Confirmatory Factor Analysis of the Malay Version of the Smartphone Addiction Scale among Medical Students in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Participants
2.2. Instruments
2.2.1. The Malay Version of the Smartphone Addiction Scale (SAS-M)
2.2.2. The Malay Version of the Internet Addiction Test (MVIAT)
2.3. Statistical Analysis
2.4. Ethical Consideration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rashvand, H.F.; Hsiao, K.F. Smartphone intelligent applications: A brief review. Multimed. Syst. 2015, 21, 103–119. [Google Scholar] [CrossRef]
- “Smartphone”, Oxford Advanced Learner’s Dictionary. Available online: https://www.oxfordlearnersdictionaries.com (accessed on 28 February 2020).
- Wikipedia Contributors. “Smartphone”, Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/w/index.php?title=Smartphone (accessed on 28 February 2020).
- Duke, E.; Montag, C. Smartphone addiction, daily interruptions and self-reported productivity. Addict. Behav. Rep. 2017, 6, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Sussman, S. Does Smartphone Addiction Fall on a Continuum of Addictive Behaviors? Int. J. Environ. Res. Public Health 2020, 17, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Statistics Malaysia. Press Release: ICT Use and Access by Individuals and Households Survey Report, Malaysia, 2018; Department of Statistics Malaysia: Putrajaya, Malaysia, 2019.
- Malaysian Communications and Multimedia Commission. Internet Users Survey 2018; Malaysian Communications and Multimedia Commission: Cyberjaya, Selangor, Malaysia, 2018.
- Malaysian Communications and Multimedia Commission. Hand Phone Users Survey 2017; Malaysian Communications and Multimedia Commission: Cyberjaya, Selangor, Malaysia, 2017.
- De-Sola Gutiérrez, J.; Rodríguez de Fonseca, F.; Rubio, G. Cell-phone addiction: A review. Front. Psychiatry 2016, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Gu, X.; Choi, J.H.; Kim, D.J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef]
- Singh, M.K.K.; Samah, N.A. Impact of Smartphone: A Review on Positive and Negative Effects on Students. Asian Soc. Sci. 2018, 14, 83–89. [Google Scholar] [CrossRef]
- Rozgonjuk, D.; Saal, K.; Täht, K. Problematic smartphone use, deep and surface approaches to learning, and social media use in lectures. Int. J. Environ. Res. Public Health 2018, 15, 92. [Google Scholar] [CrossRef] [Green Version]
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Froese, A.D.; Carpenter, C.N.; Inman, D.A.; Schooley, J.R.; Barnes, R.B.; Brecht, P.W.; Chacon, J.D. Effects of classroom cell phone use on expected and actual learning. Coll. Stud. J. 2012, 46, 323–332. [Google Scholar]
- Hwang, K.H.; Yoo, Y.S.; Cho, O.H. Smartphone overuse and upper extremity pain, anxiety, depression, and interpersonal relationships among college students. J. Korea Contents Assoc. 2012, 12, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Chang, C.T.; Lin, Y.; Cheng, Z.H. The dark side of smartphone usage: Psychological traits, compulsive behavior and technostress. Comput. Human Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
- Misra, S.; Cheng, L.; Genevie, J.; Yuan, M. The iPhone effect: The quality of in-person social interactions in the presence of mobile devices. Environ. Behav. 2014, 48, 275–298. [Google Scholar] [CrossRef]
- Przybylski, A.K.; Weinstein, N. Can you connect with me now? How the presence of mobile communication technology influences face-to-face conversation quality. J. Soc. Pers. Relatsh. 2013, 30, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction—A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, X.; Chamarro, A.; Oberst, U.; Rodrigo, B.; Prades, M. Problematic use of the internet and smartphones in university students: 2006–2017. Int. J. Environ. Res. Public Health 2018, 15, 475. [Google Scholar] [CrossRef] [Green Version]
- Ithnain, N.; Ghazali, S.E.; Jaafar, N. Relationship between smartphone addiction with anxiety and depression among undergraduate students in Malaysia. Int. J. Health Sci. Res. 2018, 8, 163–171. [Google Scholar]
- Hadi, A.A.; Nawawi, H.M.M.; Shamsuri, N.; Rahim, N.N.; Pasi, H. Smartphone Addiction and Its Relationship with Psychological Health among Clinical Years Medical Students of International Islamic University Malaysia (IIUM), Kuantan. IIUM Med. J. Malays. 2019, 18, 10. [Google Scholar]
- Nasser, N.S.; Loh, J.L.; Rashid, A.A.; Sharifat, H.; Ahmad, U.; Ibrahim, B.; Mustafa, S.; Hoo, F.K.; Ching, S.M.; Suppiah, S. A Cross-Sectional Survey on Smartphone Usage Pattern, the Level of Mobile Phone Dependence and Psychosocial Effects among Undergraduate Students in a Malaysian University; MedRxiv Preprint; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Ng, S.F.; Hassan, N.S.I.C.; Nor, N.H.M.; Malek, N.A.A. The Relationship between Smartphone Use and Academic Performance: A Case of Students in a Malaysian Tertiary Institution. Malays. Online J. Educ. Technol. 2017, 5, 58–70. [Google Scholar]
- Kwon, M.; Kim, D.J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [Green Version]
- Sfendla, A.; Laita, M.; Nejjar, B.; Souirti, Z.; Touhami, A.A.O.; Senhaji, M. Reliability of the Arabic smartphone addiction scale and smartphone addiction scale-short version in two different moroccan samples. CyberPsychol. Behav. Soc. Netw. 2018, 21, 325–332. [Google Scholar] [CrossRef]
- Luk, T.T.; Wang, M.P.; Shen, C.; Wan, A.; Chau, P.H.; Oliffe, J.; Viswanath, K.; Chan, S.S.C.; Lam, T.H. Short version of the Smartphone Addiction Scale in Chinese adults: Psychometric properties, sociodemographic, and health behavioral correlates. J. Behav. Addict. 2018, 7, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fernandez, O. Short version of the Smartphone Addiction Scale adapted to Spanish and French: Towards a cross-cultural research in problematic mobile phone use. Addict. Behav. 2017, 64, 275–280. [Google Scholar] [CrossRef]
- De Pasquale, C.; Sciacca, F.; Hichy, Z. Italian validation of smartphone addiction scale short version for adolescents and young adults (SAS-SV). Psychology 2017, 8, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Andrade, A.L.M.; Kim, D.J.; Caricati, V.V.; Martins, G.D.G.; Kirihara, I.K.; Barbugli, B.C.; Enumo, S.R.F.; De Micheli, D. Validity and reliability of the Brazilian version of the Smartphone Addiction Scale-Short Version for university students and adult population. Estudos de Psicologia (Campinas) 2020, 37, e190117. [Google Scholar] [CrossRef] [Green Version]
- Akın, A.; Altundağ, Y.; Turan, M.E.; Akın, U. The validity and reliability of the turkish version of the smart phone addiction scale-short form for adolescent. Procedia Soc. Behav. Sci. 2014, 152, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, O.; Healy, S. Japanese Validation of the Smartphone Addiction Scale. AI Mach. Learn. Lang. Education 2019, 2019, 75–88. [Google Scholar]
- Vintilă, M.; Tudorel, O.I.; Goian, C.; Bărbat, C. Determining the structure of Smartphone Addiction Scale: A bifactor model analysis. Curr. Psychol. 2018, 1–8. [Google Scholar] [CrossRef]
- Areeudomwong, P.; Ruanjai, T.; Srimalee, P. Reliability of a Thai Version of Smartphone Addiction Scale in Thai Adolescents. J. Med Technol. Phys. Ther. 2019, 31, 391–400. [Google Scholar]
- Ching, S.M.; Yee, A.; Ramachandran, V.; Lim, S.M.S.; Sulaiman, W.A.W.; Foo, Y.L.; Kee Hoo, F. Validation of a Malay version of the smartphone addiction scale among medical students in Malaysia. PLoS ONE 2015, 10, e0139337. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Chong Guan, N.; Isa, S.M.; Hashim, A.H.; Pillai, S.K.; Harbajan Singh, M.K. Validity of the Malay version of the Internet Addiction Test: A study on a group of medical students in Malaysia. Asia Pac. J. Public Health 2015, 27, NP2210–NP2219. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling, R Package Version 0.5-1; 2018. Available online: https://CRAN.R-project.org/package=semTools (accessed on 5 September 2019).
- Raykov, T. Estimation of congeneric scale reliability using covariance structure analysis with nonlinear constraints. Br. J. Math. Stat. Psychol. 2001, 54, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Colton, T. Statistics in Medicine, 1st ed.; Little, Brown, and Company: Boston, MA, USA, 1974. [Google Scholar]
Variable | N (%) | |
---|---|---|
Age (Mean [SD]) | 21.39 (1.71) | |
Year of Study | Year 1 Year 2 Year 3 Year 4 Year 5 | 62 (19.2) 59 (18.3) 63 (19.5) 61 (18.9) 78 (24.1) |
Gender | Male Female | 115 (35.6) 208 (64.4) |
Race | Malay Chinese India Others | 173 (53.6) 77 (23.8) 64 (19.8) 9 (2.8) |
Monthly family income (Ringgit Malaysia; RM) | <RM1000 RM1000–1999 RM2000–2999 RM3000–3999 RM4000–4999 >RM5000 | 33 (10.2) 49 (15.2) 39 (12.1) 48 (14.9) 28 (8.7) 125 (38.7) |
Models | χ² (df), p | SRMR | RMSEA (90% CI) | CFI | TLI | AIC | BIC |
---|---|---|---|---|---|---|---|
Model 1 | 1213.1 (480), < 0.001 | 0.075 | 0.074 (0.069, 0.079) | 0.834 | 0.817 | 31,194.3 | 31,623.5 |
Model 2 * | 931.3 (468), < 0.001 | 0.067 | 0.059 (0.054, 0.065) | 0.895 | 0.882 | 30,895.2 | 31,369.7 |
Factor | Question No. | Factor Loading | Raykov’s Rho |
---|---|---|---|
F1. Cyberspace oriented relationship | S19 S20 S21 S22 S23 S24 S26 | 0.592 0.621 0.546 0.791 0.651 0.531 0.562 | 0.756 |
F2. Daily life disturbance | S1 S2 S3 S4 S5 S33 | 0.592 0.637 0.543 0.485 0.654 0.582 | 0.713 |
F3. Primacy | S10 S11 S12 S13 S14 | 0.667 0.783 0.792 0.809 0.735 | 0.858 |
F4. Overuse | S25 S27 S28 S29 S30 S31 S32 | 0.483 0.320 0.585 0.699 0.836 0.786 0.586 | 0.798 |
F5. Positive anticipation | S6 S7 S8 S9 | 0.752 0.875 0.677 0.668 | 0.831 |
F6. Withdrawal | S15 S16 S17 S18 | 0.767 0.743 0.699 0.604 | 0.800 |
SAS-M | ||||||
---|---|---|---|---|---|---|
MVIAT | Cyberspace oriented Relationship | Daily Life Disturbance | Primacy | Overuse | Positive Anticipation | Withdrawal |
Lack Of control | 0.331 (<0.001) | 0.437 (<0.001) | 0.338 (<0.001) | 0.511 (<0.001) | 0.211 (<0.001) | 0.466 (<0.001) |
Neglect of duty | 0.455 (<0.001) | 0.454 (<0.001) | 0.320 (<0.001) | 0.422 (<0.001) | 0.116 (0.220) | 0.463 (<0.001) |
Problematic use | 0.400 (<0.001) | 0.367 (<0.001) | 0.291 (<0.001) | 0.310 (<0.001) | 0.101 (0.270) | 0.393 (<0.001) |
Socialrelationship | 0.402 (<0.001) | 0.383 (<0.001) | 0.258 (<0.001) | 0.214 (<0.001) | 0.051 (0.360) | 0.426 (<0.001) |
Email primacy | 0.243 (<0.001) | 0.130 (0.130) | 0.097 (0.270) | 0.107 (0.270) | 0.099 (0.270) | 0.158 (0.030) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassim, S.R.; Arifin, W.N.; Kueh, Y.C.; Yaacob, N.A. Confirmatory Factor Analysis of the Malay Version of the Smartphone Addiction Scale among Medical Students in Malaysia. Int. J. Environ. Res. Public Health 2020, 17, 3820. https://doi.org/10.3390/ijerph17113820
Hassim SR, Arifin WN, Kueh YC, Yaacob NA. Confirmatory Factor Analysis of the Malay Version of the Smartphone Addiction Scale among Medical Students in Malaysia. International Journal of Environmental Research and Public Health. 2020; 17(11):3820. https://doi.org/10.3390/ijerph17113820
Chicago/Turabian StyleHassim, Siti Rubiaehtul, Wan Nor Arifin, Yee Cheng Kueh, and Nor Azwany Yaacob. 2020. "Confirmatory Factor Analysis of the Malay Version of the Smartphone Addiction Scale among Medical Students in Malaysia" International Journal of Environmental Research and Public Health 17, no. 11: 3820. https://doi.org/10.3390/ijerph17113820
APA StyleHassim, S. R., Arifin, W. N., Kueh, Y. C., & Yaacob, N. A. (2020). Confirmatory Factor Analysis of the Malay Version of the Smartphone Addiction Scale among Medical Students in Malaysia. International Journal of Environmental Research and Public Health, 17(11), 3820. https://doi.org/10.3390/ijerph17113820