; Usman, A.; Ahmad, M. Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients. Chemosphere 2017, 173, 395–403. [Google Scholar] [CrossRef]
- Andersson, N.W.; Li, Q.; Mills, C.W.; Ly, J.; Nomura, Y.; Chen, J. Influence of prenatal maternal stress on umbilical cord blood cytokine levels. Arch. Womens Ment. Health 2016, 195, 761–767. [Google Scholar] [CrossRef]
- Chahal, N.; McLain, A.C.; Ghassabian, A.; Michels, K.A.; Bell, E.M.; Lawrence, D.A.; Yeung, E.H. Maternal Smoking and Newborn Cytokine and Immunoglobulin Levels. Nicotine Tob. Res. 2017, 197, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kim, H.J.; Kim, S.; Choi, G.; Kim, S.; Park, J.; Shim, S.S.; Lee, I.; Kim, S.; Moon, H.B.; et al. Current status of organochlorine pesticides [OCPs) and polychlorinated biphenyls [PCBs) exposure among mothers and their babies of Korea-CHECK cohort study. Sci. Total Environ. 2018, 618, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, I.N.; Skakkebaek, N.E.; Toppari, J.; Virtanen, H.E.; Shen, H.; Schramm, K.W.; Petersen, J.H.; Jensen, T.K.; Main, K.M. Nordic Cryptorchidism Study Group. Persistent pesticides in human breast milk and cryptorchidism. Environ. Health Perspect. 2006, 1147, 1133–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dass Singh, M.; Thomas, P.; Hor, M.; Almond, T.; Owens, J.; Hague, W.; Fenech, M. Infant birth outcomes are associated with DNA damage biomarkers as measured by the cytokinesis block micronucleus cytome assay: The DADHI study. Mutagenesis 2017, 323, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Dereumeaux, C.; Fillol, C.; Quenel, P.; Denys, S. Pesticide exposures for residents living close to agricultural lands: A review. Environ. Int. 2020, 134, 105210. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Kirsch-Volders, M.; Natarajan, A.T.; Surralles, J.; Crott, J.W.; Parry, J.; Norppa, H.; Eastmond, D.A.; Tucker, J.D.; Thomas, P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 2011, 261, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. Gen. Tox. Environ. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Fucic, A.; Guszak, V.; Keser, T.; Wagner, J.; Juretić, E.; Plavec, D.; Stojković, R.; Gornik, O.; Lauc, G. Micronucleus, cell-free DNA, and plasma glycan composition in the newborns of healthy and diabetic mothers. Mutat. Res. 2017, 815, 6–15. [Google Scholar] [CrossRef]
- Fucic, A.; Guszak, V.; Mantovani, A. Transplacental exposure to environmental carcinogens: Association with childhood cancer risks and the role of modulating factors. Reprod. Toxicol. 2017, 72, 182–190. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Ventura, M.I.; Requena, M.; Hernández, A.F.; Parrón, T.; Alarcón, R. Association of reproductive disorders and male congenital anomalies with environmental exposure to endocrine active pesticides. Reprod. Toxicol. 2017, 71, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Gerunova, K.; Bardina, E.G.; Gerunov, T.V.; Sechkina, V. Pesticides as endocrine disruptors and neurotoxicants. IOP Conf. Ser. Earth Environ. Sci. 2019, 315, 052049. [Google Scholar]
- Giannoni, E.; Guignard, L.; Knaup Reymond, M.; Perreau, M.; Roth-Kleiner, M.; Calandra, T.; Roger, T. Estradiol and progesterone strongly inhibit the innate immune response of mononuclear cells in newborns. Infect. Immun. 2011, 797, 2690–2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handa, Y.; Fujita, H.; Watanabe, Y.; Honma, S.; Kaneuchi, M.; Minakami, H.; Kishi, R. Does dietary estrogen intake from meat relate to the incidence of hormone-dependent cancers? J. Clin. Oncol. 2010, 28 (Suppl. 15), 1553. [Google Scholar] [CrossRef]
- Hart, R.J.; Doherty, D.A.; Keelan, J.A.; McLachlan, R.; Skakkebaek, N.E.; Norman, R.J.; Dickinson, J.E.; Pennell, C.E.; Newnham, J.P.; Hickey, M.; et al. Early Life Events Predict Adult Testicular Function; Data Derived from the Western Australian [Raine) Birth Cohort. J. Clin. Endocrinol. Metab. 2016, 1019, 3333–3344. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Z.; Liao, Y.; Liu, C.; Fan, S.; Wei, X.; Ai, B.; Xiong, J. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. J. Experimen. Clin. Cancer Res. 2018, 37, 133. [Google Scholar] [CrossRef]
- Janele, D.; Lang, T.; Capellino, S.; Cutolo, M.; Da Silva, J.A.; Straub, R.H. Effects of testosterone, 17beta-estradiol, and downstream estrogens on cytokine secretion from human leukocytes in the presence and absence of cortisol. Ann. NY Acad. Sci. 2006, 1069, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Jedrychowski, W.; Perera, F.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Spengler, J.D.; Edwards, S.; Jacek, R.; Kaim, I.; Skolicki, Z. Gender differences in fetal growth of newborns exposed prenatally to airborne fine particulate matter. Environ. Res. 2009, 1094, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Kelley, A.S.; Banker, M.; Goodrich, J.M.; Dolinoy, D.C.; Burant, C.; Domino, S.E.; Smith, Y.R.; Song, P.X.K.; Padmanabhan, V. Early pregnancy exposure to endocrine disrupting chemical mixtures are associated with inflammatory changes in maternal and neonatal circulation. Sci. Rep. 2019, 9, 5422. [Google Scholar] [CrossRef] [Green Version]
- Keresztes, S.; Tatár, E.; Czégény, Z.; Záray, G.; Mihucz, V.G. Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. Sci. Total Environ. 2013, 458–460, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, C.; An, L.; Deng, C.; Su, H.; Wang, L.; Jiang, Z.; Zhou, J.; Wang, J.; Zhang, C.; et al. Phthalate esters in bottled drinking water and their human exposure in Beijing, China. Food Addit. Contam. Part B Surveill. 2019, 121, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H.; Yang, K.D.; Liu, X.P.; Qin, Q.F. Effects of residues of organochlorine pesticides on reproductive endocrine in human. Wei Sheng Yan Jiu 2005, 345, 524–528. [Google Scholar]
- Lundell, A.C.; Nordström, I.; Andersson, K.; Strömbeck, A.; Ohlsson, C.; Tivesten, Å.; Rudin, A. Dihydrotestosterone levels at birth associate positively with higher proportions of circulating immature/naïve CD5+ B cells in boys. Sci. Rep. 2017, 7, 15503. [Google Scholar] [CrossRef]
- Mantovani, A.; Fucic, A. Puberty dysregulation and increased risk of disease in adult life: Possible modes of action. Reprod. Toxicol. 2014, 44, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Oshima, T.; Ohyama, K. Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr. Int. 2010, 521, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, M.; Mendiola, J.; Koch, H.M.; Moñino-García, M.; Noguera-Velasco, J.A.; Torres-Cantero, A.M. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. Environ. Res. 2015, 137, 292–298. [Google Scholar] [CrossRef]
- Meng, Y.; Lv, P.P.; Ding, G.L.; Yu, T.; Liu, Y.; Shen, Y.; Hu, X.; Lin, X.; Tian, S.; Lv, M. High Maternal Serum Estradiol Levels Induce Dyslipidemia in Human Newborns via a Hepatic HMGCR Estrogen Response Element. Sci. Rep. 2015, 5, 10086. [Google Scholar] [CrossRef] [Green Version]
- Merlo, D.F.; Agramunt, S.; Anna, L.; Besselink, H.; Botsivali, M.; Brady, N.J.; Ceppi, M.; Chatzi, L.; Chen, B.; Decordier, I. NewGeneris Consortium.Micronuclei in cord blood lymphocytes and associations with biomarkers of exposure to carcinogens and hormonally active factors, gene polymorphisms, and gene expression: The NewGeneris cohort. Environ. Health Perspect. 2014, 1222, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, L.M.; Zava, D.; McGlynn, K.A.; Stanczyk, F.Z.; Kang, A.Y.; Ma, X.; Wiemels, J.L.; Metayer, C. Neonatal Hormone Concentrations and Risk of Testicular Germ Cell Tumors [TGCT). Cancer Epidemiol. Biomarkers Prev. 2018, 274, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Myllymäki, S.; Haavisto, T.; Vainio, M.; Toppari, J.; Paranko, J. In vitro effects of diethylstilbestrol, genistein, 4-tert-butylphenol, and 4-tert-octylphenol on steroidogenic activity of isolated immature rat ovarian follicles. Toxicol. Appl. Pharmacol. 2005, 2041, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Neta, G.; Goldman, L.R.; Barr, D.; Apelberg, B.J.; Witter, F.R.; Halden, R.U. Fetal exposure to chlordane and permethrin mixtures in relation to inflammatory cytokines and birth outcomes. Environ. Sci. Technol. 2011, 454, 1680–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noakes, P.S.; Hale, J.; Thomas, R.; Lane, C.; Devadason, S.G.; Prescott, S.L. Maternal smoking is associated with impaired neonatal toll-like-receptor-mediated immune responses. Eur. Respir. J. 2006, 28, 721–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan-Gordo, C.; Fthenou, E.; Pedersen, M.; Espinosa, A.; Chatzi, L.; Beelen, R.; Chalkiadaki, G.; Decordier, I.; Hoek, G.; Merloi, D.F.; et al. Outdoor air pollution exposures and micronuclei frequencies in lymphocytes from pregnant women and newborns in Crete, Greece [Rhea cohort). Environ. Res. 2015, 143 (Pt A), 170–176. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan-Gordo, C.; Kogevinas, M.; Pedersen, M.; Fthenou, E.; Espinosa, A.; Tsiapa, X.; Chalkiadaki, G.; Daraki, V.; Dermitzaki, E.; Decordier, I.; et al. Maternal diet during pregnancy and micronuclei frequency in peripheral blood T lymphocytes in mothers and newborns [Rhea cohort, Crete). Eur. J. Nutr. 2018, 571, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Parry, J.M.; Al-Obaidly, A.; Al-Walhaib, M.; Kayani, M.; Nabeel, T.; Strefford, J.; Parry, E.M. Spontaneous and induced aneuploidy, considerations which may influence chromosome malsegregation. Mutat. Res. 2002, 504, 119–129. [Google Scholar] [CrossRef]
- Paterni, I.; Granchi, C.; Minutolo, F. Risks and benefits related to alimentary exposure to xenoestrogens. Crit. Rev. Food Sci. Nutr. 2017, 5716, 3384–3404. [Google Scholar] [CrossRef]
- Pedersen, M.; Halldorsson, T.I.; Mathiesen, L.; Mose, T.; Brouwer, A.; Hedegaard, M.; Loft, S.; Kleinjans, J.C.S.; Besselink, H.; Knudsen, L.E. Dioxin-like exposures and effects on estrogenic and androgenic exposures and micronuclei frequency in mother-newborn pairs. Environ. Int. 2010, 364, 344–351. [Google Scholar] [CrossRef]
- Pedersen, M.; Wichmann, J.; Autrup, H.; Dang, D.A.; Decordier, I.; Hvidberg, M.; Bossi, R.; Jakobsen, J.; Loft, S.; Knudsen, L.E. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution. Environ. Res. 2009, 1098, 1012–1020. [Google Scholar] [CrossRef]
- Puttabyatappa, M.; Matiller, V.; Stassi, A.F.; Salvetti, N.R.; Ortega, H.H.; Padmanabhan, V. Developmental Programming: Prenatal Testosterone Excess on Ovarian SF1/DAX1/FOXO3. Reprod. Sci. 2020, 271, 342–354. [Google Scholar] [CrossRef]
- Qin, K.; Zhang, Y.; Wang, Y.; Shi, R.; Pan, R.; Yao, Q.; Tian, Y.; Gao, Y. Prenatal organophosphate pesticide exposure and reproductive hormones in cord blood in Shandong, China. Int. J. Hyg. Environ. Health 2020, 225, 113479. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.N.J. Engelberg Structural specificity of estrogens in the induction of mitotic chromatid non-disjunction in HeLa cells. Exp. Cell Res. 1967, 48, 71–81. [Google Scholar] [CrossRef]
- Sanderson, J.T.; Boerma, J.; Lansbergen, G.W.; van den Berg, M. Induction and inhibition of aromatase [CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicol. Appl. Pharmacol. 2002, 1821, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Santana, J.; Giraudi, C.; Marengo, E.; Robotti, E.; Pires, S.; Nunes, I.; Gaspar, E.M. Preliminary toxicological assessment of phthalate esters from drinking water consumed in Portugal. Environ. Sci. Pollut. Res. Int. 2014, 212, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Sowell, K.D.; Uriu-Adams, J.Y.; Van de Water, J.; Chambers, C.D.; Coles, C.D.; Kable, J.A.; Yevtushok, L.; Zymak-Zakutnya, N.; Wertelecki, W.; Keen, C.L. Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). Implications of altered maternal cytokine concentrations on infant outcomes in children with prenatal alcohol exposure. Alcohol 2018, 68, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Stephany, R.W. Hormonal growth promoting agents in food producing animals. Handb. Exp. Pharmacol. 2010, 195, 355–367. [Google Scholar]
- Vande Loock, K.; Botsivali, M.; Zangogianni, M.; Anderson, D.; Baumgartner, A.; Fthenou, E.; Marcos, R.; Agramunt, S.; Namork, E. The effect of dietary estimates calculated using food frequency questionnaires on micronuclei formation in European pregnant women: A NewGeneris study. Mutagenesis 2014, 29, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Vinggaarda, A.M.; Hnidaa, C.; Breinholta, V.; Larsena, J.C. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol. Vitro 2000, 14, 227–234. [Google Scholar] [CrossRef]
- Warembourg, C.; Debost-Legrand, A.; Bonvallot, N.; Massart, C.; Garlantézec, R.; Monfort, C.; Gaudreau, E.; Chevrier, C.; Cordier, S. Exposure of pregnant women to persistent organic pollutants and cord sex hormone levels. Hum. Reprod. 2016, 311, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Zhang, J.; Guo, F.; Zhao, L.; Poma, G.; Covaci, A.; Liu, W. Transplacental transfer of organochlorine pesticides: Concentration ratio and chiral properties. Environ. Int. 2019, 130, 104939. [Google Scholar] [CrossRef]
- Zhang, Y.; Cong, X.; Li, Z.; Xue, Y. Estrogen facilitates gastric cancer cell proliferation and invasion through promoting the secretion of interleukin-6 by cancer-associated fibroblasts. Int. Immunopharmaco 2020, 78, 105937. [Google Scholar] [CrossRef] [PubMed]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 537, 3347–3365. [Google Scholar] [CrossRef] [PubMed]
- Polanska, K.; Hanke, W.; Pawlas, N.; Wesolowska, E.; Jankowska, A.; Jagodic, M.; Mazej, D.; Dominowska, J.; Grzesiak, M.; Mirabella, F.; et al. Sex-Dependent Impact of Low-Level Lead Exposure during Prenatal Period on Child Psychomotor Functions . Int. J. Environ. Res. Public Health 2018, 16, 2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, J.; Warner, M.; Siracusa, C.; Signorini, S.; Brambilla, P.; Mocarelli, P.; Eskenazi, B. Prenatal dioxin exposure and neuropsychological functioning in the Seveso Second Generation Health Study. Int. J. Hyg. Environ. Health 2019, 222, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Broberg, K.; Ahmed, S.; Engström, K.; Hossain, M.B.; Jurkovic Mlakar, S.; Bottai, M.; Grandér, M.; Raqib, R.; Vahter, M. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J. Dev. Orig. Health Dis. 2014, 5, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Burgio, E.; Piscitelli, P.; Colao, A. Environmental Carcinogenesis and Transgenerational Transmission of Carcinogenic Risk: From Genetics to Epigenetics. Int. J. Environ. Res. Public Health 2018, 158, 1791. [Google Scholar] [CrossRef] [Green Version]
- Che, Q.; Xiao, X.; Xu, J.; Liu, M.; Lu, Y.; Liu, S.; Dong, X. 17β-Estradiol promotes endometrial cancer proliferation and invasion through IL-6 pathway. Endocrine Connect. 2019, 8, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.G.; La Rosa, V.L.; Petrosino, B.; Rodolico, A.; Mineo, L.; Laganà, A.S. The Impact of Lifestyle, Diet, and Psychological Stress on Female Fertility. Oman Med. J. 2017, 32, 443–444. [Google Scholar] [CrossRef]
- Collins, G.G.; Rossi, B.V. The impact of lifestyle modifications, diet, and vitamin supplementation on natural fertility. Fertil. Res. Pract. 2015, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Malekinejad, H.; Rezabakhsh, A. Hormones in Dairy Foods and Their Impact on Public Health—A Narrative Review Article. Iran J. Public Health 2015, 44, 742–758. [Google Scholar]
- Ershler, W.B.; Keller, E.T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med. 2000, 51, 245–270. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Teixeira, D.; Calhau, C. Estrogen Signaling in Metabolic Inflammation. Mediat. Inflam. 2014, 2014, 615917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Values | Boys | Girls | p-Value |
---|---|---|---|---|
Sex (female), No (%) | 25 (50) | |||
Body mass (g), mean (SD) | 3498 (419) | 3528 (437) | 3468 (406) | 0.618 |
Estradiol (pg/mL), median (IQR) | 2546 (1144–3654) | 2405 (1879–3596) | 2670 (953–3674) | 0.686 |
Testosterone (ng/mL), median (IQR) | 0.974 (0.831–1.157) | 1.078 (0.963–1.346) | 0.862 (0.695–1.058) | 0.003 |
E/T ratio, median (IQR) | 2661 (1251–3488) | 2564 (1740–2854) | 3013 (1219–3675) | 0.325 |
MN/1000, median (IQR) | 4 (2–6) | 4 (2–4) | 4 (4–8) | 0.043 |
IL-6, median (IQR) | 1.74 (<LOD–6.51) | 3.69 (<LOD–6.51) | <LOD (<LOD –6.51) | 0.494 |
Bridge/1000, median (IQR) | 0 (0–2) | 0 (0–2) | 0 (0–2) | 0.816 |
Bud/1000, median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–2) | 0.567 |
Variables | Urban (N = 33) | Agrar (N = 17) | p-Value |
---|---|---|---|
Estradiol (pg/mL), median (IQR) | 2214 (881–2684) | 3231 (2405–4771) | 0.009 |
Testosterone (ng/mL), median (IQR) | 0.974 (0.827–1.078) | 1.092 (0.862–1.412) | 0.264 |
E/T ratio, median (IQR) | 2511 (1128–2946) | 3277 (2250–4186) | 0.013 |
MN/1000, median (IQR) | 4 (2-6) | 4 (2-6) | 0.750 |
IL-6, median (IQR) | <LOD - 3.88) | 6.38 (4.74–9.50) | <0.001 |
NDI, mean (SD) | 2.56 (0.32) | 2.61 (0.25) | 0.551 |
NB/1000, median (IQR) | 0 (0–2) | 0 (0–2) | 0.392 |
Bud/1000, median (IQR) | 0 (0–0) | 0 (0–2) | 0.154 |
Estradiol | Estradiol | Testosterone (Whole Sample) | Testosterone (Male Newborns Only) | |
---|---|---|---|---|
Intercept | 8.19 | 7.76 | 0.09 | −0.15 |
[7.72, 8.67] | [7.44, 8.07] | [−0.06, 0.25] | [−0.34, 0.05] | |
p < 0.001 | p < 0.001 | p = 0.236 | p = 0.129 | |
Agricultural residency | 0.77 | 0.77 | 0.22 | 0.45 |
[0.35, 1.19] | [0.36, 1.18] | [0.01, 0.42] | [0.17, 0.73] | |
p = 0.001 | p < 0.001 | p = 0.040 | p = 0.003 | |
Cigarette smoking | −0.09 | 0.11 | 0.01 | 0.14 |
[−0.63, 0.45] | [−0.42, 0.63] | [−0.26, 0.27] | [−0.19, 0.46] | |
p = 0.747 | p = 0.680 | p = 0.950 | p = 0.382 | |
Female sex | −0.29 | −0.31 | −0.33 | - |
[−0.68, 0.11] | [−0.69, 0.08] | [−0.52, −0.13] | ||
p = 0.149 | p = 0.115 | p = 0.001 | ||
Consuming milk at least 1 per day | −0.76 | - | - | - |
[−1.22, −0.30] | ||||
p = 0.002 | ||||
Consuming carbonated beverages at least 1 per day | - | −0.91 | - | - |
[−1.41, −0.41] | ||||
p = 0.001 | ||||
Beef or pork intake at least 3 per week | - | 0.28 | ||
[0.03, 0.54] | ||||
p = 0.033 | ||||
Model p | <0.001 | <0.001 | 0.005 | 0.003 |
Adjusted R2 | 0.28 | 0.31 | 0.19 | 0.41 |
IL-6 above LOD | |
---|---|
Intercept | −1.50 |
[−3.86, 0.18] | |
p = 0.083 | |
Agricultural residency | 38.58 |
[6.08, 512.79] | |
p < 0.001 | |
Cigarette smoking | 0.82 |
[0.09, 8.09] | |
p = 0.856 | |
Female sex | 0.14 |
[0.02, 0.67] | |
p = 0.012 | |
Consuming coffee at least 1 per day | 6.55 |
[1.14, 71.44] | |
p = 0.034 | |
Model p | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fucic, A.; Starcevic, M.; Sindicic Dessardo, N.; Batinic, D.; Kralik, S.; Krasic, J.; Sincic, N.; Loncarevic, D.; Guszak, V. The Impact of Mother’s Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns. Int. J. Environ. Res. Public Health 2020, 17, 3402. https://doi.org/10.3390/ijerph17103402
Fucic A, Starcevic M, Sindicic Dessardo N, Batinic D, Kralik S, Krasic J, Sincic N, Loncarevic D, Guszak V. The Impact of Mother’s Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns. International Journal of Environmental Research and Public Health. 2020; 17(10):3402. https://doi.org/10.3390/ijerph17103402
Chicago/Turabian StyleFucic, Aleksandra, Mirta Starcevic, Nada Sindicic Dessardo, Drago Batinic, Sasa Kralik, Jure Krasic, Nino Sincic, Damir Loncarevic, and Vedrana Guszak. 2020. "The Impact of Mother’s Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns" International Journal of Environmental Research and Public Health 17, no. 10: 3402. https://doi.org/10.3390/ijerph17103402
APA StyleFucic, A., Starcevic, M., Sindicic Dessardo, N., Batinic, D., Kralik, S., Krasic, J., Sincic, N., Loncarevic, D., & Guszak, V. (2020). The Impact of Mother’s Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns. International Journal of Environmental Research and Public Health, 17(10), 3402. https://doi.org/10.3390/ijerph17103402