Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. TOPSIS Method
- Calculate the normalized decision matrix.
- Calculate the weighted normalized decision matrix.
- Calculate ideal and negative ideal solutions.
- Calculate the separation measures.
- Calculate the relative closeness to the ideal solution.
- Rank the preference order.
Appendix A.2. ELECTRE Method
- Implementing this method involves the following steps:
- Calculate the decision matrix.
- Calculate the normalized decision matrix using the ratio of the range.
- Calculate the weighted normalized decision matrix
- Calculate the concordance index matrix.
- Calculate the discordance index matrix.
- Set the threshold values: a minimum for concordance and a maximum for discordance.
- Calculate the concordance dominance matrix
- Calculate the discordance dominance matrix.
- Calculate the aggregate dominance matrix
- Interpret the values of the aggregate dominance matrix.
Appendix A.3. DEA Model: Cross-Efficiency
References
- WHO; FAO. Risk Assessment of Microbiological Hazards in Foods; FAO/WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 1999; p. 24. [Google Scholar]
- Walker, E.; Jones, N. An assessment of value of documenting food safety in small and less developed catering businesses. Food Control 2002, 13, 307–314. [Google Scholar] [CrossRef]
- Sun, Y.; Ockerman, H.W. A review of the needs and current applications of hazard analysis and critical control point (HACCP) system in foodservice areas. Food Control 2005, 16, 325–332. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, J.; Van Trijp, J.C.M.; van der Lans, I.A.; Renes, R.J.; Frewer, L.J. How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects. Appetite 2008, 51, 311–317. [Google Scholar] [CrossRef]
- Neill, C.; Holcomb, R.B. Does a food safety label matter? Consumer heterogeneity and fresh produce risk perceptions under the Food Safety Modernization Act. Food Policy 2019, 85, 7–14. [Google Scholar] [CrossRef]
- Smith, A.; Watkiss, P.; Tweddle, G.; McKinnon, A.; Browne, M.; Hunt, A.; Treleven, C.; Nash, C.; Cross, S. The Validity of Food Miles as an Indicator of Sustainable Development; Report No. ED50254; AEA Technology: Oxfordshire, UK, 2005. [Google Scholar]
- Wood, V.R.; Robertson, K.R. Evaluating international markets: The importance of information by industry, by country of destination, and by type of export transaction. Int. Mark. Rev. 2000, 17, 34–55. [Google Scholar] [CrossRef]
- Davidson, V.J.; Stockwell, D. Food safety risk management: Evidence-Informed policies and decisions, considering multiple factors. In Food Safety and Quality Series 4; Food and Agriculture Organization (FAO): Rome, Italy, 2017. [Google Scholar]
- Jouanjean, M.A.; Maur, J.C.; Shepherd, B. Reputation matters: Spillover effects for developing countries in the enforcement of US food safety measures. Food Policy 2015, 55, 81–91. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Huisman, W.; Luning, P.A. Food fraud vulnerability and its key factors. Trends Food Sci. Technol. 2017, 67, 70–75. [Google Scholar] [CrossRef]
- Baylis, K.; Nogueira, L.; Pace, K. Food import refusals: Evidence from the European Union. Am. J. Agric. Econ. 2010, 93, 566–572. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Marvin, H.J. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control 2016, 61, 180–187. [Google Scholar] [CrossRef]
- Tudela-Marco, L.; García-Álvarez-Coque, J.M.; Martí-Selva, L. Do EU member states apply food standards uniformly? A look at fruit and vegetable safety notifications. J. Common Mark. Stud. 2017, 55, 387–405. [Google Scholar] [CrossRef]
- Verhaelen, K.; Bauer, A.; Günther, F.; Müller, B.; Nist, M.; Celik, B.Ü.; Wallner, P. Anticipation of food safety and fraud issues: ISAR-A new screen ing tool to monitor food prices and commodity flows. Food Control 2018, 94, 93–101. [Google Scholar] [CrossRef]
- Garcia-Alvarez-Coque, J.M.; Taghouti, I.; Martinez-Gomez, V. Changes in aflatoxin standards: Implications for EU border controls of nut imports. Appl. Econ. Perspect. Policy 2019. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; De Jong, A.E.I.; De Jonge, R.; Frewer, L.J.; Nauta, M.J. Improving food safety in the domestic environment: The need for a transdisciplinary approach. Risk Anal. 2005, 25, 503–517. [Google Scholar] [CrossRef]
- Frewer, L.J.; Salter, B. Societal trust in risk analysis: Implications for the interface of risk assessment and risk management. In Trust in Cooperative Risk Management: Uncertainty and Scepticism in the Public Min; Siegrist, M., Earle, T., Gutscher, H., Eds.; Earthscan: London, UK, 2007; pp. 143–158. [Google Scholar]
- Houghton, J.R.; Rowe, G.; Frewer, L.J.; Van Kleef, E.; Chryssochoidis, G.; Kehagia, O.; Korzen-Bohr, S.; Lassen, J.; Pfenning, U.; Strada, A. The quality of food risk management in Europe: Perspectives and priorities. Food Policy 2008, 33, 13–26. [Google Scholar] [CrossRef]
- Demortain, D. Enabling global principle-based regulation: The case of risk analysis in the Codex Alimentarius. Regul. Gov. 2012, 6, 207–224. [Google Scholar] [CrossRef]
- Fazil, A.; Rajic, A.; Sanchez, J.; McEwen, S. Choices, choices: The application of multi-criteria decision analysis to a food safety decision-making problem. J. Food Prot. 2008, 71, 2323–2333. [Google Scholar] [CrossRef]
- Ruzante, J.M.; Davidson, V.J.; Caswell, J.; Fazil, A.; Cranfield, J.A.L.; Henson, S.J.; Anders, S.M.; Schmidt, C.; Farber, J.M. A multifactorial risk prioritization framework for foodborne pathogens. Risk Anal. 2010, 30, 724–742. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, M.; Ragona, M.; Zanoli, A. A fuzzy multi-criteria approach for the ex-ante impact assessment of food safety policies. Food Policy 2013, 38, 177–189. [Google Scholar] [CrossRef]
- Govindan, K.; Kadzinski, M.; Sivakumar, R. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 2017, 71, 129–145. [Google Scholar] [CrossRef]
- Segura, M.; Maroto, C.; Segura, B. Quantifying the sustainability of products and suppliers in food distribution companies. Sustainability 2019, 11, 5875. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.; Nakandala, D.; Shum, P.K. A business process decision model for fresh-food supplier evaluation. Bus. Process. Manag. J. 2018, 24, 716–744. [Google Scholar] [CrossRef]
- Garcia-Alvarez-Coque, J.; Abdullateef, O.; Fenollosa, L.; Ribal, J.; Sanjuan, N.; Soriano, J. Integrating sustainability into the multi-criteria assessment of urban dietary patterns. Renew. Agric. Food Syst. 2020, 1–8. [Google Scholar] [CrossRef]
- Bergeaud-Blackler, F. Intermediate EU Report on the Institutional Dimensions of Consumer Trust in Food; Aix Marseille Université: Marseille, France, 2004. [Google Scholar]
- Vos, E.; Ni’Ghiollarnáth, C.; Wendler, F. EU Food Safety Regulation Under Review: An Institutional Analysis; University of Maastricht: Maastricht, The Netherlands, 2005. [Google Scholar]
- Grant, W. Economic patriotism in European agriculture. J. Eur. Public Policy 2012, 19, 420–434. [Google Scholar] [CrossRef]
- Zahrnt, V. Food Security and the EU’s Common Agricultural Policy: Facts Against Fears; ECIPE: Brussels, Belgium, 2011. [Google Scholar]
- Maye, D.; Kirwan, J. Food security: A fractured consensus. J. Rural Stud. 2013, 29, 1–6. [Google Scholar] [CrossRef]
- Anthony, R. Taming the unruly side of ethics: Overcoming challenges of a bottom-up approach to ethics in the areas of food policy and climate change. J. Agric. Environ. Ethics 2012, 25, 813–841. [Google Scholar] [CrossRef]
- MacMillan, T.; Dowler, E. Just and sustainable? Examining the rhetoric and potential realities of UK food security. J. Agric. Environ. Ethics 2012, 25, 181–204. [Google Scholar] [CrossRef] [Green Version]
- Jaud, M.; Cadot, O.; Suwa-Eisenmann, A. Do food scares explain supplier concentration? An analysis of EU agri-food imports. Eur. Rev. Agric. Econ. 2013, 40, 873–890. [Google Scholar] [CrossRef] [Green Version]
- Spink, J.; Fortin, N.D.; Moyer, D.C.; Miao, H.; Wu, Y. Food fraud prevention: Policy, strategy, and decision-making-implementation steps for a government agency or industry. CHIM. Inter. J. Chem. 2016, 70, 320–328. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Luning, P.A.; Silvis, I.C.J.; Yang, Y.; Huisman, W. Differences in fraud vulnerability in various food supply chains and their tiers. Food Control 2018, 84, 375–381. [Google Scholar] [CrossRef]
- Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Eleren, A.; Karagül, M. 1986–2006 Türkiye ekonomisinin performans değerlendirmesi. Yönetim Ve Ekon. 2008, 15, 1–14. [Google Scholar]
- Xidonas, P.; Psarras, J. Equity portfolio management within the MCDM frame: A literature review. Int. J. Bank. Account. Financ. 2009, 1, 285–309. [Google Scholar] [CrossRef]
- Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F. Facility location and supply chain management—A review. Eur. J. Oper. Res. 2009, 169, 401–412. [Google Scholar] [CrossRef]
- Urfalioğlu, F.; Genç, T. Çok kriterli karar verme teknikleri ile Türkiye’nin ekonomik performansının avrupa birliği üye ülkeleri ile karşılaştırılmasi. Marmara Univ. J. Econ. Adm. Sci. 2013, 35, 329–360. [Google Scholar]
- Mandic, K.; Delibasic, B.; Knezevic, S.; Benkovic, S. Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Econ. Model. 2014, 43, 30–37. [Google Scholar] [CrossRef]
- Uygun, O.; Kacamak, H.; Kahraman, U.A. An integrated DEMATEL and fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Comput. Ind. Eng. 2015, 86, 137–146. [Google Scholar] [CrossRef]
- Wanke, P.; Azad, M.D.A.K.; Barros, C.P. Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Res. Int. Bus. Financ. 2016, 36, 485–498. [Google Scholar] [CrossRef]
- Stojčić, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Z.; Mardani, A. Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Shah, S.A.A.; Zameer, H.; Solangi, Y.A. Evaluating renewable energy sources for implementing the hydrogen economy in Pakistan: A two-stage fuzzy MCDM approach. Environ. Sci. Pollut. Res. 2019, 32, 33202–33215. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-Criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Balin, A.; Demirel, H.; Alarcin, F. A hierarchical structure for ship diesel engine trouble-shooting problem using fuzzy AHP and fuzzy VIKOR hybrid methods. Brodogradnja 2015, 66, 54–65. [Google Scholar]
- Pons, O.; De la Fuente, A.; Aguado, A. The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications. Sustainability 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Shishegaran, A.; Shishegaran, A.; Mazzulla, G.; Forciniti, C. A novel approach for a sustainability evaluation of developing system interchange: The case study of the Sheikhfazolah-Yadegar interchange, Tehran, Iran. Int. J. Environ. Res. Public Health 2020, 17, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-Y.; Chen, J.-K.; Chen, I.-S.; Zhuo, H.H. Ranking universities based on performance evaluation by a hybrid MCDM model. Measurement 2012, 45, 856–880. [Google Scholar] [CrossRef]
- Shakouri, G.H.; Tavassoli, N.Y. Implementation of a hybrid fuzzy system as a decision support process: A FAHP-FMCDM-FIS composition. Expert Syst. Appl. 2012, 39, 3682–3691. [Google Scholar] [CrossRef]
- Mavi, K.R.; Goh, M.; Mavi, N.K. Supplier selection with Shannon entropy and fuzzy TOPSIS in the context of supply chain risk management. Procedia Soc. Behav. Sci. 2016, 235, 216–225. [Google Scholar] [CrossRef]
- Montgomery, B.; Dragicevic, S.; Dujmovic, J.; Schmidt, M. A GIS-based logic scoring of preference method for evaluation of land capability and suitability for agriculture. Comput. Electron. Agric. 2016, 124, 340–353. [Google Scholar] [CrossRef]
- Debenath, A.; Roy, J.; Kar, S.; Zavadskas, E.K.; Antucheviciene, J.A. Hybrid MCDM approach for strategic project portfolio selection of agro by-products. Sustainability 2017, 9, 1302. [Google Scholar] [CrossRef] [Green Version]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; Ghorbani, M.A.; Shahbazi, F. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Georderma 2018, 310, 178–190. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Keshavarz, M.; Kannan, G.; Esmaeili, G.A.; Nobar, H.B.K. Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS-CRITIC approach. J. Clean. Prod. 2018, 175, 651–669. [Google Scholar] [CrossRef]
- Raut, R.D.; Gardas, B.B.; Kharat, M.; Narkhede, B. Modeling the drivers of post-harvest losses—MCDM approach. Comput. Electron. Agric. 2018, 154, 426–433. [Google Scholar] [CrossRef]
- Qureshi, M.R.N.; Singh, R.K.; Hasan, M.A. Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM. Environ. Dev. Sustain. 2018, 20, 641–659. [Google Scholar] [CrossRef]
- Rao, C.S.; Kareemulla, K.; Krishnan, P.; Murthy, G.R.K.; Ramesh, R.; Ananthan, P.S.; Joshi, P.K. Agro-Ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecol. Indic. 2019, 105, 621–633. [Google Scholar] [CrossRef]
- Paul, M.; Negahban-Azar, M.; Shirmohammadi, A.; Montas, H. Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision. Agric. Water. Manag. 2020, 231, 105987. [Google Scholar] [CrossRef]
- Balenzetis, T.; Chen, X.; Galnaityte, A.; Namiotko, V. Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Sci. Total Environ. 2020, 705, 135896. [Google Scholar] [CrossRef] [PubMed]
- Jahan, A.; Edwards, K.L. VIKOR method for material selection problems with interval numbers and target-based criteria. Mater. Des. 2013, 47, 759–765. [Google Scholar] [CrossRef]
- Scott, J. Rational choice theory. In From Understanding Contemporary Society: Theories of the Present; Browning, G., Ed.; SAGE Publications: London, UK, 2000; pp. 126–139. [Google Scholar]
- Pourhejazy, P.; Kwon, O.K.; Chang, Y.T.; Park, H. Evaluating resiliency of supply chain network: A data envelopment analysis approach. Sustainability 2017, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Stewart, T.J. Relationships between data envelopment analysis and multicriteria decision analysis. J. Oper. Res. Soc. 1996, 47, 654–665. [Google Scholar] [CrossRef]
- Li, X.B.; Reeves, G.R. A multiple criteria approach to data envelopment analysis. Eur. J. Oper. Res. 1999, 115, 507–517. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEAas an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Bouyssou, D.J. Using DEA as a tool for MCDM: Some remarks. J. Oper. Res. Soc. 1999, 50, 974–978. [Google Scholar] [CrossRef]
- Özcan, T.; Çelebi, N.; Esnaf, Ş. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst. Appl. 2011, 38, 9773–9779. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2007, 11, 1584–1595. [Google Scholar] [CrossRef]
- Darji, V.P.; Rao, R.V. Intelligent multi criteria decision making methods for material selection in sugar industry. Procedia Mater. Sci. 2014, 5, 2585–2594. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, B.; Lamata, M.T.; Pelta, D.A. A comparative analysis of multi-criteria decision-making methods. Prog. Artif. Intell. 2016, 5, 315–322. [Google Scholar] [CrossRef]
- Sen, B.; Bhattacharjee, P.; Mandal, U.K. A comparative study of some prominent multi criteria decision making methods for connecting rod material selection. Perspect. Sci. 2016, 8, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Wu, D. A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model. Appl. Math. Comput. 2006, 183, 819–830. [Google Scholar] [CrossRef]
- Kou, G.; Peng, Y.; Wang, G. Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf. Sci. 2014, 275, 1–12. [Google Scholar] [CrossRef]
- Roy, B. How outranking relation helps multiple criteria decision making. In Multiple Criteria Decision Making; Cochrane, J.L., Zeleny, M., Eds.; University of South-Carolina Press: Columbia, SC, USA, 1973. [Google Scholar]
- Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Yoon, P.; Hwang, C.L. Manufacturing plant location analysis by multiple attribute decision making: Part I—Single-Plant strategy. Int. J. Prod. Res. 1985, 23, 345–359. [Google Scholar] [CrossRef]
- Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. In Measuring Efficiency: An Assessment of Data Envelopment Analysis; Silkman, R.H., Ed.; Jossey-Bass: San Francisco, CA, USA, 1986; pp. 73–105. [Google Scholar]
- Doyle, J.R.; Green, R. Efficiency and cross-efficiency in data envelopment analysis: Derivatives, meanings and uses. J. Oper. Res. Soc. 1994, 45, 567–578. [Google Scholar] [CrossRef]
- Doroshenko, V. Cosechar lo Que se ha Sembrado; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Rome, Italy, 2018. [Google Scholar]
- European Commission. Impacts of EU Trade Agreements on the Agricultural Sector; Copenhagen Economics: Luxembourg, 2016. [Google Scholar]
- Arvis, J.F.; Ojala, L.; Wiederer, C.; Shepherd, B.; Raj, A.; Dairabeyera, K.; Kiiski, T. Connecting to Compete: Trade Logistics in the Global Economy; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Arvis, J.F.; Saslavsky, D.; Ojala, L.; Shepherd, B.; Bush, C.; Raj, A.; Naula, T. Connecting to Compete: Trade Logistics in the Global Economy; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Arvis, J.F.; Saslavsky, D.; Ojala, L.; Shepherd, B.; Bush, C.; Raj, A. Connecting to Compete: Trade Logistics in the Global Economy; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Martí, L.; Martin, J.C.; Puertas, R. A DEA-Logistics performance index. J. Appl. Econ. 2017, 20, 169–192. [Google Scholar] [CrossRef]
- Migueláñez, R. Canadá y la UE: Si Quiero. 2016. Available online: https://www.Euroganadería.eu (accessed on 30 October 2019).
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making—Methods and Applications a State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Karabiyik, C.; Kutlu, K.B. Benchmarking international trade performance of OECD countries: TOPSIS and AHP approaches. Gaziantep Univ. J. Soc. Sci. 2018, 17, 239–251. [Google Scholar] [CrossRef]
- Lin, M.C.; Wang, C.C.; Chen, M.S.; Chang, C.A. Using AHP and TOPSIS approaches in customer driven product design process. Comput. Ind. 2008, 59, 17–31. [Google Scholar] [CrossRef]
- Lourenzutti, R.; Krohling, R.A. A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Inf. Sci. 2016, 330, 1–18. [Google Scholar] [CrossRef]
- Roy, B. Classement et choix en présence de points de vue múltiples. Oper. Res. 1968, 2, 57–75. [Google Scholar] [CrossRef]
- Jaini, N.; Utyuzhnikov, S. Trade-off ranking method for multi-criteria decision analysis. J. Multi Crit. Decis. Anal. 2016, 24, 121–132. [Google Scholar] [CrossRef]
- Navarro, I.; Martí, J.V.; Yepes, V. Multi-Criteria decision making techniques in engineering education for sustainability. In Proceedings of the ICERI2018 Conference, Seville, Spain, 12–14 November 2018. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 3, 253–290. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, R.F.; Cooper, W.W. Some Models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Meza, L.; Lins, M.P.E. Review of methods for increasing discrimination in data envelopment analysis. Ann. Oper. Res. 2002, 116, 225–242. [Google Scholar] [CrossRef]
- Coll-Serrano, V.; Benitez, R.; Bolós, V.J. Tutorial Data Envelopment Analysis with deaR. Version 1.0.; Facultat d´Economia, Universitat de València: València, Spain, 2018. [Google Scholar]
- Falagario, M.; Sciancalepore, F.; Costantino, N.; Pietroforte, R. Using a DEA-cross efficiency approach in public procurement tenders. Eur. J. Oper. Res. 2012, 218, 523–529. [Google Scholar] [CrossRef]
- Puertas, R.; Martí, L. Sustainability in universities: DEA-Greenmetric. Sustainability 2019, 11, 3766. [Google Scholar] [CrossRef] [Green Version]
AUTHORS | RESEARCH OBJECTIVES | METHODOLOGY | CONCLUSIONS |
---|---|---|---|
Mavi et al. (2016) [54] | Supplier selection in supply chain risk management | Shannon entropy Fuzzy TOPSIS | Demand risk is the most important factor |
Montgomery et al. (2016) [55] | Evaluate agricultural land capability and suitability | GIS-Logic Scoring of Preference | The model is an effective tool for integrated regional land-use planning |
Debnath et al. (2017) [56] | Recognize and select the valuation criteria for strategic project portfolio selection of agro byproducts | Grey DEMATEL-MABAC | The genetically modified agro by-products are found to be the best portfolio. |
Seyedmohammadi et al. (2018) [57] | Evaluate areas suitable for cultivation priority planning | SAW, TOPSIS, Fuzzy TOPSIS | Fuzzy TOPSIS results were more accurate than the others |
Rostamzadeh et al. (2018) [58] | Develop a framework for the sustainable supply chain risk management evaluation. | FTOPSIS-CRITIC | The most important criteria are sustainable production/manufacturer risks, while sustainable recycling risk is the least important one |
Raut et al. (2018) [59] | Identify the factors of postharvest losses in the fruits and vegetables supply chain | AHP | (1) Lack of linkages between institution, industry, and government, (2) climate and weather conditions, (3) lack of linkages in the marketing channel are the three top factors. |
Qureshi et al. (2018) [60] | Focuses on the crop selection pattern in Indian environment | Fuzzy TOPSIS | The scarce availability of resources to Indian farmers poses many challenges to farming practices which most need sustainability |
Rao et al. (2019) [61] | Identify indicators for development of climate resilient agriculture | WSM, AHP | Identifies a list of 30 sustainability indicators for climate resilient agriculture |
Paul et al. (2020) [62] | Evaluate the potentiality of reclaimed water use for agricultural irrigation | AHP | Spatial distribution of suitable areas for water reuse is closely linked to the agricultural areas |
Garcia-Alvarez-Coque et al. (2020) [27] | Evaluate social, health and environmental criteria for dietary patterns | AHP | Mediterranean diet adapts well to urban multiactor priorities. |
Balezentis et al. (2020) [63] | Assessment of crop farming sustainability | SAW, TOPSIS, EDAS | Scenarios minimizing labor use yield the most sustainable crop-mix |
Method | Description | Advantages | Disadvantages |
---|---|---|---|
ELECTRE (Roy, 1973, 1991) [79,80] | Uses outranking classification method, pairwise comparison, and compensatory method |
|
|
TOPSIS (Yoon and Hwang, 1985) [81] | Assessment based on the compensatory method; Measures the distance of the alternatives from the ideal solution |
|
|
Cross-efficiency (Sexton et al., 1986; Doyle and Green, 1994) [82,83] | Provides a peer evaluation such that each unit is assessed with respect to the weights of the other units in the sample. |
|
|
Rank Order | 2012 | 2014 | 2016 |
---|---|---|---|
1 | Ukraine | Ukraine | Ukraine |
2 | Russian Fed. | Canada | Canada |
3 | USA | USA | USA |
4 | Canada | Russian Fed. | Russian Fed. |
5 | Switzerland | Switzerland | Switzerland |
6 | Serbia | Serbia | Thailand |
7 | Thailand | Pakistan | Brazil |
8 | Argentina | Turkey | Turkey |
9 | Brazil | Brazil | Cambodia |
10 | Turkey | Cambodia | Serbia |
11 | Australia | Argentina | Pakistan |
12 | Kazakhstan | Chile | Argentina |
13 | India | Myanmar | Mexico |
14 | Cambodia | Peru | Myanmar |
15 | Pakistan | Mexico | Peru |
16 | Mexico | South Africa | Australia |
17 | Uruguay | Australia | Viet Nam |
18 | Viet Nam | Bolivia | Kazakhstan |
19 | Singapore | New Zealand | Singapore |
20 | Chile | Uruguay | Uruguay |
21 | Egypt | Egypt | Chile |
22 | Norway | Indonesia | Norway |
23 | Israel | Egypt | |
24 | Indonesia | Israel | |
25 | Bolivia |
Criterion | Source | Unit Measured |
---|---|---|
Notifications | RASFF | No. Notifications |
Logistics Performance Index (LPI) | World Bank | Score of 1–5 |
Quality & Safety Index (Q&S) | The Economist Intelligence Unit | Scale from 0 to 100 |
Corruption Perceptions Index (CPI) | Transparency International. | Scale from 0 to 100 |
Environmental Performance Index (EPI) Agriculture | Yale Centre for Env. Law and Policy | Scale from 0 to 100 |
Statistic | 2012 | ||||
---|---|---|---|---|---|
Notifications | LPI | Q&S | CPI | EPI | |
Mean | 1.33 | 3.24 | 65.93 | 50.13 | 61.19 |
Max | 8.00 | 4.00 | 88.10 | 87.00 | 96.00 |
Min | 0.00 | 2.68 | 26.80 | 22.00 | 14.66 |
St. Dev. | 2.28 | 0.44 | 16.37 | 23.55 | 28.28 |
2014 | |||||
Notifications | LPI | Q&S | CPI | EPI | |
Mean | 0.36 | 3.15 | 65.56 | 48.18 | 83.57 |
Max | 2.00 | 3.99 | 87.00 | 90.00 | 100.00 |
Min | 0.00 | 2.25 | 28.00 | 21.00 | 41.21 |
St. Dev. | 0.66 | 0.50 | 15.35 | 22.14 | 18.33 |
2016 | |||||
Notifications | LPI | Q&S | CPI | EPI | |
Mean | 0.44 | 3.10 | 67.38 | 48.72 | 43.14 |
Max | 2.00 | 4.00 | 86.70 | 86.00 | 72.38 |
Min | 0.00 | 2.30 | 34.70 | 21.00 | 4.59 |
St. Dev. | 0.58 | 0.51 | 14.11 | 22.42 | 16.74 |
TOPSIS | ELECTRE | CE | Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2014 | 2016 | 2012 | 2014 | 2016 | 2012 | 2014 | 2016 | TOPSIS | ELECTRE | CE |
Singapore | Switzerland | USA | Singapore | Canada | Canada | Singapore | USA | USA | Canada | Canada | USA |
Canada | Canada | Canada | Canada | USA | USA | USA | Argentina | Canada | Switzerland | USA | Canada |
Chile | Australia | Uruguay | Switzerland | Switzerland | Switzerland | Canada | Canada | Argentina | N. Zealand | Switzerland | Switzerland |
Australia | USA | Switzerland | Norway | Australia | Australia | Switzerland | Switzerland | Switzerland | Australia | Norway | Argentina |
Switzerland | N. Zealand | Australia | USA | N. Zealand | Norway | Thailand | Australia | Australia | USA | N Zealand | Singapore |
Uruguay | Uruguay | Norway | Chile | Uruguay | Uruguay | Norway | Serbia | Norway | Uruguay | Australia | S. Africa |
Norway | Chile | Chile | Turkey | Russian F | Chile | Turkey | S. Africa | Brazil | Singapore | Singapore | Norway |
Serbia | Brazil | Israel | Thailand | Mexico | Israel | Chile | Turkey | Singapore | Norway | Uruguay | Australia |
Turkey | Indonesia | Ukraine | Australia | S. Africa | Ukraine | India | Uruguay | Turkey | Chile | Chile | Turkey |
Egypt | Peru | Egypt | Uruguay | Brazil | Brazil | Argentina | Ukraine | Israel | Israel | S. Africa | N Zealand |
Mexico | Mexico | Bolivia | Mexico | Turkey | Singapore | Uruguay | N. Zealand | Russian F | Egypt | Mexico | Thailand |
Israel | Russian F | Singapore | Egypt | Indonesia | Mexico | Mexico | Russian F | Chile | Mexico | Turkey | Uruguay |
Indonesia | Bolivia | Myanmar | Serbia | Cambodia | Egypt | Brazil | Mexico | Uruguay | Indonesia | Brazil | India |
Brazil | Egypt | Mexico | Argentina | Chile | Turkey | Australia | Brazil | Serbia | Bolivia | Israel | Serbia |
Ukraine | Myanmar | Kazakhstan | Brazil | Peru | Serbia | Israel | Bolivia | Viet Nam | Myanmar | Russian F | Brazil |
Kazakhstan | Cambodia | Brazil | Israel | Myanmar | Argentina | Egypt | Myanmar | Thailand | Kazakhstan | Thailand | Chile |
Cambodia | S. Africa | Serbia | Ukraine | Argentina | Bolivia | Ukraine | Peru | Mexico | Brazil | Ukraine | Ukraine |
USA | Turkey | Turkey | Indonesia | Ukraine | Russian F | Pakistan | Indonesia | Ukraine | Ukraine | Egypt | Israel |
Russian F | Ukraine | Russian F | India | Bolivia | Thailand | Serbia | Cambodia | Peru | Russian F | Indonesia | Mexico |
Argentina | Pakistan | Viet Nam | Kazakhstan | Egypt | Viet Nam | Viet Nam | Chile | Egypt | Turkey | Argentina | Russian F |
Viet Nam | Argentina | Cambodia | Viet Nam | Serbia | Myanmar | Russian F | Egypt | Bolivia | Cambodia | Serbia | Peru |
Thailand | Serbia | Thailand | Russian F | Pakistan | Kazakhstan | Kazakhstan | Pakistan | Myanmar | Peru | Bolivia | Viet Nam |
India | Peru | Cambodia | Peru | Indonesia | Kazakhstan | Viet Nam | Myanmar | Bolivia | |||
Pakistan | Pakistan | Pakistan | Cambodia | Cambodia | Cambodia | S. Africa | Peru | Myanmar | |||
Argentina | Pakistan | Pakistan | Serbia | India | Egypt | ||||||
Thailand | Cambodia | Indonesia | |||||||||
Argentina | Viet Nam | Pakistan | |||||||||
Pakistan | Kazakhstan | Cambodia | |||||||||
India | Pakistan | Kazakhstan |
High Income | Lower-Middle Income | Upper-Middle Income |
---|---|---|
Singapore | Viet Nam | Thailand |
Australia | Indonesia | Serbia |
New Zealand | Myanmar | Turkey |
Switzerland | Cambodia | Russian Fed |
Norway | Ukraine | Kazakhstan |
Uruguay | Bolivia | Mexico |
Chile | Egypt | Argentina |
Israel | India | Brazil |
USA | Pakistan | Peru |
Canada | South Africa |
Type of Differences | Df | SumSq | MeanSq | F-Value | p-Value | |
---|---|---|---|---|---|---|
inter-group | 2 | 0.172 | 0.086 | 12.453 | 0.000 | *** |
intra-group | 26 | 0.180 | 0.007 | |||
Total | 28 | 0.352 |
Country Group | N | 1 | 2 | |
---|---|---|---|---|
Lower-middle income | 9 | 0.6661 | ||
Upper-middle income | 10 | 0.7583 | ||
High income | 10 | 0.8468 | ||
Comparison (income) | Difference | Lower | Upper | |
High income | Lower-middle income Upper-middle income | 0.1907 * 0.0885 | 0.0957 −0.0039 | 0.2856 0.1809 |
Lower-middle income | High income Upper-middle income | −0.1907 * −0.1022 * | −0.2856 −0.1971 | −0.0957 −0.0072 |
Upper-middle income | High income Lower-middle income | −0.0885 0.1021 * | −0.1809 0.0072 | 0.0039 0.1971 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puertas, R.; Marti, L.; Garcia-Alvarez-Coque, J.-M. Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. Int. J. Environ. Res. Public Health 2020, 17, 3432. https://doi.org/10.3390/ijerph17103432
Puertas R, Marti L, Garcia-Alvarez-Coque J-M. Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental Research and Public Health. 2020; 17(10):3432. https://doi.org/10.3390/ijerph17103432
Chicago/Turabian StylePuertas, Rosa, Luisa Marti, and Jose-Maria Garcia-Alvarez-Coque. 2020. "Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters" International Journal of Environmental Research and Public Health 17, no. 10: 3432. https://doi.org/10.3390/ijerph17103432
APA StylePuertas, R., Marti, L., & Garcia-Alvarez-Coque, J. -M. (2020). Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental Research and Public Health, 17(10), 3432. https://doi.org/10.3390/ijerph17103432