Lung Diffusion in a 14-Day Swimming Altitude Training Camp at 1850 Meters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. DLCO Measurements
2.4. Ethical Considerations
2.5. Statistical Analysis
3. Results
3.1. Anthropometrical Parameters
3.2. Changes in Lung Capacity and Function After 14-Day Altitude Training Camp at 1850 m
3.3. Changes in Lung Capacity and Function After a Combined Session of Swimming at 1850 m and Cycling at 3000 m
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drobnic, F.; García-Alday, I.; Banquells, M.; Bellver, M. Interstitial Pulmonary Edema and Acetazolamide in High-Performance Sport: A Case Report. Arch. Bronconeumol. 2018, 54, 584–585. [Google Scholar] [CrossRef] [PubMed]
- Marabotti, C.; Cialoni, D.; Pingitore, A. Environment-induced pulmonary oedema in healthy individuals. Lancet Respir. Med. 2017, 5, 374–376. [Google Scholar] [CrossRef]
- Mickleborough, T.D.; Stager, J.M.; Chatham, K.; Lindley, M.R.; Ionescu, A.A. Pulmonary adaptations to swim and inspiratory muscle training. Eur. J. Appl. Physiol. 2008, 103, 635–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burtch, A.R.; Ogle, B.T.; Sims, P.A.; Harms, C.A.; Symons, T.B.; Folz, R.J.; Zavorsky, G.S. Controlled frequency breathing reduces inspiratory muscle fatigue. J. Strength Cond. Res. 2017, 31, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Rosser-Stanford, B.; Backx, K.; Lord, R.; Williams, E.M. Static and dynamic lung volumes in swimmers and their ventilatory response to maximal exercise. Lung 2019, 197, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Bjurstrom, R.L.; Schoene, R.B. Control of ventilation in elite synchronized swimmers. J. Appl. Physiol. 1987, 63, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Schagatay, E.; Richardson, M.X.; Lodin-Sundström, A. Size matters: Spleen and lung volumes predict performance in human apneic divers. Front. Physiol. 2012, 3, 173. [Google Scholar] [CrossRef] [Green Version]
- Stavrou, V.; Toubekis, A.G.; Karetsi, E. Changes in respiratory parameters and fin-swimming performance following a 16-week training period with intermittent breath holding. J. Hum. Kinet. 2015, 49, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Hegewald, M.J. Diffusing capacity. Clin. Rev. Allergy Immunol. 2009, 37, 159–166. [Google Scholar] [CrossRef]
- Lundby, C.; Robach, P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp. Physiol. 2016, 101, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, F.A.; Iglesias, X.; Feriche, B.; Calderón-Soto, C.; Chaverri, D.; Wachsmuth, N.B.; Schmidt, W.; Levine, B.D. Altitude Training in Elite Swimmers for Sea Level Performance (Altitude Project). Med. Sci. Sports Exerc. 2015, 47, 1965–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, J.A.; Reddan, W.G.; Birnbaum, M.L.; Forster, H.V.; Thoden, J.S.; Grover, R.F.; Rankin, J. Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir. Physiol. 1971, 13, 62–89. [Google Scholar] [CrossRef]
- Faoro, V.; Deboeck, G.; Vicenzi, M.; Gaston, A.F.; Simaga, B.; Doucende, G.; Hapkova, I.; Roca, E.; Subirats, E.; Durand, F.; et al. Pulmonary Vascular Function and Aerobic Exercise Capacity at Moderate Altitude. Med. Sci. Sports Exerc. 2017, 49, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Senn, O.; Clarenbach, C.F.; Fischler, M.; Thalmann, R.; Brunner-La Rocca, H.; Egger, P.; Maggiorini, M.; Bloch, K.E. Do changes in lung function predict high-altitude pulmonary edema at an early stage? Med. Sci. Sports Exerc. 2006, 38, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, E.; Glatt, V.; Tetsworth, K. Swimming induced pulmonary oedema in athletes—A systematic review and best evidence synthesis. BMC Sports Sci. Med. Rehabil. 2018, 3, 18. [Google Scholar] [CrossRef]
- Zavorsky, G.S.; Milne, E.N.C.; Lavorini, F.; Rienzi, J.P.; Lavin, K.M.; Straub, A.M.; Pistolesi, M. Interstitial lung edema triggered by marathon running. Respir. Physiol. Neurobiol. 2014, 190, 137–141. [Google Scholar] [CrossRef]
- Hopkins, S.R. Point: Counterpoint: Pulmonary edema does/does not occur in human athletes performing heavy sea-level exercise. J. Appl. Physiol. 2010, 109, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Spencer, S.; Dickinson, J.; Forbes, L. Occurrence, Risk Factors, Prognosis and Prevention of Swimming-Induced Pulmonary Oedema: A Systematic Review. Sport. Med. Open 2018, 4, 43. [Google Scholar] [CrossRef]
- Caillaud, C.; Serre-Cousine, O.; Anselme, F.; Capdevilla, X.; Prefaut, C. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon. J. Appl. Physiol. 1995, 79, 1226–1232. [Google Scholar] [CrossRef]
- Manier, G.; Moinard, J.; Stoicheff, H. Pulmonary diffusing capacity after maximal exercise. Am. Physiol. Soc. 1993, 75, 2580–2585. [Google Scholar] [CrossRef]
- Zavorsky, G.S.; Lands, L.C. Lung diffusion capacity for nitric oxide and carbon monoxide is impaired similarly following short-term graded exercise. Nitric Oxide-Biol. Chem. 2005, 12, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Cogo, A.; Miserocchi, G. Pro: Most climbers develop subclinical pulmonary interstitial Edema. High Alt. Med. Biol. 2011, 12, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Swenson, E.R. CON: Most climbers do not develop subclinical interstitial pulmonary Edema. High Alt. Med. Biol. 2011, 12, 125–128. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, D.C. Respiratory physiology: Adaptations to high-level exercise. Br. J. Sports Med. 2012, 46, 381–384. [Google Scholar] [CrossRef]
- Gupta, R.K.; Soree, P.; Desiraju, K.; Agrawal, A.; Singh, S.B. Subclinical pulmonary dysfunction contributes to high altitude pulmonary edema susceptibility in healthy non-mountaineers. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mijacika, T.; Dujic, Z. Sports-related lung injury during breath-hold diving. Eur. Respir. Rev. 2016, 25, 506–512. [Google Scholar] [CrossRef]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; Macintyre, N.R.; Thompson, B.R.; Wanger, J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Shaw, G.; Mujika, I. Anthropometric profiles of elite open water swimmers. Int. J. Sports Physiol. Perform. 2018, 13, 115–118. [Google Scholar] [CrossRef]
- Martinez, S.; Pasquarelli, B.; Romaguera, D.; Arasa, C.; Tauler, P.; Aguiló, A. Anthropometric characteristics and nutritional profile of young amateur swimmers. J. Strength Cond. Res. 2011, 25, 1126–1133. [Google Scholar] [CrossRef]
- Hoppeler, H.; Kleinert, E.; Schlegel, C.; Claassen, H.; Howald, H.; Kayar, S.R.; Cerretelli, P., II. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int. J. Sports Med. 1990, 11, 3–9. [Google Scholar] [CrossRef]
- Bogaard, H.J.; Hopkins, S.R.; Yamaya, Y.; Niizeki, K.; Ziegler, M.G.; Wagner, P.D. Role of the autonomic nervous system in the reduced maximal cardiac output at altitude. J. Appl. Physiol. 2002, 93, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsia, C.C.W.; Johnson, R.L.; McDonough, P.; Dane, D.M.; Hurst, M.D.; Fehmel, J.L.; Wagner, H.E.; Wagner, P.D. Residence at 3800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J. Appl. Physiol. 2007, 102, 1448–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.M.B.; Pride, N.B. Examination of the carbon monoxide diffusing capacity (DL CO) in relation to its KCO and VA components. Am. J. Respir. Crit. Care Med. 2012, 186, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebout, D.E.; Story, D.; Roca, J.; Hogan, M.C.; Poole, D.C.; Gonzalez-Camarena, R.; Ueno, O.; Haab, P.; Wagner, P.D. Effects of altitude acclimatization on pulmonary gas exchange during exercise. J. Appl. Physiol. 1989, 67, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Stembridge, M.; Ainslie, P.N.; Shave, R. Mechanisms underlying reductions in stroke volume at rest and during exercise at high altitude. Eur. J. Sport Sci. 2016, 16, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Beretta, E.; Lanfranconi, F.; Grasso, G.S.; Bartesaghi, M.; Alemayehu, H.K.; Miserocchi, G. Reappraisal of DLCO adjustment to interpret the adaptive response of the air-blood barrier to hypoxia. Respir. Physiol. Neurobiol. 2017, 238, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Stewart, G.M.; Marck, J.W.; Summerfield, D.T.; Issa, A.N.; Johnson, B.D. Interstitial lung fluid balance in healthy lowlanders exposed to high-altitude. Respir. Physiol. Neurobiol. 2017, 243, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, P.; Swenson, E.R.; Bussotti, M.; Revera, M.; Meriggi, P.; Faini, A.; Lombardi, C.; Bilo, G.; Giuliano, A.; Bonacina, D.; et al. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans. J. Appl. Physiol. 2011, 110, 1564–1571. [Google Scholar] [CrossRef]
- Martinot, J.-B.; Mulè, M.; De Bisschop, C.; Overbeek, M.J.; Le-Dong, N.N.; Naeije, R.; Guénard, H. Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers. J. Appl. Physiol. 2013, 115, 157–166. [Google Scholar] [CrossRef] [Green Version]
- de Bisschop, C.; Martinot, J.B.; Leurquin-Sterk, G.; Faoro, V.; Guénard, H.; Naeije, R. Improvement in lung diffusion by endothelin A receptor blockade at high altitude. J. Appl. Physiol. 2012, 112, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Clarenbach, C.F.; Senn, O.; Christ, A.L.; Fischler, M.; Maggiorini, M.; Bloch, K.E. Lung function and breathing pattern in subjects developing high altitude pulmonary edema. PLoS ONE 2012, 7, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, F.; van Lookeren Campagne, P. Resting pulmonary diffusion capacity for CO and O2 at high altitude. J. Appl. Physiol. 1965, 20, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Tiller, N.B.; Turner, L.A.; Taylor, B.J. Pulmonary and respiratory muscle function in response to 10 marathons in 10 days. Eur. J. Appl. Physiol. 2019, 119, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.G.; LaStayo, P.C.; Hoppeler, H.; Favier, R.; Ferretti, G.; Kayser, B.; Desplanches, D.; Spielvogel, H.; Lindstedt, S.L. Exercise training in chronic hypoxia has no effect on ventilatory muscle function in humans. Respir. Physiol. 1998, 112, 195–202. [Google Scholar] [CrossRef]
- McDonough, P.; Dane, D.M.; Hsia, C.C.W.; Yilmaz, C.; Johnson, R.L., Jr. Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation. J. Appl. Physiol 2006, 100, 474–480. [Google Scholar] [CrossRef]
- Guleria, J.S.; Pande, J.N.; Sethi, P.K.; Roy, S.B. Pulmonary diffusing capacity at high altitude. J. Appl. Physiol. 1971, 31, 536–543. [Google Scholar] [CrossRef]
- Hull, J.H.; Wilson, M.G. The breathless swimmer: Could this be swimming-induced pulmonary edema? Sport. Med. Open 2018, 4, 8–10. [Google Scholar] [CrossRef]
- Wagner, P. The lungs during exercise. Physiology 1987, 2, 6–10. [Google Scholar] [CrossRef]
- Anholm, J.D.; Milne, E.N.C.; Stark, P.; Bourne, J.C.; Friedman, P. Radiographic evidence of interstitial pulmonary edema after exercise at altitude. J. Appl. Physiol. 1999, 86, 503–509. [Google Scholar] [CrossRef]
- McCartney, C.T.; Weis, M.N.; Ruppel, G.L.; Nayak, R.P. Residual volume and total lung capacity to assess reversibility in obstructive lung disease. Respir. Care 2016, 61, 1505–1512. [Google Scholar] [CrossRef]
- Newton, M.F.; O’donnell, D.E.; Forkert, L. Response of lung volumes to inhaled salbutamol in a large population of patients with severe hyperinflation. Chest 2002, 121, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, J.B. High-altitude medicine. Lancet Respir. Med. 2015, 3, 12–13. [Google Scholar] [CrossRef]
- Hanel, B.; Teunissen, I.; Rabøl, A.; Warberg, J.; Secher, N.H. Restricted postexercise pulmonary diffusion capacity and central blood volume depletion. J. Appl. Physiol. 1997, 83, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Steinacker, J.M.; Tobias, P.; Menold, E.; Reißnecker, S.; Hohenhaus, E.; Liu, Y.; Lehmann, M.; Bärtsch, P.; Swenson, E.R. Lung diffusing capacity and exercise in subjects with previous high altitude pulmonary oedema. Eur. Respir. J. 1998, 11, 643–650. [Google Scholar]
- Naeije, R.; Huez, S.; Lamotte, M.; Retailleau, K.; Neupane, S.; Abramowicz, D.; Faoro, V. Pulmonary artery pressure limits exercise capacity at high altitude. Eur. Respir. J. 2010, 36, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Sartori, C.; Rimoldi, S.F.; Scherrer, U. Lung fluid movements in hypoxia. Prog. Cardiovasc. Dis. 2010, 52, 493–499. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Koch, W.J.; Factor, P. Alveolar epithelial β2-adrenergic receptors: Their role in regulation of alveolar active sodium transport. Am. J. Respir. Crit. Care Med. 2004, 170, 1270–1275. [Google Scholar] [CrossRef]
- Agostoni, P.; Cattadori, G.; Bianchi, M.; Wasserman, K. Exercise-Induced Pulmonary Edema in Heart Failure. Circulation 2003, 108, 2666–2671. [Google Scholar] [CrossRef]
- Snyder, E.M.; Beck, K.C.; Hulsebus, M.L.; Breen, J.F.; Hoffman, E.A.; Johnson, B.D. Short-term hypoxic exposure at rest and during exercise reduces lung water in healthy humans. J. Appl. Physiol. 2006, 101, 1623–1632. [Google Scholar] [CrossRef] [Green Version]
Anthropometric and Spirometric Parameters (Units) | Elite Swimmers (n = 8) | |
---|---|---|
Female (n = 5) | Male (n = 3) | |
Age (y) | 18.2 ± 3.3 | 18.0 ± 1.7 |
Height (cm) | 170.6 ± 4.7 | 178.3 ± 2.1 |
Body weight (Kg) | 62.0 ± 3.9 | 69.0 ± 2.0 |
BMI | 21.3 ± 0.5 | 21.7 ± 0.7 |
6 skinfolds | 83.3 ± 13.5 | 49.3 ± 8.5 |
VO2max (mL·Kg−1·min−1) | 55.8 ± 2.1 | 59.2 ± 8.4 |
VEmax (L·min−1) | 110.4 ± 11.3 | 138.6 ± 13.6 |
FVC (L) | 4.4 ± 0.4 | 5.8 ± 1.0 |
FVC (%-predicted) | 108 ± 10 | 114 ± 18 |
FEV1 (L) | 3.8 ± 0.4 | 4.6 ± 0.8 |
FEV1 (%-predicted) | 107 ± 7 | 108 ± 16 |
FEV1/FVC | 85.2 ± 2.5 | 79.5 ± 1.2 |
PEF (L·s−1) | 7.3 ± 0.9 | 8.2 ± 0.9 |
MEF25-75 (L·s−1) | 4.0 ± 0.7 | 4.3 ± 0.7 |
Pulmonary Parameters (Units) | Elite Swimmers (n = 8) | ||
---|---|---|---|
Pre | Post | p-Value | |
DLCO (mL·min−1·mmHg−1) | 44.8 ± 12.4 | 45.0 ± 14.3 | 0.974 |
DLCO (%-predicted) | 160 ± 33 | 159 ± 34 | |
DLCO adj (mL·min−1·mmHg−1) | 40.4 ± 11.2 | 40.4 ± 12.8 | 0.966 |
DLCO adj (%-predicted) | 144 ± 30 | 143 ± 30 | |
KCO (mL·min−1·mmHg−1·L−1) | 6.23 ± 1.03 | 6.83 ± 1.31 | 0.038 |
KCO (%-predicted) | 126 ± 25 | 138 ± 29 | |
VA (L) | 7.13 ± 1.61 | 6.50 ± 1.59 | 0.005 |
VA (%-predicted) | 127 ± 18 | 116 ± 18 | |
TLC (L) | 7.28 ± 1.61 | 6.65 ± 1.59 | 0.005 |
TLC (%-predicted) | 127 ± 18 | 116 ± 18 | |
VCIN (L) | 4.76 ± 1.12 | 4.35 ± 1.52 | 0.130 |
RV (L) | 2.51 ± 0.74 | 2.30 ± 0.57 | 0.381 |
Pulmonary Parameters (Units) | Elite Swimmers (n = 8) | |||||
---|---|---|---|---|---|---|
Pre | Mid | Pre vs. Mid p-Value | Post | Pre vs. Post p-Value | Mid vs. Post p-Value | |
DLCO (mL·min−1·mmHg−1) | 45.8 ± 14.5 | 45.2 ± 12.0 | 1.000 | 41.1 ± 12.8 | 0.156 | 0.044 |
DLCO (%-predicted) | 166 ± 30 | 165 ± 26 | 150 ± 32 | |||
DLCO adj (mL·min−1·mmHg−1) | 41.1 ± 13.0 | 40.6 ± 10.8 | 1.000 | 36.8 ± 11.5 | 0.153 | 0.044 |
DLCO adj (%-predicted) | 149 ± 27 | 148 ± 24 | 134 ± 29 | |||
KCO (mL·min−1·mmHg−1·L−1) | 6.34 ± 1.00 | 6.27 ± 1.16 | 1.000 | 6.17 ± 1.13 | 1.000 | 0.053 |
KCO (%-predicted) | 132 ± 14 | 134 ± 28 | 126 ± 23 | |||
VA (L) | 6.53 ± 1.35 | 6.37 ± 1.24 | 1.000 | 5.66 ± 0.52 | 0.330 | 1.000 |
VA (%-predicted) | 125 ± 18 | 123 ± 14 | 118 ± 18 | |||
TLC (L) | 6.68 ± 1.35 | 6.52 ± 1.24 | 1.000 | 5.81 ± 0.52 | 0.330 | 1.000 |
TLC (%-predicted) | 124 ± 18 | 123 ± 14 | 118 ± 17 | |||
VCIN (L) | 4.69 ± 1.15 | 4.73 ± 1.12 | 1.000 | 4.22 ± 0.31 | 0.823 | 1.000 |
RV (L) | 2.37 ± 0.63 | 2.16 ± 0.65 | 1.000 | 1.78 ± 0.59 | 0.001 | 0.266 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, I.; Drobnic, F.; Galera, T.; Pons, V.; Viscor, G. Lung Diffusion in a 14-Day Swimming Altitude Training Camp at 1850 Meters. Int. J. Environ. Res. Public Health 2020, 17, 3501. https://doi.org/10.3390/ijerph17103501
García I, Drobnic F, Galera T, Pons V, Viscor G. Lung Diffusion in a 14-Day Swimming Altitude Training Camp at 1850 Meters. International Journal of Environmental Research and Public Health. 2020; 17(10):3501. https://doi.org/10.3390/ijerph17103501
Chicago/Turabian StyleGarcía, Iker, Franchek Drobnic, Teresa Galera, Victoria Pons, and Ginés Viscor. 2020. "Lung Diffusion in a 14-Day Swimming Altitude Training Camp at 1850 Meters" International Journal of Environmental Research and Public Health 17, no. 10: 3501. https://doi.org/10.3390/ijerph17103501
APA StyleGarcía, I., Drobnic, F., Galera, T., Pons, V., & Viscor, G. (2020). Lung Diffusion in a 14-Day Swimming Altitude Training Camp at 1850 Meters. International Journal of Environmental Research and Public Health, 17(10), 3501. https://doi.org/10.3390/ijerph17103501