Physiological Predictors of Competition Performance in CrossFit Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Measures
2.3.1. Lower- and Upper-Body Strength and Power Tests
2.3.2. Jump Performance
2.3.3. Maximal Incremental Test
2.3.4. Wingate Anaerobic Test
2.3.5. CrossFit Performance
- -
- WOD 1. Participants had 15 min to complete as many rounds as possible of 19 wall-ball shots (20-lb ball to a 10-foot target) and 19 calories of rowing.
- -
- WOD 2. Participants had 8 min to complete 25 toes-to-bar, 50 double-unders, 15 squat cleans (135 lb), 25 toes-to-bar, 50 double-unders, and 13 squat cleans (185 lb). If they completed these exercises before the 8-min mark, 4 further minutes were added and they had to perform 25 toes-to-bar, 50 double-unders, and 11 squat cleans (225 lb). If they completed again these exercises under 12 min, 4 min were added and they had to perform 25 toes-to-bar, 50 double-unders, and 9 squat cleans (275 lb). If completed under 16 min, 4 additional minutes were added and they performed 25 toes-to-bar, 50 double-unders, and 7 squat cleans (315 lb). The maximum time allowed was 20 min.
- -
- WOD 3. Participants had a maximum of 10 min to complete 200-foot dumbbell (50 lb) overhead lunges, 50 dumbbell (50 lb) box step-ups (24-inch box), 50 strict handstand push-ups, and 200-foot handstand walk in the minimum time possible.
- -
- WOD 4. Participants had a maximum of 12 min to complete 3-rounds of 10 snatches (95 lb) and 12 bar-facing burpees in the minimum time possible. They then rested for 3 min and continued with 3 rounds of 10 bar muscle-ups and 12 bar-facing burpees, which they had to complete in the minimum time possible.
- -
- WOD 5. Participants had 20 min to perform 33 thrusters (95 lb) and 33 chest-to-bar pull-ups, followed by 27, 21, 15, and 9 reps of the same sequence (i.e., same number for thrusters and chest-to-bar pull-ups).
2.3.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.D.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Filho, C.A.C.; Bottaro, M.; Hernandez, A.; et al. CrossFit Overview: Systematic Review and Meta-analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit® benchmark performance? Open Access. J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-Squat as a Determinant of Performance in Cross Fit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellar, D.; Hatchett, A.; Judge, L.W.; E Breaux, M.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Boil. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological Performance Measures as Indicators of CrossFit® Performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driss, T.; Vandewalle, H. The Measurement of Maximal (Anaerobic) Power Output on a Cycle Ergometer: A Critical Review. Biomed Res. Int. 2013, 2013, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Amann, M.; Subudhi, A.W.; Foster, C. Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scand. J. Med. Sci. Sports 2006, 16, 27–34. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2007, 586, 35–44. [Google Scholar] [CrossRef]
- LoTurco, I.; Pereira, L.; Abad, C.; Tabares, F.; Moraes, J.E.; Kobal, R.; Kitamura, K.; Nakamura, F.Y. Bar velocities capable of optimising the muscle power in strength-power exercises. J. Sports Sci. 2016, 35, 734–741. [Google Scholar] [CrossRef]
- LoTurco, I.; Pereira, L.; Abad, C.C.C.; D’Angelo, R.A.; Fernandes, V.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. Vertical and Horizontal Jump Tests Are Strongly Associated With Competitive Performance in 100-m Dash Events. J. Strength Cond. Res. 2015, 29, 1966–1971. [Google Scholar] [CrossRef]
- LoTurco, I.; Pereira, L.; Kobal, R.; Maldonado, T.; Piazzi, A.F.; Bottino, A.; Kitamura, K.; Abad, C.C.C.; De Arruda, M.; Nakamura, F.Y. Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises. PLoS ONE 2016, 11, e0153958. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.; Fernandes, J.; Lewis, M.G.C.; González-Badillo, J.J.; Jiménez-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2015, 34, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Garcia-Ramos, A.; Jaric, S. Feasibility of the Two- Point Method for Determining the One- Repetition Maximun in the Bench Press Exercise. Strength Cond. J. 2018, 40, 54–66. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the Load–Velocity Profile Between 4 Bench-Press Variants. Int. J. Sports Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; A Maffiuletti, N. Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef]
- Lucia, A.; Pardo, J.; Durántez, A.; Hoyos, J.; Chicharro, J.L. Physiological differences between professional and elite road cyclists. Int. J. Sports Med. 1998, 19, 342–348. [Google Scholar] [CrossRef]
- Farzam, P.; Starkweather, Z.; Franceschini, M.A. Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle. Physiol. Rep. 2018, 6, e13664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaventura, J.M.; Sharpe, K.; Knight, E.; Fuller, K.L.; Tanner, R.K.; Gore, C.J. Reliability and Accuracy of Six Hand-Held Blood Lactate Analysers. J. Sports Sci. Med. 2015, 14, 203–214. [Google Scholar] [PubMed]
- Tanner, R.K.; Fuller, K.L.; Ross, M.L.R. Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur. J. Appl. Physiol. 2010, 109, 551–559. [Google Scholar] [CrossRef] [PubMed]
- CrossFit Games: Open 2019. Available online: https://games.crossfit.com/workouts/open/2019 (accessed on 23 May 2020).
- Borszcz, F.K.; Tramontin, A.F.; Costa, V.P. Is the Functional Threshold Power Interchangeable With the Maximal Lactate Steady State in Trained Cyclists? Int. J. Sports Physiol. Perform. 2019, 14, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- LoTurco, I.; Pereira, L.; Moraes, J.E.; Kitamura, K.; Abad, C.C.C.; Kobal, R.; Nakamura, F.Y. Jump-Squat and Half-Squat Exercises: Selective Influences on Speed-Power Performance of Elite Rugby Sevens Players. PLoS ONE 2017, 12, e0170627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Hopkins, W. A spreadhseet to compare means of two groups. Sports Sci. 2007, 11, 22–23. [Google Scholar]
- Hopkins, W.G.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships Between Strength, Sprint, and Jump Performance in Well-Trained Youth Soccer Players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Epstein, S.; Einbinder, M.; Weinstein, Y. A Comparison Between the Wingate Anaerobic Power Test to Both Vertical Jump and Line Drill Tests in Basketball Players. J. Strength Cond. Res. 2000, 14, 261–264. [Google Scholar] [CrossRef]
- Andersen, E.; Lockie, R.; Dawes, J.J. Relationship of Absolute and Relative Lower-Body Strength to Predictors of Athletic Performance in Collegiate Women Soccer Players. Sports 2018, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Subjects (n = 15) | HP (n = 7) | LP (n = 8) | p-Value | ES | |
---|---|---|---|---|---|
Age (years) | 35 ± 9 | 32 ± 10 | 38 ± 8 | 0.254 | 0.67 |
Height (cm) | 177 ± 5 | 176 ± 4 | 178 ± 6 | 0.468 | 0.39 |
Weight (kg) | 81 ± 9 | 78 ± 2 | 84 ± 11 | 0.161 | 0.73 |
BMI (kg∙m2) | 25.9 ± 1.5 | 25.2 ± 0.6 | 26.5 ± 1.8 | 0.091 | 0.94 |
Test | Variable | HP (n = 7) | LP (n = 8) | p-Value | ES |
---|---|---|---|---|---|
JUMP TEST | SJ (cm) | 39 ± 5 | 32 ± 3 | 0.006 | 1.73 |
CMJ (cm) | 42 ± 5 | 37 ± 6 | 0.105 | 0.90 | |
RSI (cm·ms−1) | 0.92 ± 0.22 | 0.73 ± 0.11 | 0.052 | 1.12 | |
WINGATE TEST | MPO (W) | 671 ± 39 | 639 ± 70 | 0.306 | 0.55 |
PPO (W) | 823 ± 58 | 788 ± 86 | 0.367 | 0.47 | |
MPO (W∙kg−1) | 8.6 ± 0.6 | 7.6 ± 0.8 | 0.019 | 1.40 | |
PPO (W∙kg−1) | 10.6 ± 0.7 | 9.4 ± 1.1 | 0.030 | 1.28 | |
FS (%) | 37 ± 11 | 35 ± 8 | 0.612 | 0.21 | |
SmO2 (%) | 67 ± 7 | 69 ± 6 | 0.601 | 0.31 | |
(La−)peak (mmol∙L−1) | 15.3 ± 2.8 | 13.4 ± 4.3 | 0.325 | 0.52 | |
INCREMENTAL TEST | VO2max (ml∙kg−1∙min−1) | 55.1± 5. | 49.1± 4. | 0.022 | 1.32 |
Vpeak (km∙h−1) | 17.0 ± 0.9 | 15.4 ± 1.2 | 0.011 | 1.49 | |
vVT1 (km∙h−1) | 10.1 ± 0.6 | 9.9 ± 0.9 | 0.619 | 0.26 | |
vVT2 (km∙h−1) | 15.1 ± 1.1 | 14.2 ± 1.1 | 0.128 | 0.82 | |
SmO2 (%) | 64 ± 8 | 66 ± 10 | 0.733 | 0.22 | |
STRENGTH TEST | 1RM BP (kg) | 105 ± 11 | 95 ± 21 | 0.279 | 0.58 |
1RM BP (%BW) | 1.4 ± 0.1 | 1.1 ± 0.2 | 0.035 | 1.20 | |
Pmax BP (W) | 554 ± 104 | 505 ± 140 | 0.463 | 0.39 | |
Pmaxrel BP (W∙kg−1) | 7.1 ± 1.4 | 6..0 ± 1.3 | 0.121 | 0.86 | |
1RM DFS (kg) | 133 ± 19 | 128 ± 28 | 0.704 | 0.21 | |
1RM DFS (%BW) | 1.7 ± 0.3 | 1.5 ± 0.2 | 0.164 | 0.75 | |
Pmax DFS (W) | 1436 ± 300 | 1553 ± 529 | 0.616 | 0.27 | |
Pmaxrel DFS (W∙kg−1) | 18.4 ± 3.7 | 18.1 ± 4.4 | 0.916 | 0.07 |
Test | Variable | WOD 1 | WOD 2 | WOD 3 | WOD 4 | WOD 5 |
---|---|---|---|---|---|---|
r | r | r | r | r | ||
JUMP TEST | SJ (cm) | 0.29 | 0.79 ** | 0.77 ** | 0.58 * | 0.82 ** |
CMJ (cm) | 0.05 | 0.59 * | 0.56 * | 0.43 | 0.73 ** | |
RSI (cm·ms−1) | 0.52 * | 0.82 ** | 0.60 * | 0.59 * | 0.63 * | |
WINGATE TEST | MPO (W) | 0.56 * | 0.45 | 0.28 | 0.23 | 0.33 |
PPO (W) | 0.45 | 0.32 | 0.13 | 0.12 | 0.06 | |
MPO (W∙kg−1) | 0.47 | 0.77 ** | 0.59 * | 0.66 ** | 0.65 ** | |
PPO (W∙kg−1) | 0.40 | 0.64 * | 0.45 | 0.55 * | 0.40 | |
FS (%) | −0.10 | −0.18 | −0.10 | −0.04 | −0.35 | |
SmO2 (%) | 0.14 | −0.32 | −0.05 | −0.23 | −0.09 | |
(La−)peak (mmol∙L−1) | 0.14 | 0.58 * | 0.22 | 0.31 | 0.43 | |
INCREMENTAL TEST | VO2max (ml∙kg−1∙min−1) | 0.63 * | 0.46 | 0.47 | 0.54 * | 0.31 |
Vpeak (km∙h−1) | 0.53 * | 0.64 * | 0.62 * | 0.56 * | 0.43 | |
vVT1(km∙h−1) | −0.08 | 0.20 | 0.07 | 0.05 | −0.01 | |
vVT2 (km∙h−1) | 0.21 | 0.47 | 0.37 | 0.27 | 0.07 | |
SmO2 (%) | 0.14 | −0.32 | −0.05 | −0.23 | −0.09 | |
STRENGTH TEST | 1RM BP (kg) | 0.36 | 0.26 | 0.41 | 0.17 | 0.29 |
1RM BP (%BW) | 0.36 | 0.53 * | 0.66 ** | 0.46 | 0.53 * | |
Pmax BP (W) | 0.60 * | 0.38 | 0.32 | 0.14 | 0.20 | |
Pmax BP (W∙kg−1) | 0.63 * | 0.63 * | 0.54 * | 0.38 | 0.40 | |
1RM DFS (kg) | 0.40 | 0.31 | 0.32 | 0.18 | 0.46 | |
1RM DFS (%BW) | 0.42 | 0.64 ** | 0.61 * | 0.52 * | 0.77 ** | |
Pmax DFS (W) | 0.45 | 0.10 | −0.01 | −0.09 | −0.07 | |
Pmax DFS (W∙kg−1) | 0.56 * | 0.38 | 0.19 | 0.13 | 0.09 |
Test | Variable | WOD 1 | WOD 2 | WOD 3 | WOD 4 | WOD 5 | Overall Performance |
---|---|---|---|---|---|---|---|
ρ | ρ | ρ | ρ | ρ | r | ||
JUMP TEST | SJ (cm) | −0.32 | −0.69 ** | −0.73 ** | −0.69 ** | −0.73 ** | −0.70 ** |
CMJ (cm) | −0.56 * | −0.55 * | −0.51 * | −0.55 * | −0.65 ** | −0.63 * | |
RSI ( cm·ms−1) | −0.59 * | −0.89 ** | −0.70 ** | −0.72 ** | −0.62 * | −0.79 ** | |
WINGATE TEST | MPO (W) | −0.58 * | −0.41 | −0.25 | −0.32 | −0.32 | −0.39 |
PPO (W) | −0.49 | −0.35 | −0.16 | −0.26 | −0.09 | −0.27 | |
MPO (W∙kg−1) | −0.48 | −0.74 ** | −0.63 ** | −0.69 ** | −0.74 ** | −0.68 ** | |
PPO (W∙kg−1) | −0.63 * | −0.62 * | −0.52 | −0.64 * | −0.59 * | −0.63 * | |
FS (%) | −0.06 | 0.70 | 0.01 | −0.07 | 0.13 | 0.02 | |
SmO2 (%) | −0.24 | 0.30 | −0.06 | −0.20 | −0.00 | 0.05 | |
(La−)peak (mmol∙L−1) | −0.12 | −0.53 * | −0.34 | −0.44 | −0.38 | −0.35 | |
INCREMENTAL TEST | VO2max (ml∙kg−1∙min−1) | −0.60 * | −0.47 | −0.51 | −0.55 * | −0.63 * | −0.62 * |
Vpeak (km∙h−1) | −0.34 | −0.45 | −0.55 * | −0.57 * | −0.71 ** | −0.67 ** | |
vVT1(km∙h−1) | −0.00 | 0.09 | 0.10 | 0.03 | −0.23 | −0.00 | |
vVT2 (km∙h−1) | −0.25 | −0.38 | −0.39 | −0.34 | −0.28 | −0.39 | |
SmO2 (%) | −0.21 | 0.21 | −0.04 | 0.13 | −0.02 | −0.02 | |
STRENGTH TEST | 1RM BP (kg) | −0.20 | −0.15 | −0.27 | −0.19 | −0.13 | −0.26 |
1RM BP (%BW) | −0.28 | −0.50 | −0.71 ** | −0.65 * | −0.65 ** | −0.64 ** | |
Pmax BP (W) | −0.45 | −0.22 | −0.15 | −0.15 | −0.22 | −0.29 | |
Pmax BP (W∙kg−1) | −0.50 | −0.44 | −0.42 | −0.41 | −0.53 * | −0.52 * | |
1RM DFS (kg) | −0.38 | −0.39 | −0.38 | −0.41 | −0.57 * | −0.50 | |
1RM DFS (%BW) | −0.41 | −0.56 * | −0.54 * | −0.60 * | −0.78 ** | −0.66 ** | |
Pmax DFS (W) | −0.35 | −0.25 | −0.02 | −0.01 | 0.00 | −0.12 | |
Pmax DFS (W∙kg−1) | −0.34 | −0.34 | −0.12 | −0.12 | −0.17 | −0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-González, S.; Barranco-Gil, D. Physiological Predictors of Competition Performance in CrossFit Athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. https://doi.org/10.3390/ijerph17103699
Martínez-Gómez R, Valenzuela PL, Alejo LB, Gil-Cabrera J, Montalvo-Pérez A, Talavera E, Lucia A, Moral-González S, Barranco-Gil D. Physiological Predictors of Competition Performance in CrossFit Athletes. International Journal of Environmental Research and Public Health. 2020; 17(10):3699. https://doi.org/10.3390/ijerph17103699
Chicago/Turabian StyleMartínez-Gómez, Rafael, Pedro L. Valenzuela, Lidia B. Alejo, Jaime Gil-Cabrera, Almudena Montalvo-Pérez, Eduardo Talavera, Alejandro Lucia, Susana Moral-González, and David Barranco-Gil. 2020. "Physiological Predictors of Competition Performance in CrossFit Athletes" International Journal of Environmental Research and Public Health 17, no. 10: 3699. https://doi.org/10.3390/ijerph17103699
APA StyleMartínez-Gómez, R., Valenzuela, P. L., Alejo, L. B., Gil-Cabrera, J., Montalvo-Pérez, A., Talavera, E., Lucia, A., Moral-González, S., & Barranco-Gil, D. (2020). Physiological Predictors of Competition Performance in CrossFit Athletes. International Journal of Environmental Research and Public Health, 17(10), 3699. https://doi.org/10.3390/ijerph17103699