“Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space
Abstract
:1. Introduction
2. Theory and Hypotheses
2.1. Basic Theory
2.2. Hypotheses Development
3. Materials and Methods
3.1. Sample and Data
3.2. Variable Definitions
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Research Model
4. Results
4.1. Descriptive Statistical Analysis
4.2. Regression Analysis
4.3. Regional Medical Innovation Imbalance
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McDermott, W. Pharmaceuticals: Their role in developing societies. Science 1980, 209, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010, 9, 203–214. [Google Scholar] [PubMed]
- Terry, R.F.; Salm, J.F.; Nannei, C.; Dye, C. Creating a global observatory for health R&D. Science 2014, 345, 1302–1304. [Google Scholar] [PubMed] [Green Version]
- Liang, C.; Gu, D.; Tao, F.; Jain, H.K.; Zhao, Y.; Ding, B. Influence of mechanism of patient-accessible hospital information system implementation on doctor-patient relationships: A service fairness perspective. Inform. Manag. 2017, 54, 57–72. [Google Scholar] [CrossRef]
- Gu, D.; Guo, J.; Liang, C.; Lu, W.; Zhao, S.; Liu, B.; Long, T. Social media-based health management systems and sustained health engagement: TPB perspective. Int. J. Environ. Res. Public Health 2019, 16, 1495. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Liu, W.; Tsai, S.B.; Gu, D.; Bian, F.; Shao, X. Effect of patient participation on nurse and patient outcomes in inpatient healthcare. Int. J. Environ. Res. Public Health 2019, 16, 1344. [Google Scholar] [CrossRef] [Green Version]
- Brooks, H.; Pilgrim, D.; Rogers, A. Innovation in mental health services: What are the key components of success? Implement. Sci. 2011, 6, 120. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, J. The Internet and managed care: A new wave of innovation. Health Aff. 2000, 19, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Liang, C.; Kim, K.S.; Yang, C.; Cheng, W.; Wang, J. Which is more reliable, expert experience or information itself? Weight scheme of complex cases for health management decision making. Int. J. Inform. Technol. Decis. Mak. 2015, 14, 597–620. [Google Scholar] [CrossRef]
- Sotirios, P.; Mark, B.; Loizos, H. A strategic view on smart city technology: The case of IBM smarter cities during a recession. Technol. Forecast. Soc. Chang. 2014, 89, 262–272. [Google Scholar]
- Allemang, D. Sustainability in data and food. Data Intell. 2019, 1, 43–57. [Google Scholar] [CrossRef]
- Descoteaux, D.; Farinelli, C.; Silvae, M.S.; Waard, A. Playing well on the Data FAI Rground: Initiatives and infrastructure in research data management. Data Intell. 2019, 1, 362–379. [Google Scholar] [CrossRef]
- Kim, R.S.; Goossens, N.; Hoshida, Y. Use of big data in drug development for precision medicine. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 245–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Ding, J.; Pan, L.; Cao, D.; Jiang, H.; Ding, X. Artificial intelligence facilitates drug design in the big data era. Chemometr. Intell. Lab. 2019, 194, 103850. [Google Scholar] [CrossRef]
- Beyan, O.; Choudhury, A.; Soest, J.; Kohlbacher, O.; Zimmermann, L.; Stenzhorn, H.; Karim, M.R.; Dumontier, M.; Decker, S.; Bonino, L.O.; et al. Distributed analytics on sensitive medical data: The Personal Health Train. Data Intell. 2020, 2, 96–107. [Google Scholar] [CrossRef]
- Verhoeven, B.H.; Verwijnen, G.M.; Scherpbier, A.T.T.; Vleuten, C.P.M. Growth of medical knowledge. Med. Educ. 2002, 36, 711–717. [Google Scholar] [CrossRef]
- Sheng, M.L.; Chang, S.Y.; Teo, T. Knowledge barriers, knowledge transfer, and innovation competitive advantage in healthcare settings. Manag. Decis. 2013, 51, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Deng, S.; Zheng, Q.; Liang, C.; Wu, J. Impacts of case-based health knowledge system in hospital management: The mediating role of group effectiveness. Inform. Manag. 2019, 56, 103162. [Google Scholar] [CrossRef]
- Tambe, P.; Hitt, L.M. The Productivity of information technology investments: New evidence from IT labor data. Inform. Syst. Res. 2012, 23, 599–617. [Google Scholar] [CrossRef] [Green Version]
- Alavi, M.; Leidner, D.E. Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Q. 2001, 25, 107–136. [Google Scholar] [CrossRef]
- Xue, L.; Ray, G.; Sambamurthy, V. Efficiency or innovation: How do industry environment moderate the effects of firms’IT asset portfolios. MIS Q. 2012, 36, 509–528. [Google Scholar] [CrossRef]
- Boote, J.; Baird, W.; Beecroft, C. Public involvement at the design stage of primary health research: A narrative review of case examples. Health Policy 2010, 95, 10–23. [Google Scholar] [CrossRef]
- Paterson, C. Take small steps to go a long way’consumer involvement in research into complementary and alternative therapies. Complem. Ther. Nurs. Midwifery 2004, 10, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.; Wilde, D.; Hunt, J.; Ahmedzai, S.H. Overcoming the challenges to consumer involvement in cancer research. Health Expect. 2003, 6, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.H.; Kusiak, A. From data to big data in production research: The past and future trends. Int. J. Prod. Res. 2019, 57, 4828–4853. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A decentralized privacy-preserving healthcare blockchain for io T. Sensors 2019, 19, 326. [Google Scholar] [CrossRef] [Green Version]
- Polubriaginof, F.C.G.; Ryan, P.; Salmasian, H.; Shapiro, A.W.; Perotte, A.; Safford, M.M.; Hripcsak, G.; Smith, S.; Tatonetti, N.P.; Vawdrey, D.K. Challenges with quality of race and ethnicity data in observational databases. J. Am. Med. Inform. Assoc. 2019, 26, 730–736. [Google Scholar] [CrossRef]
- Blum, B.S.; Goldfarb, A. Does the internet defy the law of gravity? J. Int. Econ. 2006, 70, 384–405. [Google Scholar] [CrossRef] [Green Version]
- Krugman, P. Increasing returns and economic geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Chen, Z.; Haynes, K.E. Impact of high-speed rail on regional economic disparity in China. J. Transp. Geogr. 2017, 65, 80–91. [Google Scholar] [CrossRef]
- Barzin, S.; D’Costa, S.; Graham, D.J. A pseudo-panel approach to estimating dynamic effects of road infrastructure on firm performance in a developing country context. Reg. Sci. Urban Econ. 2018, 70, 20–34. [Google Scholar] [CrossRef]
- Hall, P. Magic carpets and seamless webs: Opportunities and constraints for high speed trains in Europe. Built Environ. 2009, 35, 59–69. [Google Scholar] [CrossRef]
- Lusch, R.F.; Nambisan, S. Service Innovation: A Service-dominant Logic Perspective. MIS Q. 2015, 39, 155–175. [Google Scholar] [CrossRef] [Green Version]
- Wolfgang, K. Geographic Localization of International Technology Diffusion. Am. Econ. Rev. 2002, 92, 120–142. [Google Scholar]
- Aghion, P.; Bloom, N.; Griffith, R. Competition and Innovation: An Inverted U Relationship. Q. J. Econ. 2005, 120, 702–718. [Google Scholar]
- Hellmanzik, C.; Schmitz, M. Gravity and International Services Trade: The Impact of Virtual Proximity. Eur. Econ. Rev. 2016, 77, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Aghion, P.; Zilibotti, F. Distance to Frontier, Selection, and Economic Growth. J. Eur. Econ. Assoc. 2006, 4, 37–74. [Google Scholar] [CrossRef]
- Ju, J.; Lin, Y.J.; Wang, Y. Endowment Structures, Industrial Dynamics, and Economic Growth. J. Monet. Econ. 2015, 76, 244–263. [Google Scholar] [CrossRef] [Green Version]
- Bennett, N.L.; Casebeer, L.L.; Kristofco, R.E. Physicians’ Internet information-seeking behaviors. J. Contin. Educ. Health Prof. 2004, 24, 31–38. [Google Scholar] [CrossRef]
- Nevo, S.; Wade, M.R. The Formation and value of IT enabled resources: Antecedents and consequences. MIS Q. 2010, 34, 163–183. [Google Scholar] [CrossRef] [Green Version]
- Penrose, E.T. The Theory of the Growth of the Firm. Long Range Plan. 1996, 29, 596. [Google Scholar] [CrossRef]
- Frishammar, J.; Ake Horte, S. Managing external Information in Manufacturing Firms: The Impact on Innovation Performance. J. Prod. Innov. Manag. 2005, 22, 251–266. [Google Scholar] [CrossRef]
- Nambisan, S. Information Systems As A Reference Discipline For New Product Development. MIS Q. 2003, 27, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dawes, S.S. Interagency Information Sharing: Expected Benefits, Manageable Risks. J. Policy Anal. Manag. 1996, 15, 377–394. [Google Scholar] [CrossRef]
- Landsbergen, D.; Wolken, A.G., Jr. Realizing the Promise: Government Information Systems and the Fourth Generation of Information Technology. Public Admin. Rev. 2001, 61, 206–220. [Google Scholar] [CrossRef]
- Solo, C.S. Innovation in the Capitalist Process: A Critique of the Schumpeterian Theory. Q. J. Econ. 1951, 65, 417–428. [Google Scholar] [CrossRef]
- Klobas, J.E.; Clyde, L.A. Adults learning to use the Internet: A longitudinal study of attitudes and other factors associated with intended Internet use. Libr. Inform. Sci. Res. 2000, 22, 5–34. [Google Scholar] [CrossRef]
- Pluye, P.; Grad, R.; Repchinsky, C. Four levels of outcomes of information-seeking: A mixed methods study in primary health care. J. Am. Soc. Inform. Sci. Technol. 2013, 64, 108–125. [Google Scholar] [CrossRef]
- Kim, S.M.; Oh, J.Y. Health information acquisition online and its influence on intention to visit a medical institution offline. Inform. Res. 2011, 16, 165–175. [Google Scholar]
- Henkel, J. Selective Revealing in Open Innovation Processes: The Case of Embedded Linux. Res. Policy 2006, 35, 953–969. [Google Scholar] [CrossRef]
- Dana, J.D., Jr.; Orlov, E. Internet penetration and capacity utilization in the US airline industry. Am. Econ. J. Microecon. 2014, 6, 106–137. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Liang, C.; Zhao, H. A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis. Artif. Intell. Med. 2017, 77, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Lerner, J.; Pathak, P.A.; Tirole, J. The Dynamics of open-source contributors. Am. Econ. Rev. 2006, 96, 114–118. [Google Scholar] [CrossRef]
- Abouzeedan, A.; Busler, M. Internetization management: The way to run the strategic alliances in the e-globalization age. Glob. Bus. Rev. 2007, 8, 303–321. [Google Scholar] [CrossRef]
- Agrawal, A.; Goldfarb, A. Restructuring research: Communication costs and the democratization of university innovation. Am. Econ. Rev. 2008, 98, 1578–1590. [Google Scholar] [CrossRef] [Green Version]
- Brynjolfsson, E.; Hitt, L.M. Beyond computation: Information technology, organizational transformation and business performance. J. Econ. Perspect. 2000, 14, 23–48. [Google Scholar] [CrossRef] [Green Version]
- Clarke, G.R. Has the Internet increased exports for firms from low and middle-income countries? Inform. Econ. Policy 2008, 20, 16–37. [Google Scholar] [CrossRef]
- Forman, C.; Zeebroeck, N.V. From wires to partners: How the internet has fostered R&D collaborations within firms. Manag. Sci. 2012, 58, 1549–1568. [Google Scholar]
- Koellinger, P. The Relationship between technology, innovation, and firm performance empirical evidence from e-business in Europe. Res. Policy 2008, 37, 1317–1328. [Google Scholar] [CrossRef] [Green Version]
- Duranton, G.; Puga, D. Nursery Cities: Urban Diversity, Process Innovation, and the Life Cycle of Products. Am. Econ. Rev. 2001, 91, 1454–1477. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.L.; Hall, P. The impacts of high-speed trains on British economic geography: A study of the UK’s InterCity 125/225 and its effects. J. Transp. Geogr. 2011, 19, 689–704. [Google Scholar] [CrossRef]
- Willigers, J.; Wee, B.V. High-speed rail and office location choices. A stated choice experiment for the Netherlands. J. Transp. Geogr. 2011, 19, 745–754. [Google Scholar] [CrossRef]
- Albalate, D.; Tomer, A. High speed rail: Lessons for policy makers from experiences abroad. Public Admin. Rev. 2012, 72, 336–349. [Google Scholar] [CrossRef]
- Liu, Z. Foreign direct investment and technology spillovers: Theory and evidence. J. Dev. Econ. 2008, 85, 176–193. [Google Scholar] [CrossRef]
- Donaldson, D.; Hornbeck, R. Railroads and American economic growth: A market access’ approach. Q. J. Econ. 2016, 131, 799–858. [Google Scholar] [CrossRef] [Green Version]
- Haken, H. Synergetics An Introduction, 3rd ed.; Springer: Heidelberg/Berlin, Germany, 1983; pp. 41–67. [Google Scholar]
- Aral, S.; Weill, P. IT assets, organizational capabilities and firm performance: How resource allocations and organizational differences explain performance variation. Organ. Sci. 2007, 18, 763–780. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Feldman, M.P. R&D Spillovers and the Geography of Innovation and Production. Am. Econ. Rev. 1996, 86, 630–640. [Google Scholar]
- Hashmi, R.A. Competition and Innovation: The Inverted-U Relationship Revisited. Rev. Econ. Stat. 2013, 95, 1653–1668. [Google Scholar] [CrossRef]
- Narin, F.; Noma, E.; Perry, R. Patents as indicators of corporate technological strength. Res. Policy 1987, 16, 143–155. [Google Scholar] [CrossRef]
- Lerner, J.; Wulf, J. Innovation and incentives: Evidence from corporate R&D. Rev. Econ. Stat. 2007, 89, 634–644. [Google Scholar]
- Bena, J.; Li, K. Corporate innovations and mergers and acquisitions. J. Financ. 2014, 69, 1932–1960. [Google Scholar] [CrossRef]
- Bertschek, I.; Cerquera, D.; Klein, G.J. More bits-more bucks? Measuring the impact of broadband Internet on firm performance. Inform. Econ. Policy 2013, 25, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Fröidh, O. Perspectives for a future high-speed train in the Swedish domestic travel market. J. Transp. Geogr. 2008, 16, 268–277. [Google Scholar] [CrossRef]
Variable | Variable Definition |
---|---|
Dependent Variable | |
Innovation | This variable represents the innovative actions of the enterprise. It is the R&D (research and development) expenditures/sales revenue. |
Independent Variables | |
Informatization | This variable is measured by informatization development index (IDI). |
HSR | High-speed rail is a dummy variable. The year before the opening of HSR in each province is 0, and the year after the opening of high-speed rail in each province is 1. |
Control Variables | |
Size | This variable is used to measure the size of a company. It is calculated by the natural log of the firm’s total assets. |
Lev | Lev (leverage) is used to measure a company’s debt level. It is calculated by the ratio of total liabilities to total assets. |
IAR | IAR (intangible assets ratio) measures the proportion of intangible assets of a company. It is the intangible assets of the current year/ total assets. |
Tobin’s Q | Tobin’s Q measures enterprise value, which is market price/ replacement cost. |
Growth | This variable measures the growth status of the company. Growth = (this year’s sales revenue minus last year’s sales revenue) × 100%/ last year’s sales revenue. |
ROA | ROA (return on assets) mainly measures the profitability of the company. It is the net profit of the current year/total assets at the end of the year. |
SOE | SOE (state-owned enterprise) is a dummy variable that distinguishes property rights. It equals one if the firm is state owned, and zero otherwise. |
Year-fixed effect | Year dummy variable, controlling the interference factors in time series. |
Province-fixed effect | Province dummy variable, controlling the interference factors in cross section. |
Variable | Obs. | Mean | Max | Min | Median | Std. Dev. |
---|---|---|---|---|---|---|
Innovation | 883 | 0.042 | 0.283 | 0.000 | 0.037 | 0.030 |
Informatization | 883 | 1.530 | 1.998 | 0.508 | 1.831 | 0.517 |
HSR | 883 | 0.904 | 1.000 | 0.000 | 1.000 | 0.295 |
Size | 883 | 9.467 | 10.849 | 8.400 | 9.456 | 0.426 |
Lev | 883 | 0.321 | 1.163 | 0.008 | 0.301 | 0.192 |
IAR | 883 | 0.051 | 0.326 | 0.000 | 0.042 | 0.038 |
Tobin’s Q | 883 | 3.495 | 15.065 | 0.801 | 2.766 | 2.318 |
ROA | 883 | 0.071 | 0.494 | −0.367 | 0.063 | 0.068 |
Growth | 883 | 0.131 | 0.935 | −1.393 | 0.143 | 0.215 |
SOE | 883 | 0.285 | 1.000 | 0.000 | 0.000 | 0.452 |
Variable | Innovation | ||
---|---|---|---|
(1) | (2) | (3) | |
Informatization | 0.042 *** (3.849) | 0.022 (1.611) | |
HSR | 0.014 *** (3.079) | −0.005 (−0.483) | |
Informatization × HSR | 0.015 * (1.650) | ||
Size | 0.001 (0.400) | 0.002 (0.792) | 0.002 (0.536) |
Lev | −0.024 *** (−4.142) | −0.026 *** (−4.422) | −0.025 *** (−4.169) |
IAR | 0.082 *** (3.195) | 0.066 *** (2.600) | 0.077 *** (3.036) |
Tobin’s Q | 0.003 *** (4.855) | 0.003 *** (5.069) | 0.003 *** (5.014) |
ROA | −0.025 (−1.390) | −0.019 (−1.049) | −0.023 (−1.297) |
Growth | −0.010 ** (−2.226) | −0.010 ** (−2.139) | −0.010 ** (−2.320) |
SOE | −0.010 *** (−4.500) | −0.010 *** (−4.371) | −0.010 *** (−4.473) |
Constant | −0.032 (−1.041) | 0.009 (0.345) | −0.023 (−0.750) |
Year | yes | yes | yes |
Province | yes | yes | yes |
Observations | 883 | 883 | 883 |
R2 | 0.127 | 0.121 | 0.134 |
Variable | Innovation | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | ||||
High | Low | High | Low | High | Low | |
Informatization | 0.044 ** (2.352) | 0.009 * (1.718) | 0.018 (0.583) | −0.001 (−0.059) | ||
HSR | 0.023 ** (2.362) | 0.005 ** (2.438) | 0.002 (0.072) | −0.004 (−0.784) | ||
Informatization × HSR | 0.020 (0.788) | 0.008 * (1.918) | ||||
Size | 0.003 (0.586) | −0.006 *** (−3.977) | 0.004 (0.839) | −0.006 *** (−3.801) | 0.002 (0.522) | −0.006 *** (−3.758) |
Lev | −0.001 (−0.010) | 0.011 *** (−3.679) | 0.002 (0.226) | −0.012 *** (−3.963) | 0.002 (0.201) | −0.011 *** (−3.830) |
IAR | 0.119 ** (2.482) | 0.012 (0.940) | 0.107 *** (2.256) | 0.007 (0.590) | 0.117 ** (2.436) | 0.009 (0.750) |
ROA | −0.004 (−0.136) | 0.028 *** (2.909) | 0.005 (0.172) | 0.029 *** (3.037) | −0.002 (−0.081) | 0.029 *** (3.010) |
Growth | −0.014 * (−1.677) | −0.001 (−0.133) | −0.014 * (−1.712) | −0.001 (−0.148) | −0.015 * (−1.839) | −0.001 (−0.204) |
Tobin’s Q | 0.004 *** (5.213) | −0.001 *** (−3.497) | 0.004 *** (5.328) | −0.001 *** (−3.272) | 0.004 *** (5.334) | −0.001 *** (−3.325) |
SOE | 0.002 (0.506) | −0.003 ** (−2.309) | 0.002 (0.362) | −0.002 ** (−2.323) | 0.001 (0.280) | −0.003 ** (−2.290) |
Constant | −0.049 (−1.044) | 0.074 *** (4.514) | −0.010 (−0.239) | 0.081 *** (5.455) | −0.037 (−0.743) | 0.078 *** (4.706) |
Year | yes | yes | yes | yes | yes | yes |
Province | yes | yes | yes | yes | yes | yes |
Observations | 373 | 510 | 373 | 510 | 373 | 510 |
R2 | 0.125 | 0.136 | 0.125 | 0.141 | 0.135 | 0.150 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Pan, M. “Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space. Int. J. Environ. Res. Public Health 2020, 17, 3798. https://doi.org/10.3390/ijerph17113798
Zhang A, Pan M. “Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space. International Journal of Environmental Research and Public Health. 2020; 17(11):3798. https://doi.org/10.3390/ijerph17113798
Chicago/Turabian StyleZhang, Ailian, and Mengmeng Pan. 2020. "“Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space" International Journal of Environmental Research and Public Health 17, no. 11: 3798. https://doi.org/10.3390/ijerph17113798
APA StyleZhang, A., & Pan, M. (2020). “Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space. International Journal of Environmental Research and Public Health, 17(11), 3798. https://doi.org/10.3390/ijerph17113798