Body Mass Index Trajectory–Specific Changes in Economic Circumstances: A Person-Oriented Approach Among Midlife and Ageing Finns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.3. Statistical Analyses
3. Results
3.1. Characteristics of the Study Population
3.2. Body Mass Index Trajectory Groups
3.3. Sequence Analyses
3.3.1. BMI Trajectories and Household Income
3.3.2. BMI Trajectories and Current Economic Difficulties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APP | Average Posterior Probabilities |
BIC | Bayesian Information Criterion |
BMI | Body Mass Index |
GBTM | Group-Based Trajectory Modeling |
OECD | Organisation for Economic Co-operation and Development |
SD | Standard Deviation |
References
- Finkelstein:, E.A.; Ruhm, C.J.; Kosa, K.M. Economic causes and consequences of obesity. Annu Rev. Public Health. 2005, 26, 239–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, B.; Lacruz, M.E.; Haerting, J.; Hartwig, S.; Tiller, D.; Medenwald, D.; Vogt, S.; Thorand, B.; Holle, R.; Bachlechner, U.; et al. Socioeconomic status and anthropometric changes—A meta-analytic approach from seven German cohorts. Obesity (Silver Spring) 2016, 24, 710–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, J.D.; Baker, E.H.; Scarinci, I.C. Wealth and Obesity Among US Adults Entering Midlife. Obesity (Silver Spring) 2019, 27, 2067–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, D.C.; Pressler, E. Accumulation of childhood poverty on young adult overweight or obese status: Race/ethnicity and gender disparities. J. Epidemiol. Community Health 2014, 68, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; von dem Knesebeck, O. Income and obesity: What is the direction of the relationship? A systematic review and meta-analysis. BMJ Open 2018, 8, e019862. [Google Scholar] [PubMed]
- Li, M. Chronic Exposure of Grandparents to Poverty and Body Mass Index Trajectories of Grandchildren: A Prospective Intergenerational Study. Am. J. Epidemiol. 2015, 181, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Harris, K.M.; Gordon-Larsen, P. Life Course Perspectives on the Links Between Poverty and Obesity During the Transition to Young Adulthood. Popul. Res. Policy Rev. 2009, 28, 505–532. [Google Scholar] [CrossRef]
- Hiilamo, A.; Lallukka, T.; Mänty, M.; Kouvonen, A. Obesity and socioeconomic disadvantage in midlife female public sector employees: A cohort study. BMC Public Health 2017, 17, 842. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.; Davey Smith, G. A life course approach to chronic disease epidemiology. Annu. Rev. Public Health 2005, 26, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, Y. Trends in the Association between Obesity and Socioeconomic Status in U.S. Adults: 1971 to 2000. Obes. Res. 2004, 12, 1622–1632. [Google Scholar] [CrossRef]
- Zhu, J.; Coombs, N.; Stamatakis, E. Temporal trends in socioeconomic inequalities in obesity prevalence among economically-active working-age adults in Scotland between 1995 and 2011: A population-based repeated cross-sectional study. BMJ Open 2015, 5, e006739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conklin, A.I.; Forouhi, N.G.; Suhrcke, M.; Surtees, P.; Wareham, N.J.; Monsivais, P. Socioeconomic status, financial hardship and measured obesity in older adults: A cross-sectional study of the EPIC-Norfolk cohort. BMC Public Health 2013, 13, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botoseneanu, A.; Liang, J. Social stratification of body weight trajectory in middle-age and older Americans: Results from a 14-year longitudinal study. J. Aging Health 2011, 23, 454–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insaf, T.Z.; Shaw, B.A.; Yucel, R.M.; Chasan-Taber, L.; Strogatza, D.S. Lifecourse socioeconomic position and 16 year body mass index trajectories: Differences by race and sex. Prev. Med. 2014, 67, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yi, Y.; Roebothan, B.; Colbourne, J.; Maddalena, V.; Wang, P.P.; Sun, G. Trajectories of Body Mass Index from Young Adulthood to Middle Age among Canadian Men and Women. Adv. Epidemiol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Østbye, T.; Malhotra, R.; Landerman, L.R. Body mass trajectories through adulthood: Results from the National Longitudinal Survey of Youth 1979 Cohort (1981–2006). Int. J. Epidemiol. 2011, 40, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Botoseneanu, A.; Liang, J. Latent heterogeneity in long-term trajectories of body mass index in older adults. J. Aging Health 2013, 25, 342–363. [Google Scholar] [CrossRef] [Green Version]
- Salmela, J.; Mauramo, E.; Lallukka, T.; Rahkonen, O.; Kanerva, N. Associations between Childhood Disadvantage and Adult Body Mass Index Trajectories: A Follow-Up Study among Midlife Finnish Municipal Employees. Obes. Facts 2019, 12, 564–574. [Google Scholar] [CrossRef]
- Lahelma, E.; Aittomäki, A.; Laaksonen, M.; Lallukka, T.; Martikainen, P.; Piha, K.; Rahkonen, O.; Saastamoinen, P. Cohort Profile: The Helsinki Health Study. Int. J. Epidemiol. 2013, 42, 722–730. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Regional Office for Europe. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 28 April 2020).
- Hagenaars, A.J.M.; de Vos, K.; Zaidi, M.A. Poverty Statistics in the Late 1980s: Research Based on Micro-data; Office for Official Publications of the European Communities: Luxembourg, 1994; p. 18. [Google Scholar]
- Pearlin, L.I.; Schooler, C. The structure of coping. J. Health Soc. Behav. 1978, 19, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Nagin, D.S.; Odgers, C.L. Group-based trajectory modeling in clinical research. Annu Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, A. Sequence Analysis: New Methods for Old Ideas. Annu Rev. Sociol. 1995, 21, 93–113. [Google Scholar] [CrossRef]
- Brzinsky-Fay, C.; Kohler, U.; Luniak, U. Sequence analysis with Stata. Stata J. 2006, 6, 435–460. [Google Scholar] [CrossRef] [Green Version]
- Brzinsky-Fay, C. Graphical representation of transitions and sequences. In Advances in sequence analysis: Theory, method applications; Blanchard, P., Bühlmann, F., Gauthier, J., Eds.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014; Volume 2, pp. 265–284. [Google Scholar]
- Lundqvist, A.; Männistö, S.; Jousilahti, P.; Kaartinen, N.; Mäki, P.; Borodulin, K. Lihavuus. In Terveys, toimintakyky ja hyvinvointi Suomessa-Finterveys 2017 -tutkimus [Health, Functional Capacity and Welfare in Finland-FinHealth 2017 Study]; National Institute for Health and Welfare (THL): Helsinki, Finland, 2018; pp. 45–49. [Google Scholar]
- Wang, M.; Yi, Y.; Roebothan, B.; Colbourne, J.; Maddalena, V.; Wang, P.P.; Sun, G. Body Mass Index Trajectories among Middle-Aged and Elderly Canadians and Associated Health Outcomes. J. Environ. Public Health 2016. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.P.; Lennon, H.; Sperrin, M.; Matthews, C.; Freedman, N.D.; Albanes, D.; Leitzmann, M.F.; Renehan, A.G.; Cook, M.B. Body mass index trajectories across adulthood and smoking in relation to prostate cancer risks: The NIH-AARP Diet and Health Study. Int. J. Epidemiol. 2018, 48, 464–473. [Google Scholar] [CrossRef]
- De Rubeis, V.; Cotterchio, M.; Smith, B.T.; Griffith, L.E.; Borgida, A.; Gallinger, S.; Cleary, S.; Anderson, L.N. Trajectories of body mass index, from adolescence to older adulthood, and pancreatic cancer risk; a population-based case-control study in Ontario, Canada. Cancer Causes Control 2019, 30, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Trans. Med. 2017, 5, 161. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, S.T.; Batty, G.D.; Pentti, J.; Virtanen, M.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; Heikkilä, K.; Jokela, M.; Knutsson, A. Obesity and loss of disease-free years owing to major non-communicable diseases: A multicohort study. Lancet Public Health 2018, 3, e490–497. [Google Scholar] [CrossRef] [Green Version]
- Taylor, V.H.; Forhan, M.; Vigod, S.N.; McIntyre, R.S.; Morrison, K.M. The impact of obesity on quality of life. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 139–146. [Google Scholar] [CrossRef]
- Watson, B. Does Economic Insecurity Cause Weight Gain Among Canadian Labor Force Participants? Rev. Income Wealth 2018, 64, 406–427. [Google Scholar] [CrossRef]
- Monsivais, P.; Martin, A.; Suhrcke, M.; Forouhi, N.G.; Wareham, N.J. Job-loss and weight gain in British adults: Evidence from two longitudinal studies. Soc. Sci. Med. 2015, 143, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearlin, L.I.; Schieman, S.; Fazio, E.M.; Meersman, S.C. Stress, Health, and the Life Course: Some Conceptual Perspectives. J. Health Soc. Behav. 2005, 46, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Godley, J.; McLaren, L. Socioeconomic status and body mass index in Canada: Exploring measures and mechanisms. Can. Rev. Sociol. 2010, 47, 381–403. [Google Scholar] [CrossRef]
- Laaksonen, M.; Sarlio-Lähteenkorva, S.; Lahelma, E. Multiple dimensions of socioeconomic position and obesity among employees: The Helsinki Health Study. Obes. Res. 2004, 12, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Loman, T.; Lallukka, T.; Laaksonen, M.; Rahkonen, O.; Lahelma, E. Multiple socioeconomic determinants of weight gain: The Helsinki Health Study. BMC Public Health 2013, 13, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groth, M.V.; Fagt, S.; Stockmarr, A.; Matthiessen, J.; Biltoft-Jensen, A. Dimensions of socioeconomic position related to body mass index and obesity among Danish women and men. Scand J. Public Health 2009, 37, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, M.; Roos, E.; Rahkonen, O.; Martikainen, P.; Lahelma, E. Influence of material and behavioural factors on occupational class differences in health. J. Epidemiol. Community Health 2005, 59, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laaksonen, E.; Martikainen, P.; Lahelma, E.; Lallukka, T.; Rahkonen, O.; Head, J.; Marmot, M. Socioeconomic circumstances and common mental disorders among Finnish and British public sector employees: Evidence from the Helsinki Health Study and the Whitehall II Study. Int. J. Epidemiol. 2007, 36, 776–786. [Google Scholar] [CrossRef] [Green Version]
- Siahpush, M.; Huang, T.T.; Sikora, A.; Tibbits, M.; Shaikh, R.A.; Singh, G.K. Prolonged financial stress predicts subsequent obesity: Results from a prospective study of an Australian national sample. Obesity (Silver Spring) 2014, 22, 616–621. [Google Scholar] [CrossRef]
- Block, J.P.; He, Y.; Zaslavsky, A.M.; Ding, L.; Ayanian, J.Z. Psychosocial Stress and Change in Weight Among US Adults. Am. J. Epidemiol. 2009, 170, 181–182. [Google Scholar] [CrossRef] [Green Version]
- Moradi, S.; Mirzababaei, A.; Dadfarma, A.; Rezaei, S.; Mohammadi, H.; Jannat, B.; Mirzaei, K. Food insecurity and adult weight abnormality risk: A systematic review and meta-analysis. Eur. J. Nutr. 2019, 58, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.W.; Kaplan, G.A.; Shema, S.J. Cumulative impact of sustained economic hardship on physical, cognitive, psychological, and social functioning. N. Engl. J. Med. 1997, 337, 1889–1895. [Google Scholar] [CrossRef]
- Giskes, K.; van Lenthe, F.J.; Turrell, G.; Kamphuis, C.B.; Brug, J.; Mackenbach, J.P. Socioeconomic position at different stages of the life course and its influence on body weight and weight gain in adulthood: A longitudinal study with 13-year follow-up. Obesity (Silver Spring) 2008, 16, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Heraclides, A.; Brunner, E. Social mobility and social accumulation across the life course in relation to adult overweight and obesity: The Whitehall II study. J. Epidemiol. Community Health 2010, 64, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, P.E.; Persson, M.; Hammarström, A. Socio-economic disadvantage and body mass over the life course in women and men: Results from the Northern Swedish Cohort. Eur. J. Public Health 2012, 22, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Connor Gorber, S.; Tremblay, M.; Moher, D.; Gorber, B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: A systematic review. Obes. Rev. 2007, 8, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, E.; Martikainen, P.; Lallukka, T.; Lahelma, E.; Ferrie, J.; Rahkonen, O.; Marmot, M.; Head, J. Economic difficulties and common mental disorders among Finnish and British white-collar employees: The contribution of social and behavioural factors. J. Epidemiol. Community Health 2009, 63, 439–446. [Google Scholar] [CrossRef]
- Watson, D. Intraindividual and interindividual analyses of positive and negative affect: Their relation to health complaints, perceived stress, and daily activities. J. Pers. Soc. Psychol. 1988, 54, 1020–1030. [Google Scholar] [CrossRef]
- Warren, J.R.; Luo, L.; Halpern-Manners, A.; Raymo, J.M.; Palloni, A. Do Different Methods for Modeling Age-Graded Trajectories Yield Consistent and Valid Results? AJS 2015, 120, 1809–1856. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, M.; Aittomäki, A.; Lallukka, T.; Rahkonen, O.; Saastamoinen, P.; Silventoinen, K.; Lahelma, E. Register-based study among employees shows small non-participation bias in health surveys and check-ups. J. Clin. Epidemiol. 2008, 61, 900–906. [Google Scholar] [CrossRef]
- Martikainen, P.; Laaksonen, M.; Piha, K.; Lallukka, T. Does survey bias the association between occupational social class and health? Scand J. Public Health 2007, 35, 212–215. [Google Scholar] [CrossRef] [PubMed]
Total, n (%) | Women, n (%) | Men, n (%) | |
---|---|---|---|
N | 7105 | 5790 (82) | 1315 (19) |
Age | |||
40 | 1337 (19) | 1123 (19) | 214 (16) |
45 | 1475 (21) | 1238 (21) | 237 (18) |
50 | 1571 (22) | 1295 (22) | 276 (21) |
55 | 1849 (26) | 1462 (25) | 387 (29) |
60 | 873 (12) | 672 (12) | 201 (15) |
BMI 1, mean (SD 2) | 25.5 (4.3) | 25.3 (4.3) | 26.3 (3.9) |
Household income | |||
Highest quartile | 1706 (24) | 1385 (24) | 321 (24) |
2nd highest | 1601 (23) | 1284 (22) | 317 (24) |
2nd lowest | 1813 (26) | 1482 (26) | 331 (25) |
Lowest quartile | 1807 (25) | 1473 (25) | 334 (25) |
Economic difficulties | |||
No | 3723 (52) | 3022 (52) | 701 (53) |
Occasional | 2574 (36) | 2094 (36) | 480 (37) |
Frequent | 731 (10) | 606 (11) | 125 (10) |
BMI Trajectory Group | |||||
---|---|---|---|---|---|
Household Income, n = 5074 | Stable Healthy Weight, n = 1724 | Stable Overweight, n = 2132 | Overweight to Class I Obesity, n = 997 | Stable Class II Obesity, n = 221 | Min/Max |
5 most common sequences (%) 1 | 4444 (6.6) 1111 (5.9) 4344 (2.7) 3444 (2.6) 2211 (2.6) | 1111 (8.3) 4444 (5.6) 1211 (3.1) 4433 (2.8) 2111 (2.7) | 1111 (8.0) 2111 (4.8) 4444 (3.5) 1211 (3.1) 2211 (3.1) | 1111 (12) 2111 (5.4) 2211 (3.2) 1211 (2.7) 1112/1121 /1311 (2.3) | |
Average frequency 2 (SD 3) in: | |||||
Highest quartile | 1.10 (1.27) | 0.90 (1.18) | 0.79 (1.10) | 0.61 (0.97) | 0/4 |
2nd highest | 1.02 (1.01) | 0.97 (0.99) | 0.97 (1.00) | 0.91 (0.99) | 0/4 |
2nd lowest | 0.94 (1.00) | 0.99 (1.00) | 1.02 (0.97) | 0.93 (0.95) | 0/4 |
Lowest quartile | 0.95 (1.25) | 1.14 (1.33) | 1.22 (1.35) | 1.55 (1.43) | 0/4 |
Average number of different elements 4 (SD) in a sequence | 2.18 (0.70) | 2.20 (0.73) | 2.22 (0.69) | 2.19 (0.76) | 1/4 |
Average number of episodes 5 (SD) in a sequence | 2.54 (0.93) | 2.57 (0.96) | 2.58 (0.94) | 2.54 (0.95) | 1/4 |
BMI Trajectory Group | |||||
---|---|---|---|---|---|
Economic Difficulties n = 4925 | Stable Healthy Weight, n = 1701 | Stable Overweight, n = 2057 | Overweight to Class I Obesity, n = 950 | Stable Class II Obesity, n = 217 | Min/Max |
5 most common sequences (%) 1 | 3333 (43) 2333 (6.8) 2222 (5.3) 2233 (3.9) 3233 (3.8) | 3333 (35) 2333 (6.9) 2222 (6.1) 2223 (4.3) 3233 (4.2) | 3333 (28) 2222 (7.9) 2333 (6.4) 2223 (5.2) 3323 (4.1) | 3333 (18) 2333 (11) 2222 (9.2) 2223/2232 (4.6) 3233 (4.2) | |
Average frequency 2 (SD 3) in: | |||||
No difficulties | 2.68 (1.44) | 2.44 (1.47) | 2.15 (1.51) | 1.82 (1.50) | 0/4 |
Occasional difficulties | 1.08 (1.24) | 1.28 (1.27) | 1.46 (1.32) | 1.60 (1.29) | 0/4 |
Frequent difficulties | 0.24 (0.67) | 0.28 (0.71) | 0.38 (0.84) | 0.58 (1.06) | 0/4 |
Average number of different elements 4 (SD) in a sequence | 1.55 (0.58) | 1.65 (0.60) | 1.70 (0.60) | 1.76 (0.57) | 1/3 |
Average number of episodes 5 (SD) in a sequence | 1.81 (0.92) | 1.97 (0.98) | 2.03 (0.96) | 2.14 (0.97) | 1/4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmela, J.; Lallukka, T.; Mauramo, E.; Rahkonen, O.; Kanerva, N. Body Mass Index Trajectory–Specific Changes in Economic Circumstances: A Person-Oriented Approach Among Midlife and Ageing Finns. Int. J. Environ. Res. Public Health 2020, 17, 3668. https://doi.org/10.3390/ijerph17103668
Salmela J, Lallukka T, Mauramo E, Rahkonen O, Kanerva N. Body Mass Index Trajectory–Specific Changes in Economic Circumstances: A Person-Oriented Approach Among Midlife and Ageing Finns. International Journal of Environmental Research and Public Health. 2020; 17(10):3668. https://doi.org/10.3390/ijerph17103668
Chicago/Turabian StyleSalmela, Jatta, Tea Lallukka, Elina Mauramo, Ossi Rahkonen, and Noora Kanerva. 2020. "Body Mass Index Trajectory–Specific Changes in Economic Circumstances: A Person-Oriented Approach Among Midlife and Ageing Finns" International Journal of Environmental Research and Public Health 17, no. 10: 3668. https://doi.org/10.3390/ijerph17103668
APA StyleSalmela, J., Lallukka, T., Mauramo, E., Rahkonen, O., & Kanerva, N. (2020). Body Mass Index Trajectory–Specific Changes in Economic Circumstances: A Person-Oriented Approach Among Midlife and Ageing Finns. International Journal of Environmental Research and Public Health, 17(10), 3668. https://doi.org/10.3390/ijerph17103668