An Integrated Approach for Spatio-Temporal Cholera Disease Hotspot Relation Mining for Public Health Management in Punjab, Pakistan
Abstract
:1. Introduction
2. Related Work
3. Methods and Materials
3.1. Study Area
3.2. Dataset
3.3. Disease Management Model
3.3.1. Hotspot Detection
3.3.2. Correlation Based Factor Selection
3.3.3. Intgrating Spatio-Temporal and Determinant Factors
3.3.4. Feature Based Hotspot Relation Mining
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dash, S.; Shakyawar, S.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Chowell, G.; Simonsen, L.; Vespignani, A.; Viboud, C. Big Data for Infectious Disease Surveillance and Modeling. J. Infect. Dis. 2016, 214, S375–S379. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; George, D.B.; Moyes, C.L.; Brownstein, J.S. Big Data Opportunities for Global Infectious Disease Surveillance. PLoS Med. 2013, 10, e1001413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.; Biocca, F. Health Experience Model of Personal Informatics: The Case of a Quantified Self. Comput. Hum. Behav. 2017, 69, 62–74. [Google Scholar] [CrossRef]
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef]
- Shin, D.; Lee, S.; Hwang, Y. How do credibility and utility play in the user experience of health informatics services? Comput. Hum. Behav. 2017, 67, 292–302. [Google Scholar] [CrossRef]
- Khalique, F.; Khan, S.; Nosheen, I. PHF-A Framework for Public Health Monitoring, Analytics and Research. IEEE Access 2019, 7, 101309–101326. [Google Scholar] [CrossRef]
- Khalique, F.; Khan, S.A.; ul Ain Mubarak, Q.; Safdar, H. Decision Tree-Based Anonymized Electronic Health Record Fusion for Public Health Informatics. In Intelligent Computing; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Park, Y.J.; Shin, D. Contextualizing privacy on health-related use of information technology. Comput. Hum. Behav. 2019, 105, 106204. [Google Scholar] [CrossRef]
- Pickle, L.W. Spatial Analysis of Disease. In Biostatistical Applications in Cancer Research; Beam, C., Ed.; Springer: Boston, MA, USA, 2002; pp. 113–150. [Google Scholar] [CrossRef]
- Chen, D. Modeling the Spread of Infectious Diseases: A Review. In Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases; Chen, D., Moulin, B., Wu, J., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 19–42. [Google Scholar] [CrossRef]
- Bailey, N.T. The Biomathematics of Malaria; Charles Griffin & Company Ltd.: London, UK, 1982; pp. 93–95. [Google Scholar]
- Singh, S.; Shukla, J.B.; Chandra, P. Mathematical modeling and analysis of the spread of carrier dependent infectious diseases: Effects of cumulative density of environmental factors. Int. J. Biomath. 2009, 2, 213–228. [Google Scholar] [CrossRef]
- Shin, D.; Zhong, B.; Biocca, F.A. Beyond user experience: What constitutes algorithmic experiences? Int. J. Inf. Manag. 2020, 52, 102061. [Google Scholar] [CrossRef]
- Keeling, M.; Eames, K. Networks and Epidemic Models. J. R. Soc. Interface/R. Soc. 2005, 2, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaposnik, L.P.; Zhang, A. Modelling epidemics on d-cliqued graphs. Lett. Biomath. 2018, 5, 49–69. [Google Scholar] [CrossRef] [Green Version]
- Seibold, C.; Callender, H.L. Modeling epidemics on a regular tree graph. Lett. Biomath. 2016, 3, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Ganasegeran, K.; Abdulrahman, S. Artificial Intelligence Applications in Tracking Health Behaviors During Disease Epidemics. In Human Behaviour Analysis Using Intelligent Systems; Springer: Cham, Switzerland, 2020; pp. 141–155. [Google Scholar] [CrossRef]
- Shaban-Nejad, A.; Michalowski, M.; Buckeridge, D. Health intelligence: How Artificial Intelligence Transforms Population and Personalized Health. Nat. Med. 2018. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 1–16. [Google Scholar] [CrossRef]
- Tai, A.; Albuquerque, A.F.; Carmona, N.E.; Subramanieapillai, M.; Cha, D.S.; Sheko, M.; Lee, Y.; Mansur, R.B.; McIntyre, R.S. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif. Intell. Med. 2019, 99, 101704. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Rawson, T.; Ahmad, R.; Buchard, A.; Pantelis, G.; Lescure, F.X.; Birgand, G.; Holmes, A. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin. Microbiol. Infect. 2020, 26, 584–595. [Google Scholar] [CrossRef]
- Reluga, T.C. Game Theory of Social Distancing in Response to an Epidemic. PLoS Comput. Biol. 2010, 6, e1000793. [Google Scholar] [CrossRef]
- Poletti, P.; Ajelli, M.; Merler, S. Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic. Math. Biosci. 2012, 238, 80–89. [Google Scholar] [CrossRef]
- Chang, S.L.; Piraveenan, M.; Pattison, P.; Prokopenko, M. Game theoretic modelling of infectious disease dynamics and intervention methods: A review. J. Biol. Dyn. 2020, 14, 57–89. [Google Scholar] [CrossRef] [Green Version]
- Gaudart, J.; Moore, S.; Rebaudet, S.; Piarroux, M.; Barrais, R.; Boncy, J.; Piarroux, R. Environmental Factors Influencing Epidemic Cholera. Am. J. Trop. Med. Hyg. 2013, 89, 1228–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Cao, C.; Wang, D.; Kan, B. Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies. Int. J. Environ. Res. Public Health 2014, 12, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Sedas, V. Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: A climate link. J. Infect. Dev. Ctries. 2007, 1, 224–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, X.; Ding, L.; Huang, G.; Li, Z. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China. Int. J. Environ. Res. Public Health 2016, 13, 1221. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhu, Z.; Chen, F.; Zhao, Y.; Qiu, X. Strategically Patrolling in a Chemical Cluster Addressing Gas Pollutants’ Releases through a Game-Theoretic Model. Int. J. Environ. Res. Public Health 2019, 16, 612. [Google Scholar] [CrossRef] [Green Version]
- Benes, V.; Bodlák, K.; Jesper, M.; Rasmus, W. A case study on point process modelling in disease mapping. Image Anal. Stereol. 2005, 24, 159–168. [Google Scholar] [CrossRef]
- Spatial Point Pattern Analysis. In Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2008; pp. 155–190. [CrossRef]
- Shi, Z.; Pun-Cheng, L.S. Spatiotemporal Data Clustering: A Survey of Methods. ISPRS Int. J. Geo-Inf. 2019, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Johnson, T.D.; Bhavnani, D.; Eisenberg, J.N.; Mukherjee, B. A space-time point process model for analyzing and predicting case patterns of diarrheal disease in northwestern Ecuador. Spat. Spatiotemporal Epidemiol. 2014, 9, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Barro, A.S.; Kracalik, I.T.; Malania, L.; Tsertsvadze, N.; Manvelyan, J.; Imnadze, P.; Blackburn, J.K. Identifying hotspots of human anthrax transmission using three local clustering techniques. Appl. Geogr. 2015, 60, 29–36. [Google Scholar] [CrossRef]
- Chandola, V.; Vatsavai, R.; Kumar, D.; Ganguly, A. Analyzing Big Spatial and Big Spatiotemporal Data: A Case Study of Methods and Applications. Handb. Stat. 2015, 33, 239–258. [Google Scholar] [CrossRef]
- Kim, Y.L. Data-driven approach to characterize urban vitality: How spatiotemporal context dynamically defines Seoul’s nighttime. Int. J. Geogr. Inf. Sci. 2020, 34, 1235–1256. [Google Scholar] [CrossRef]
- Chen, Y.; Ong, J.H.Y.; Rajarethinam, J.; Yap, G.; Ng, L.C.; Cook, A.R. Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore. BMC Med. 2018, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.; Estivill-Castro, V. Exploration of Massive Crime Data Sets through Data Mining Techniques. Appl. Artif. Intell. 2011, 25, 362–379. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, F.; Guin, C.; Zhu, H. A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation. Appl. Geogr. 2018, 99, 89–97. [Google Scholar] [CrossRef]
- Nakaya, T.; Yano, K. Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Trans. GIS 2010, 14, 223–239. [Google Scholar] [CrossRef]
- Marco, M.; López-Quílez, A.; Conesa, D.; Gracia, E.; Lila, M. Spatio-Temporal Analysis of Suicide-Related Emergency Calls. Int. J. Environ. Res. Public Health 2017, 14, 735. [Google Scholar] [CrossRef] [Green Version]
- Kisa, A.; Network, G.; Alipour, V.; Gad, M.; Rabiee, N.; El Tantawi, M.; Cevik, M.; Banach, M.; Ayanore, M.; Skryabin, V.; et al. Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: Progress towards Sustainable Development Goal 3. Lancet 2020. [Google Scholar] [CrossRef]
- Rawassizadeh, R.; Dobbins, C.; Akbari, M.; Pazzani, M. Indexing Multivariate Mobile Data through Spatio-Temporal Event Detection and Clustering. Sensors 2019, 19, 448. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Chen, L.; Chen, X. The impact of spatial scale on local Moran’s I clustering of annual fishing effort for Dosidicus gigas offshore Peru. Chin. J. Oceanol. Limnol. 2019, 37, 330–343. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. In Perspectives on Spatial Data Analysis; Springer: New York, NY, USA, 2010; pp. 127–145. [Google Scholar]
- Goovaerts, P.; Jacquez, G.M. Detection of temporal changes in the spatial distribution of cancer rates using local Moran’s I and geostatistically simulated spatial neutral models. J. Geogr. Syst. 2005, 7, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.Z.; Lin, D.Y. MASS: Meta-analysis of score statistics for sequencing studies. Bioinformatics 2013, 29, 1803–1805. [Google Scholar] [CrossRef] [Green Version]
- Khedher, L.; Ramírez, J.; Górriz, J.M.; Brahim, A.; Illán, I.A. Independent Component Analysis-Based Classification of Alzheimer’s Disease from Segmented MRI Data. In Artificial Computation in Biology and Medicine; Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H., Eds.; Springer: Cham, Switzerland, 2015; pp. 78–87. [Google Scholar]
- Shekhar, S.; Jiang, Z.; Ali, R.; Eftelioglu, E.; Tang, X.; Gunturi, V.; Zhou, X. Spatiotemporal Data Mining: A Computational Perspective. ISPRS Int. J. Geo-Inf. 2015, 4, 2306–2338. [Google Scholar] [CrossRef]
- Atluri, G.; Karpatne, A.; Kumar, V. Spatio-Temporal Data Mining: A Survey of Problems and Methods. ACM Comput. Surv. 2018, 51, 1–41. [Google Scholar] [CrossRef]
- Chretien, J.P.; Swedlow, D.; Eckstrand, I.; George, D.; Johansson, M.; Huffman, R.; Hebbeler, A. Advancing epidemic prediction and forecasting: A new US government initiative. Online J. Public Health Inform. 2015, 7, e13. [Google Scholar] [CrossRef]
- He, Z.; Deng, M.; Cai, J.; Xie, Z.; Guan, Q.; Yang, C. Mining spatiotemporal association patterns from complex geographic phenomena. Int. J. Geogr. Inf. Sci. 2020, 34, 1162–1187. [Google Scholar] [CrossRef]
- Statistics Division. Government of Pakistan Federal Bureau of Statistics. Pakistan. Available online: http://www.pbs.gov.pk (accessed on 12 September 2019).
- The Provincial Disaster Management Authority (PDMA). Available online: http://pdma.gop.pk/floods (accessed on 17 February 2020).
- Global Health Observatory (GHO) Data. Available online: https://apps.who.int/gho/data/node.main.175?lang=en (accessed on 15 December 2019).
- Punjab Information Technology Board. Digital Punjab: Disease Surveillance System. Available online: https://www.pitb.gov.pk/dss (accessed on 15 September 2019).
- WorldWeatherOnline Historical Weather Data API Wrapper. 2019. Available online: https://www.worldweatheronline.com/developer/api/historical-weather-api.aspx (accessed on 15 October 2019).
- Ali, M.; Goovaerts, P.; Nazia, N.; Haq, M.Z.; Yunus, M.; Emch, M. Application of Poisson Kriging to the Mapping of Cholera and Dysentery Incidence in an Endemic Area of Bangladesh. Int. J. Health Geogr. 2006, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P. Distribution Theory, Stochastic Processes and Infectious Disease Modelling. Math. Epidemiol. 2008, 1945, 229–293. [Google Scholar]
- Kim, M.; Paini, D.; Jurdak, R. Modeling stochastic processes in disease spread across a heterogeneous social system. Proc. Natl. Acad. Sci. USA 2019, 116, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Lawson, A. Hotspot detection and clustering: Ways and means. Environ. Ecol. Stat. 2010, 17, 231–245. [Google Scholar] [CrossRef]
- Zheng, C.; Fu, J.; Li, Z.; Lin, G.; Jiang, D.; Zhou, X.n. Spatiotemporal Variation and Hot Spot Detection of Visceral Leishmaniasis Disease in Kashi Prefecture, China. Int. J. Environ. Res. Public Health 2018, 15, 2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Description | Variable | Description | Variable | Description |
---|---|---|---|---|---|
d | disease incidence | m | cluster size | z-score of feature | |
C | cluster | subset of d that belongs to C | M | distance matrix | |
H | hotspot | F | set of all features | binary distance matrix | |
f | set of features selected based on correlation | L | time step | R | relationship between hostspots |
k | interval length | A | mean of sequence | G | graph connecting hotspots |
correlation coeffecient | S | Standard Varitaion | ⊕ | cross correlation function | |
r | autocorrelation | conditional operator | value for feature f |
District | Tehsil | No. of Cases |
---|---|---|
Bahawalnagar | Chishtian | 220 |
Bahawalpur | Khairpur Tamewali | 3266 |
Faisalabad | Tandlianwala | 7257 |
Faisalabad | Sammundri | 2699 |
Jhelum | Choa Saidan Shah | 406 |
Kasur | Kasur | 3462 |
Khanewal | Ahmadpur Sial | 321 |
Khushab | Khushab | 3664 |
Lahore | Ferozewala | 1756 |
Layyah | Layyah | 416 |
Okara | Okara | 481 |
Pakpattan | Pakpattan | 123 |
Rawalpindi | Kallar Sayyedan | 1936 |
Rawalpindi | Fateh Jang | 1091 |
Toba Tek Singh | Toba Tek Singh | 6306 |
S. No | Location A | Location B |
---|---|---|
1 | Chishtian | Layyah |
2 | Khairpur Tamewali | Ahmadpur Sial |
3 | Ahmadpur Sial | Choa Saidan Shah |
4 | Chishtian | Kallar Sayyedan |
5 | Toba Tek Singh | Khushab |
6 | Toba Tek Singh | Kallar Sayyedan |
7 | Toba Tek Singh | Layyah |
8 | Toba Tek Singh | Kasur |
9 | Kasur | Kallar Sayyedan |
10 | Chishtian | Toba Tek Singh |
11 | Chishtian | Okara |
12 | Layyah | Khushab |
13 | Chishtian | Khushab |
14 | Khushab | Kallar Sayyedan |
15 | Layyah | Kallar Sayyedan |
16 | Pakpattan | Khushab |
17 | Layyah | Kasur |
18 | Ferozewala | Kallar Sayyedan |
19 | Pakpattan | Layyah |
20 | Chishtian | Fateh Jang |
21 | Pakpattan | Toba Tek Singh |
22 | Kallar Sayyedan | Fateh Jang |
23 | Okara | Fateh Jang |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalique, F.; Khan, S.A.; Butt, W.H.; Matloob, I. An Integrated Approach for Spatio-Temporal Cholera Disease Hotspot Relation Mining for Public Health Management in Punjab, Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 3763. https://doi.org/10.3390/ijerph17113763
Khalique F, Khan SA, Butt WH, Matloob I. An Integrated Approach for Spatio-Temporal Cholera Disease Hotspot Relation Mining for Public Health Management in Punjab, Pakistan. International Journal of Environmental Research and Public Health. 2020; 17(11):3763. https://doi.org/10.3390/ijerph17113763
Chicago/Turabian StyleKhalique, Fatima, Shoab Ahmed Khan, Wasi Haider Butt, and Irum Matloob. 2020. "An Integrated Approach for Spatio-Temporal Cholera Disease Hotspot Relation Mining for Public Health Management in Punjab, Pakistan" International Journal of Environmental Research and Public Health 17, no. 11: 3763. https://doi.org/10.3390/ijerph17113763
APA StyleKhalique, F., Khan, S. A., Butt, W. H., & Matloob, I. (2020). An Integrated Approach for Spatio-Temporal Cholera Disease Hotspot Relation Mining for Public Health Management in Punjab, Pakistan. International Journal of Environmental Research and Public Health, 17(11), 3763. https://doi.org/10.3390/ijerph17113763