Representation of CYP3A4, CYP3A5 and UGT1A4 Polymorphisms within Croatian Breast Cancer Patients’ Population
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Methods
2.2.1. Genotyping Analysis
2.2.2. Assessment of Bone Mineral Density
2.2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burstein, H.J.; Griggs, J.J.; Prestrud, A.A.; Temin, S. American society of clinical oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Oncol. Pract. 2010, 6, 243–246. [Google Scholar] [CrossRef]
- Dowsett, M.; Cuzick, J.; Ingle, J.; Coates, A.; Forbes, J.; Bliss, J.; Buyse, M.; Baum, M.; Buzdar, A.; Colleoni, M.; et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J. Clin. Oncol. 2010, 28, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Ingle, J.N. Overview of adjuvant trials of aromatase inhibitors in early breast cancer. Steroids 2011, 76, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.F.; Cuzick, J.; Buzdar, A.; Howell, A.; Tobias, J.S.; Baum, M. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol. 2008, 9, 45–53. [Google Scholar] [PubMed]
- Ingle, J.N.; Buzdar, A.U.; Schaid, D.J.; Goetz, M.P.; Batzler, A.; Robson, M.E.; Northfelt, D.W.; Olson, J.E.; Perez, E.A.; Desta, Z.; et al. Variation in anastrozole metabolism and pharmacodynamics in women with early breast cancer. Cancer Res. 2010, 70, 3278–3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goss, P.E.; Ingle, J.N.; Pritchard, K.I.; Ellis, M.J.; Sledge, G.W.; Budd, G.T.; Rabaglio, M.; Ansari, R.H.; Johnson, D.B.; Tozer, R.; et al. Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27—A randomized controlled phase III trial. J. Clin. Oncol. 2013, 31, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Crew, K.D.; Greenlee, H.; Capodice, J.; Raptis, G.; Brafman, L.; Fuentes, D.; Sierra, A.; Hershman, D.L. Prevalence of joint symptoms in postmenopausal women taking aromatase inhibitors for early-stage breast cancer. J. Clin. Oncol. 2007, 25, 3877–3883. [Google Scholar] [CrossRef]
- Henry, N.L.; Giles, J.T.; Stearns, V. Aromatase inhibitor-associated musculoskeletal symptoms: Etiology and strategies for management. Oncology 2008, 22, 1401–1408. [Google Scholar]
- Edavana, V.K.; Dhakal, I.B.; Williams, S.; Penney, R.; Boysen, G.; Yao-Borengasser, A.; Kadlubar, S. Potential role of UGT1A4 promoter SNPs in anastrozole pharmacogenomics. Drug Metab. Dispos. 2013, 41, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Kamdem, L.K.; Liu, Y.; Stearns, V.; Kadlubar, S.A.; Ramirez, J.; Jeter, S.; Shahverdi, K.; Ward, B.A.; Ogburn, E.; Ratain, M.J.; et al. In vitro and in vivo oxidative metabolism and glucuronidation of anastrozole. Br. J. Clin. Pharmacol. 2010, 70, 854–869. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, P.; Sun, D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: Focus on tamoxifen and aromatase inhibitors. Drug Metab. Rev. 2010, 42, 182–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elens, L.; van Gelder, T.; Hesselink, D.A.; Haufroid, V.; van Schaik, R.H. CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013, 14, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Okubo, M.; Murayama, N.; Shimizu, M.; Shimada, T.; Guengerich, F.P.; Yamazaki, H. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J. Toxicol. Sci. 2013, 38, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Martin, E.; Martinez, C.; Pizarro, R.M.; Garcia-Gamito, F.J.; Gullsten, H.; Raunio, H.; Agundez, J.A. CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin. Pharmacol. Ther. 2002, 71, 196–204. [Google Scholar] [CrossRef]
- Waxman, D.J.; Attisano, C.; Guengerich, F.P.; Lapenson, D.P. Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch. Biochem. Biophys. 1988, 263, 424–436. [Google Scholar] [CrossRef]
- Badavi, E.; Safavi, B.; Jalali, A.; Shahriary, G.M.; Mohammadi-Asl, J.; Babaei, J. Association of CYP3A4 and CYP3A5 polymorphisms with Iranian breast cancer patients. Egypt. J. Med. Hum. Genet. 2015, 16, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Veiga, M.G.; Felizi, R.T.; Reis, D.G.; Carelli Filho, I.; Fernandes, C.E.; Souto, R.P.D.; Oliveira, E. The Influence of CYP3A4 Polymorphism in Sex Steroids as a Risk Factor for Breast Cancer. Rev. Bras. Ginecol. Obstet. 2018, 40, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.H.; Lee, S.C.; Goh, B.C.; Wong, J. Pharmacogenetics in breast cancer therapy. Clin. Cancer Res. 2008, 14, 8027–8041. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.P.; Yao, F.; Luan, H.; Wang, Y.L.; Dong, X.H.; Zhou, W.W.; Wang, Q.H. CYP3A4*1B polymorphism and cancer risk: A HuGE review and meta-analysis. Tumour Biol. 2013, 34, 649–660. [Google Scholar] [CrossRef]
- Keshava, C.; McCanlies, E.C.; Weston, A. CYP3A4 polymorphisms--potential risk factors for breast and prostate cancer: A HuGE review. Am. J. Epidemiol. 2004, 160, 825–841. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.; Marsh, S.; van Booven, D.J.; Amorim, A.; Prata, M.J.; McLeod, H.L. Pharmacogenetically relevant polymorphisms in Portugal. Pharmacogenomics 2007, 8, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Semiz, S.; Dujic, T.; Ostanek, B.; Prnjavorac, B.; Bego, T.; Malenica, M.; Mlinar, B.; Marc, J.; Causevic, A. Analysis of CYP3A4*1B and CYP3A5*3 polymorphisms in population of Bosnia and Herzegovina. Med. Glas. 2011, 8, 84–89. [Google Scholar]
- Arvanitidis, K.; Ragia, G.; Iordanidou, M.; Kyriaki, S.; Xanthi, A.; Tavridou, A.; Manolopoulos, V.G. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam. Clin. Pharmacol. 2007, 21, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, L.; Kamdem, L.K. Clinical implications of CYP3A polymorphisms. Expert Opin. Drug Metab. Toxicol. 2006, 2, 171–182. [Google Scholar] [CrossRef]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [Green Version]
- van Schaik, R.H.; van der Heiden, I.P.; van den Anker, J.N.; Lindemans, J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin. Chem. 2002, 48, 1668–1671. [Google Scholar] [CrossRef] [Green Version]
- Wojnowski, L.; Hustert, E.; Klein, K.; Goldammer, M.; Haberl, M.; Kirchheiner, J.; Koch, I.; Klattig, J.; Zanger, U.; Brockmoller, J. Re: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 2002, 94, 630–631; author reply 631–632. [Google Scholar] [CrossRef] [Green Version]
- Ehmer, U.; Vogel, A.; Schutte, J.K.; Krone, B.; Manns, M.P.; Strassburg, C.P. Variation of hepatic glucuronidation: Novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology 2004, 39, 970–977. [Google Scholar] [CrossRef]
- Strassburg, C.P.; Kneip, S.; Topp, J.; Obermayer-Straub, P.; Barut, A.; Tukey, R.H.; Manns, M.P. Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. J. Biol. Chem. 2000, 275, 36164–36171. [Google Scholar] [CrossRef] [Green Version]
- Shipkova, M.; Strassburg, C.P.; Braun, F.; Streit, F.; Grone, H.J.; Armstrong, V.W.; Tukey, R.H.; Oellerich, M.; Wieland, E. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br. J. Pharmacol. 2001, 132, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Wiener, D.; Fang, J.L.; Dossett, N.; Lazarus, P. Correlation between UDP-glucuronosyltransferase genotypes and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone glucuronidation phenotype in human liver microsomes. Cancer Res. 2004, 64, 1190–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benoit-Biancamano, M.O.; Adam, J.P.; Bernard, O.; Court, M.H.; Leblanc, M.H.; Caron, P.; Guillemette, C. A pharmacogenetics study of the human glucuronosyltransferase UGT1A4. Pharm. Genom. 2009, 19, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Argikar, U.A.; Remmel, R.P. Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics 2011, 12, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Benoit-Biancamano, M.O.; Connelly, J.; Villeneuve, L.; Caron, P.; Guillemette, C. Deferiprone glucuronidation by human tissues and recombinant UDP glucuronosyltransferase 1A6: An in vitro investigation of genetic and splice variants. Drug Metab. Dispos. 2009, 37, 322–329. [Google Scholar] [CrossRef]
- Bojanic, K.; Bilic Curcic, I.; Kuna, L.; Kizivat, T.; Smolic, R.; Raguz Lucic, N.; Kralik, K.; Seric, V.; Ivanac, G.; Tucak-Zoric, S.; et al. Association of Wnt Inhibitors, Bone Mineral Density and Lifestyle Parameters in Women with Breast Cancer Treated with Anastrozole Therapy. J. Clin. Med. 2018, 7, 287. [Google Scholar] [CrossRef] [Green Version]
- Kalder, M.; Hans, D.; Kyvernitakis, I.; Lamy, O.; Bauer, M.; Hadji, P. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J. Clin. Densitom. 2014, 17, 66–71. [Google Scholar] [CrossRef]
- Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med. 2006, 57, 119–137. [Google Scholar] [CrossRef]
- Miao, J.; Jin, Y.; Marunde, R.L.; Gorski, C.J.; Kim, S.; Quinney, S.; Radovich, M.; Li, L.; Hall, S.D. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharm. J. 2009, 9, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Lamba, J.K.; Lin, Y.S.; Thummel, K.; Daly, A.; Watkins, P.B.; Strom, S.; Zhang, J.; Schuetz, E.G. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002, 12, 121–132. [Google Scholar] [CrossRef]
- King, B.P.; Leathart, J.B.; Mutch, E.; Williams, F.M.; Daly, A.K. CYP3A5 phenotype-genotype correlations in a British population. Br. J. Clin. Pharmacol. 2003, 55, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Quaranta, S.; Chevalier, D.; Bourgarel-Rey, V.; Allorge, D.; Solas, C.; Lo-Guidice, J.M.; Sampol-Manos, E.; Vacher-Coponat, H.; Moal, V.; Broly, F.; et al. Identification by single-strand conformational polymorphism analysis of known and new mutations of the CYP3A5 gene in a French population. Toxicol. Lett. 2006, 164, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.N.; Lajoie, J.; Zijenah, L.S.; Barama, A.; Poirier, C.; Ward, B.J.; Roger, M. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab. Dispos. 2005, 33, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.; Sjursen, W.; Helde, G.; Brodtkorb, E. Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.I.; Zhao, F.; Goss, P.E.; Chapman, J.W.; Shepherd, L.E.; Whelan, T.J.; Mattar, B.I.; Bufill, J.A.; Schultz, W.C.; LaFrancis, I.E.; et al. Patient-reported predictors of early treatment discontinuation: Treatment-related symptoms and health-related quality of life among postmenopausal women with primary breast cancer randomized to anastrozole or exemestane on NCIC Clinical Trials Group (CCTG) MA.27 (E1Z03). Breast Cancer Res. Treat. 2018, 169, 537–548. [Google Scholar] [PubMed]
Polymorphism | Nucleotide Substitution | Reference Single Nucleotide Polymorphism (RS) | Protein Effect and Location | Functional Effect |
---|---|---|---|---|
CYP3A4*1B | −392A > G | rs2740574 | Promoter region | Increased transcriptional activity, but clinical effect unclear |
CYP3A5*3 | 698A > G | rs776746 | Intron 3 | Decreased or lost enzyme activity and expression |
UGT1A4*2 | 70C > A | rs6755571 | Exon 1 | Decreased glucuronidation activity |
Median (interquartile range) | p * | ||
Group w/o AIs therapy | AIs treated group | ||
Age [year] | 59.5 (55–68) | 65 (59–72) | 0.006 |
Height [cm] | 163 (158–169.5) | 162 (158–165) | 0.44 |
Height in youth [cm] | 165 (160–169.7) | 164 (160.5–167.8) | 0.86 |
Weight [kg] | 71.5 (65.2–79.3) | 70 (62.5–80) | 0.98 |
BMI [kg/m2] | 26.4 (24.4–29.7) | 26.9 (24–31.2) | 0.60 |
Age at menopause | 50 (46–52) | 49 (44–51) | 0.16 |
Age at first menstrual period | 13 (12–14) | 13 (12–14) | 0.76 |
Number (%) patients | p† | ||
Group w/o AIs therapy | AIs treated group | ||
Consumption of dairy products | 29 (65.9) | 50 (62.5) | 0.85 |
Smoking | 6 (13.6) | 23 (28.8) | 0.08 |
Alcohol consumption | 0 | 1 (1.3) | >0.99 |
Vitamin D intake | 8 (18.2) | 32 (38.8) | 0.03 |
Calcium intake | 12 (27.3) | 24 (30) | 0.84 |
Regular cycles | 41 (93.2) | 71 (88.8) | 0.54 |
Physical activity (work in the garden, at home) | 14 (31.8) | 8 (10) | 0.003 |
Exercise | 36 (81.8) | 53 (66.3) | 0.03 |
Exercise earlier in the youth | 45 (85) | 47 (57) | 0.001 |
SNP Equilibrium | Therapy Group (n = 82) | W/O Group (n = 44) | Total | ** p-Value for Hardy–Weinberg Equilibrium |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
CYP3A4 | ||||
*1A/*1A(A/A) | 76 (92.7) | 43 (97.7) | 119 (94) | 0.75 |
*1A/*1B(A/G) | 6 (7.3) | 1 (2.3) | 7 (6) | |
*1B/*1B(G/G) | 0 (0) | 0 (0) | 0 (0) | |
CYP3A5 | ||||
*1/*1(A/A) | 0 (0) | 0 (0) | 0 (0) | 0.48 |
*1/*3(A/G) | 11 (13.4) | 4 (9.1) | 15 (12) | |
*3/*3(G/G) | 71 (86.6) | 40 (90.9) | 111 (88) | |
UGT1A4 | ||||
*1/*1(C/C) | 59 (95.2) | 14 (100) | 73 (96.1) | 0.86 |
*1/*2(A/C) | 3 (4.8) | 0 (0) | 3 (3.9) | |
*2/*2(A/A) | 0 (0) | 0 (0) | 0 (0) |
CYP3A4 | wt/wt (n = 74) | wt/CYP3A4*1B (n = 5) | p * |
BMD L1–L4 | 1.02 (0.91–1.15) | 1.02 (0.99–1.07) | 0.98 |
BMD total hip | 0.89 (0.83–0.97) | 1.03 (0.87–1.04) | 0.15 |
BMD femoral neck | 0.84 (0.77–0.90) | 0.93 (0.76–0.94) | 0.95 |
CYP3A5 | CYP3A5*3/CYP3A5*3 (n = 70) | wt/CYP3A5*3 (n = 9) | |
BMD L1–L4 | 1.02 (0.91–1.14) | 1.07 (0.99–1.15) | 0.33 |
BMD total hip | 0.89 (0.84–0.98) | 0.91 (0.78–1.0) | 0.78 |
BMD femoral neck | 0.84 (0.77–0.90) | 0.80 (0.76–0.94) | 0.75 |
UGT1A4 | wt/wt (n = 56) | wt/UGT1A4*2 (n = 3) | |
BMD L1–L4 | 1.03 (0.92–1.15) | 1.13 (0.82–1.15) | 0.95 |
BMD total hip | 0.91 (0.84–1.0) | 0.88 (0.75–1.06) | 0.78 |
BMD femoral neck | 0.85 (0.78–0.92) | 0.81 (0.75–0.96) | 0.70 |
CYP3A4 | wt/wt (n = 74) | wt/CYP3A4*1B (n = 5) | p * |
BMD L1–L4 | 1.05 (0.99–1.17) | 1.30 | - |
BMD total hip | 0.95 (0.85–1.02) | 0.96 | - |
BMD femoral neck | 0.87 (0.81–0.94) | 0.87 | - |
CYP3A5 | CYP3A5*3/CYP3A5*3 (n = 70) | wt/CYP3A5*3 (n = 9) | |
BMD L1–L4 | 1.05 (0.99–1.17) | 1.30 (0.74–1.39) | 0.46 |
BMD total hip | 0.95 (0.86–1.01) | 0.96 (0.77–1.25) | 0.90 |
BMD femoral neck | 0.87 (0.82–0.93) | 0.87 (0.71–1.04) | 0.86 |
UGT1A4 | wt/wt (n = 56) | wt/UGT1A4*2 (n = 3) | |
BMD L1–L4 | 1.03 (0.77–1.25) | - | - |
BMD total hip | 0.95 (0.87–1.01) | - | - |
BMD femoral neck | 0.85 (0.79–0.94) | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojanic, K.; Kuna, L.; Bilic Curcic, I.; Wagner, J.; Smolic, R.; Kralik, K.; Kizivat, T.; Ivanac, G.; Vcev, A.; Wu, G.Y.; et al. Representation of CYP3A4, CYP3A5 and UGT1A4 Polymorphisms within Croatian Breast Cancer Patients’ Population. Int. J. Environ. Res. Public Health 2020, 17, 3692. https://doi.org/10.3390/ijerph17103692
Bojanic K, Kuna L, Bilic Curcic I, Wagner J, Smolic R, Kralik K, Kizivat T, Ivanac G, Vcev A, Wu GY, et al. Representation of CYP3A4, CYP3A5 and UGT1A4 Polymorphisms within Croatian Breast Cancer Patients’ Population. International Journal of Environmental Research and Public Health. 2020; 17(10):3692. https://doi.org/10.3390/ijerph17103692
Chicago/Turabian StyleBojanic, Kristina, Lucija Kuna, Ines Bilic Curcic, Jasenka Wagner, Robert Smolic, Kristina Kralik, Tomislav Kizivat, Gordana Ivanac, Aleksandar Vcev, George Y. Wu, and et al. 2020. "Representation of CYP3A4, CYP3A5 and UGT1A4 Polymorphisms within Croatian Breast Cancer Patients’ Population" International Journal of Environmental Research and Public Health 17, no. 10: 3692. https://doi.org/10.3390/ijerph17103692
APA StyleBojanic, K., Kuna, L., Bilic Curcic, I., Wagner, J., Smolic, R., Kralik, K., Kizivat, T., Ivanac, G., Vcev, A., Wu, G. Y., & Smolic, M. (2020). Representation of CYP3A4, CYP3A5 and UGT1A4 Polymorphisms within Croatian Breast Cancer Patients’ Population. International Journal of Environmental Research and Public Health, 17(10), 3692. https://doi.org/10.3390/ijerph17103692