Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microarray Datasets Gene Set Definition and Data Processing
2.2. Detection of Differentially Expressed Genes in OCCC
2.3. Statistical Analysis
3. Results
3.1. Transcriptome Datasets and Gene Sets
3.2. Workflow
3.3. The Most Significant DEGs
3.4. Summarizing the Genes Involved in OCCC Pathogenesis
4. Discussion
4.1. Ribosomal Proteins Related Genes
4.2. Eukaryotic Translation Initiation Factors (eIFs) Related Genes
4.3. Lactate Related Genes
4.4. Prostaglandin Related Genes
4.5. Proteasome Related Genes
4.6. Insulin-Like Growth Factor Related Genes
4.7. Summarizing the Six Functional Gene Clusters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lee, W.L.; Wang, P.H. Aberrant sialylation in ovarian cancers. J. Chin. Med. Assoc. 2020, 83, 337–344. [Google Scholar] [CrossRef]
- Huang, C.Y.; Cheng, M.; Lee, N.R.; Huang, H.Y.; Lee, W.L.; Chang, W.H.; Wang, P.H. Comparing paclitaxel-carboplatin with paclitaxel-cisplatin as the front-line chemotherapy for patients with FIGO IIIC serous-type tubo-ovarian cancer. Int. J. Environ. Res. Public Health 2020, 17, 2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Lee, H.H.; Chang, W.H.; Leem, N.R.; Huang, H.Y.; Chen, Y.J.; Horng, H.C.; Lee, W.L.; Wang, P.H. Weekly dose-dense paclitaxel and twiweekly low-dose cisplatin: A well-tolerated and effective chemotherapeutic regimen for first-line treatment of advanced ovarian, fallopian tube, and primary peritoneal cancer. Int. J. Environ. Res. Public Health 2019, 16, 4794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, A.; Xu, J.; Aysola, K.; Qin, Y.; Okoli, C.; Hariprasad, R.; Chinemerem, U.; Gates, C.; Reddy, A.; Danner, O.; et al. Epithelial ovarian cancer: An overview. World J. Transl. Med. 2014, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.T.; Chiu, M.L.; Wang, T.Y.; Chen, T.C.; Chang, C.L.; Su, T.H.; Wang, K.G.; Wang, K.L.; Yang, Y.C.; Chen, J.R. Effect of chemotherapy, laparoscopy, and cytology on stage IC ovarian clear cell carcinoma: A long-term, single-center study. Int. J. Environ. Res. Public Health 2020, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Pectasides, D.; Pectasides, E.; Psyrri, A.; Economopoulos, T. Treatment issues in clear cell carcinoma of the ovary: A different entity? Oncologist 2006, 11, 1089–1094. [Google Scholar] [CrossRef] [Green Version]
- Sung, P.L.; Wen, K.C.; Horng, H.C.; Chang, C.M.; Chen, Y.J.; Lee, W.L.; Wang, P.H. The role ofα2,3-linked sialylation on clear cell type epithelial ovarian cancer. Taiwan. J. Obstet. Gynecol. 2018, 57, 255–263. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Wang, X.; Guan, L.; Chen, W.; Jiang, H.; Lu, Y. Clear cell carcinoma of the ovary: Clinicopathologic features and outcomes in a Chinese cohort. Medicine 2018, 97, e10881. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Q.; Shi, X.; Liu, Y.; Cao, D.; Yang, J. Distinct gene expression profiles associated with clinical outcomes in patients with ovarian clear cell carcinoma and high-grade serous ovarian carcinoma. J. Ovarian Res. 2020, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Sao, C.H.; Lai, W.A.; Lin, S.C.; Chang, C.M.; Chen, Y.J.; Wang, P.H. Endometriosis-associated epithelial ovarian cancer: Primary synchronous different cellular type on each ovary. Taiwan. J. Obstet. Gynecol. 2020, 59, 460–463. [Google Scholar] [CrossRef]
- Tan, T.Z.; Ye, J.; Yee, C.V.; Lim, D.; Ngoi, N.Y.L.; Tan, D.S.P.; Huang, R.Y. Analysis of gene expression signatures identifies prognostic and functionally distinct ovarian clear cell carcinoma subtypes. EBioMedicine 2019, 50, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Berns, K.; Caumanns, J.J.; Hijmans, E.M.; Gennissen, A.M.C.; Severson, T.M.; Evers, B.; Wisman, G.B.A.; Jan Meersma, G.; Lieftink, C.; Beijersbergen, R.L.; et al. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 2018, 37, 4611–4625. [Google Scholar] [CrossRef] [PubMed]
- Caumanns, J.J.; Wisman, G.B.A.; Berns, K.; van der Zee, A.G.J.; de Jong, S. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 176–184. [Google Scholar] [PubMed]
- Wiegand, K.C.; Shah, S.P.; Al-Agha, O.M.; Zhao, Y.; Tse, K.; Zeng, T.; Senz, J.; McConechy, M.K.; Anglesio, M.S.; Kalloger, S.E.; et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 2010, 363, 1532–1543. [Google Scholar] [PubMed] [Green Version]
- Oishi, T.; Itamochi, H.; Kudoh, A.; Nonaka, M.; Kato, M.; Nishimura, M.; Oumi, N.; Sato, S.; Naniwa, J.; Sato, S.; et al. The PI3K/mTOR dual inhibitor NVP-BEZ235 reduces the growth of ovarian clear cell carcinoma. Oncol. Rep. 2014, 32, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Yamazaki, M.; Takahashi, H.; Kajita, S.; Suzuki, E.; Tsuruta, T.; Saegusa, M. Distinct beta-catenin and PIK3CA mutation profiles in endometriosis-associated ovarian endometrioid and clear cell carcinomas. Am. J. Clin. Pathol. 2015, 144, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Su, K.M.; Lin, T.W.; Liu, L.C.; Yang, Y.P.; Wang, M.L.; Tsai, P.H.; Wang, P.H.; Yu, M.H.; Chang, C.M.; Chang, C.C. The potential role of complement system in the progression of ovarian clear cell carcinoma inferred from the gene ontology-based immunofunctionome analysis. Int. J. Mol. Sci. 2020, 21, 2824. [Google Scholar]
- Chang, C.C.; Su, K.M.; Lu, K.H.; Lin, C.K.; Wang, P.H.; Li, H.Y.; Wang, M.L.; Lin, C.K.; Yu, M.H.; Chang, C.M. Key immunological functions involved in the progression of epithelial ovarian serous carcinoma discovered by the gene ontology-based immunofunctionome analysis. Int. J. Mol. Sci. 2018, 19, 3311. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.M.; Yang, Y.P.; Chuang, J.H.; Chuang, C.M.; Lin, T.W.; Wang, P.H.; Yu, M.H.; Chang, C.C. Discovering the deregulated molecular functions involved in malignant transformation of endometriosis to endometriosis-associated ovarian carcinoma using a data-driven, function-based analysis. Int. J. Mol. Sci. 2017, 18, 2345. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.M.; Wang, P.H.; Horng, H.C. Gene set-based analysis of mucinous ovarian carcinoma. Taiwan. J. Obstet. Gynecol. 2017, 56, 210–216. [Google Scholar] [CrossRef]
- Chang, C.M.; Chiou, S.H.; Yang, M.J.; Yen, M.S.; Wang, P.H. Gene set-based integrative analysis of ovarian clear cell carcinoma. Taiwan. J. Obstet. Gynecol. 2016, 55, 552–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lê Cao, K.A.; Rohart, F.; McHugh, L.; Korn, O.; Wells, C.A. YuGene: A simple approach to scale gene expression data derived from different platforms for integrated analyses. Genomics 2014, 103, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Edell, K.A.; Kehasse, A.; Scott, G.K.; Yau, C.; Rothschild, D.E.; Schilling, B.; Gabriel, B.S.; Yevtushenko, M.A.; Hanson, I.M.; Held, J.M.; et al. RPL24: A potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cancer cell growth. Oncotarget 2014, 5, 5165–5176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Liao, W.J.; Liao, J.M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spilka, R.; Ernst, C.; Meht, A.K.; Haybaeck, J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. 2013, 340, 9–21. [Google Scholar] [CrossRef]
- Berkel, H.J.; Turbat-Herrera, E.A.; Shi, R.; de Benedetti, A. Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol. Biomark. Prev. 2001, 10, 663–666. [Google Scholar]
- Hsieh, A.C.; Ruggero, D. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin. Cancer Res. 2010, 16, 4914–4920. [Google Scholar] [CrossRef] [Green Version]
- Hirschhaeuser, F.; Sattler, U.G.; Mueller-Klieser, W. Lactate: A metabolic key player in cancer. Cancer Res. 2011, 71, 6921–6925. [Google Scholar] [CrossRef] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg effect: How does it benefit cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Mandai, M.; Matsumura, N.; Yamaguchi, K.; Kondoh, H.; Amano, Y.; Baba, T.; Hamanishi, J.; Abiko, K.; Kosaka, K.; et al. Hepatocyte nuclear factor-1β (HNF-1β) promotes glucose uptake and glycolytic activity in ovarian clear cell carcinoma. Mol. Carcinog. 2015, 54, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Amano, Y.; Mandai, M.; Yamaguchi, K.; Matsumura, N.; Kharma, B.; Baba, T.; Abiko, K.; Hamanishi, J.; Yoshioka, Y.; Konishi, I. Metabolic alterations caused by HNF1β expression in ovarian clear cell carcinoma contribute to cell survival. Oncotarget 2015, 6, 26002–26017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, G.S.; Torcun, C.C.; Grune, T.; Ozer, N.K.; Karademir, B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic. Biol. Med. 2017, 103, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut 2006, 55, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef]
- Wen, K.C.; Sung, P.L.; Hsieh, S.L.; Chou, Y.T.; Lee, O.K.; Wu, C.W.; Wang, P.H. α2,3-sialyltransferase type I regulates migration and peritoneal dissemination of ovarian cancer cells. Oncotarget 2017, 8, 29013–29027. [Google Scholar] [CrossRef]
- Lee, C.J.; Sung, P.L.; Kuo, M.H.; Tsai, M.H.; Wang, C.K.; Pan, S.T.; Chen, Y.J.; Wang, P.H.; Wen, K.C.; Chou, Y.T. Crosstalk between SOX2 and cytokine signaling in endometrial carcinoma. Sci. Rep. 2018, 8, 17550. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Qu, L.; Yang, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell. Int. 2015, 15, 106. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.H.; Horng, H.C.; Chen, Y.J.; Hsieh, S.L.; Chao, H.T.; Yuan, C.C. Effect of a selective nonsteroidal anti-inflammatory drug, celecoxib, on the reproductive function of female mice. J. Chin. Med. Assoc. 2007, 70, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.C.; Chen, Y.J.; Lai, C.R.; Wang, P.H.; Hsin-Chan; Yuan, C.C. Cyclooxygenase-2 expression is higher in ovarian cancer tissue adjacent to endometriosis than in ovarian cancer without comorbid endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 124, 101–105. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wang, L.S.; Wang, P.H.; Lai, C.R.; Yen, M.S.; Ng, H.T.; Yuan, C.C. High cyclooxygenase-2 expression in cervical adenocarcinomas. Gynecol. Oncol. 2003, 88, 379–385. [Google Scholar] [CrossRef]
- Denduluri, S.K.; Idowu, O.; Wang, Z.; Liao, Z.; Yan, Z.; Mohammed, M.K.; Ye, J.; Wei, Q.; Wang, J.; Zhao, L.; et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015, 2, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, D.; Yee, D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol. Cancer Ther. 2007, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollak, M.N.; Schernhammer, E.S.; Hankinson, S.E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 2004, 4, 505. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xiong, X.; Sun, Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. Sci. China Life Sci. 2016, 59, 656–672. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hao, Q.; Liao, J.M.; Liao, P.; Lu, H. Ribosomal protein S14 negatively regulates c-Myc activity. J. Biol. Chem. 2013, 288, 21793–21801. [Google Scholar] [CrossRef] [Green Version]
- Sulima, S.O.; Kampen, K.R.; Vereecke, S.; Pepe, D.; Fancello, L.; Verbeeck, J.; Dinman, J.D.; De Keersmaecker, K. Ribosomal lesions promote oncogenic mutagenesis. Cancer Res. 2019, 79, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Van Riggelen, J.; Yetil, A.; Felsher, D.W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 2010, 10, 301–309. [Google Scholar] [CrossRef]
- Lim, K.H.; Kim, K.H.; Choi, S.I.; Park, E.S.; Park, S.H.; Ryu, K.; Park, Y.K.; Kwon, S.Y.; Yang, S.I.; Lee, H.C.; et al. RPS3a over-expressed in HBV-associated hepatocellular carcinoma enhances the HBx-induced NF-kappaB signaling via its novel chaperoning function. PLoS ONE 2011, 6, e22258. [Google Scholar] [CrossRef] [Green Version]
- Tsofack, S.P.; Meunier, L.; Sanchez, L.; Madore, J.; Provencher, D.; Mes-Masson, A.M.; Lebel, M. Low expression of the X-linked ribosomal protein S4 in human serous epithelial ovarian cancer is associated with a poor prognosis. BMC Cancer 2013, 13, 303. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Yu, Y.; Quan, C.; Guan, R.; Jin, Y.; Wu, J.; Xu, L.; Chen, F.; Bai, J.; Sun, W.; et al. RPL13A as a reference gene for normalizing mRNA transcription of ovarian cancer cells with paclitaxel and 10-hydroxycamptothecin treatments. Mol. Med. Rep. 2015, 11, 3188–3194. [Google Scholar] [CrossRef]
- Li, Y.L.; Ye, F.; Hu, Y.; Lu, W.G.; Xie, X. Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time polymerase chain reaction. Anal. Biochem. 2009, 394, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, H.L.; Ma, F.M.; Guo, H.P.; Fang, N.N.; Wang, S.S.; Li, X.H. Systematic module approach identifies altered genes and pathways in four types of ovarian cancer. Mol. Med. Rep. 2017, 16, 7907–7914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogli, A.; Boespflug-Tanguy, O. The large spectrum of eIF2B-related diseases. Biochem. Soc. Trans. 2006, 34, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Kevil, C.G.; De Benedetti, A.; Payne, D.K.; Coe, L.L.; Laroux, F.S.; Alexander, J.S. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: Implications for tumor angiogenesis. Int. J. Cancer 1996, 65, 785–790. [Google Scholar] [CrossRef]
- Lazaris-Karatzas, A.; Smith, M.R.; Frederickson, R.M.; Jaramillo, M.L.; Liu, Y.L.; Kung, H.F.; Sonenberg, N. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev. 1992, 6, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- Rosenwald, I.B.; Chen, J.J.; Wang, S.; Savas, L.; London, I.M.; Pullman, J. Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 1999, 18, 2507–2517. [Google Scholar] [CrossRef] [Green Version]
- Doldan, A.; Chandramouli, A.; Shanas, R.; Bhattacharyya, A.; Cunningham, J.T.; Nelson, M.A.; Shi, J. Loss of the eukaryotic initiation factor 3f in pancreatic cancer. Mol. Carcinog. 2008, 47, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Doldan, A.; Chandramouli, A.; Shanas, R.; Bhattacharyya, A.; Leong, S.P.; Nelson, M.A.; Shi, J. Loss of the eukaryotic initiation factor 3f in melanoma. Mol. Carcinog. 2008, 47, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Zhou, R.; Shen, A.; Choi, A.; Uribe, D.; Shi, J. The tumor suppressive role of eIF3f and its function in translation inhibition and rRNA degradation. PLoS ONE 2012, 7, e34194. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.J.; Rho, S.B.; Lee, S.H. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget 2016, 7, 18541–18557. [Google Scholar] [CrossRef] [Green Version]
- San-Millan, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis 2017, 38, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Stern, R. Hyaluronidases in cancer biology. Semin. Cancer Biol. 2008, 18, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Chang, W.H.; Cheng, M.; Huang, H.Y.; Horng, H.C.; Chen, Y.J.; Lee, W.L.; Wang, P.H. Crosslinked hyaluronic acid gels for the prevention of intrauterine adhesions after a hysteroscopic myomectomy in women with submucosal myomas: A prospective, randomized, controlled trial. Life 2020, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound Healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Horng, H.C.; Chang, W.H.; Yeh, C.C.; Huang, B.S.; Chang, C.P.; Chen, Y.J.; Tsui, K.H.; Wang, P.H. Estrogen effects on wound healing. Int. J. Mol. Sci. 2017, 18, 2325. [Google Scholar] [CrossRef]
- Beckert, S.; Farrahi, F.; Aslam, R.S.; Scheuenstuhl, H.; Königsrainer, A.; Hussain, M.Z.; Hunt, T.K. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006, 14, 321–324. [Google Scholar] [CrossRef]
- Lee, W.L.; Wang, P.H. Immunology and ovarian cancers. J. Chin. Med. Assoc. 2020, 83, 425–432. [Google Scholar] [CrossRef]
- Goetze, K.; Walenta, S.; Ksiazkiewicz, M.; Kunz-Schughart, L.A.; Mueller-Klieser, W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int. J. Oncol. 2011, 39, 453–463. [Google Scholar] [CrossRef]
- Gottfried, E.; Kunz-Schughart, L.A.; Ebner, S.; Mueller-Klieser, W.; Hoves, S.; Andreesen, R.; Mackensen, A.; Kreutz, M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006, 107, 2013–2021. [Google Scholar] [CrossRef]
- Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.; et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007, 109, 3812–3819. [Google Scholar] [CrossRef]
- Scott, K.E.; Cleveland, J.L. Lactate wreaks havoc on tumor-infiltrating T and NK cells. Cell Metab. 2016, 24, 649–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi, T.; Aoki, M.; Tomita, H.; Akazawa, T.; Sato, K.; Kuze, B.; Mizuta, K.; Hara, A.; Nagaoka, H.; Inoue, N.; et al. M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci. 2017, 108, 1128–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giat, E.; Ehrenfeld, M.; Shoenfeld, Y. Cancer and autoimmune diseases. Autoimmun. Rev. 2017, 16, 1049–1057. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, Q.; Chang, W. Epidemiological features and risk factors for acquiring hepatitis B, hepatitis C, and syphilis in HIV-infected patients in Shaanxi Province, Northwest China. Int. J. Environ. Res. Public Health 2020, 17, 1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.R.; Zheng, H.W.; Ma, S.M.; Liu, Y.Y.; Qie, L.X.; Li, J.Q.; Wang, D.H.; Sun, X.L.; Ren, G.F.; Zheng, Y.H.; et al. Correlations between serum hepatitis B surface antigen and hepatitis B core antibody titers and liver fibrosis in yreatment-naïve CHB patients. J. Chin. Med. Assoc. 2018, 81, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, E.H.; Park, M.I.; Lee, J.S.; Kim, K.; Roh, M.S.; Lee, H.W. Utility of human papillomavirus testing for cervical cancer screening in Korea. Int. J. Environ. Res. Public Health 2020, 17, 1726. [Google Scholar] [CrossRef] [Green Version]
- Nutthachote, P.; Oranratanaphan, S.; Termrungruanglert, W.; Triratanachat, S.; Chaiwongkot, A.; Baedyananda, F.; Bhattarakosol, P. Comparison of detection rate of high risk HPV infection between self-collected HPV testing and clinician-collected HPV testing in cervical cancer screening. Taiwan. J. Obstet. Gynecol. 2019, 58, 477–481. [Google Scholar] [CrossRef]
- Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med. 2002, 8, 289–293. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Shi, Q.; Katkuri, S.; Walhi, W.; Desvergne, B.; Das, S.K.; Dey, S.K.; DuBois, R.N. Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 2004, 6, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.; Shao, J.; Morrow, J.D.; Beauchamp, R.D.; DuBois, R.N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998, 58, 362–366. [Google Scholar]
- Poligone, B.; Baldwin, A.S. Positive and negative regulation of NF-kappaB by COX-2: Roles of different prostaglandins. J. Biol. Chem. 2001, 276, 38658–38664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Buchanan, F.G.; Wang, H.; Dey, S.K.; DuBois, R.N. Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res. 2005, 65, 1822–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shreedhar, V.; Giese, T.; Sung, V.W.; Ullrich, S.E. A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J. Immunol. 1998, 160, 3783–3789. [Google Scholar] [PubMed]
- Holla, V.R.; Wang, D.; Brown, J.R.; Mann, J.R.; Katkuri, S.; DuBois, R.N. Prostaglandin E2 regulates the complement inhibitor CD55/decay-accelerating factor in colorectal cancer. J. Biol. Chem. 2005, 28, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Pai, R.; Szabo, I.L.; Soreghan, B.A.; Atay, S.; Kawanaka, H.; Tarnawski, A.S. PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem. Biophys. Res. Commun. 2001, 28, 923–928. [Google Scholar] [CrossRef]
- Allaj, V.; Guo, C.; Nie, D. Non-steroid anti-inflammatory drugs, prostaglandins, and cancer. Cell Biosci. 2013, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 2000, 342, 1946–1952. [Google Scholar] [CrossRef]
- Li, W.; Jiang, H.R.; Xu, X.L.; Wang, J.; Zhang, J.; Liu, M.L.; Zhai, L.Y. Cyclin D1 expression and the inhibitory effect of celecoxib on ovarian tumor growth in vivo. Int. J. Mol. Sci. 2010, 11, 3999–4013. [Google Scholar] [CrossRef]
- Li, W.W.; Long, G.X.; Liu, D.B.; Mei, Q.; Wang, J.F.; Hu, G.Y.; Jiang, J.Z.; Sun, W.; Gan, L.; Hu, G.Q. Cyclooxygenase-2 inhibitor celecoxib suppresses invasion and migration of nasopharyngeal carcinoma cell lines through a decrease in matrix metalloproteinase-2 and -9 activity. Pharmazie 2014, 69, 132–137. [Google Scholar]
- Wei, D.; Wang, L.; He, Y.; Xiong, H.Q.; Abbruzzese, J.L.; Xie, K. Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res. 2004, 64, 2030–2038. [Google Scholar] [CrossRef] [Green Version]
- Kane, R.C.; Dagher, R.; Farrell, A.; Ko, C.W.; Sridhara, R.; Justice, R.; Pazdur, R. Bortezomib for the treatment of mantle cell lymphoma. Clin. Cancer Res. 2007, 13, 5291–5294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field-Smith, A.; Morgan, G.J.; Davies, F.E. Bortezomib (Velcadetrade mark) in the Treatment of Multiple Myeloma. Ther. Clin. Risk Manag. 2006, 2, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hideshima, T.; Ikeda, H.; Chauhan, D.; Okawa, Y.; Raje, N.; Podar, K.; Mitsiades, C.; Munshi, N.C.; Richardson, P.G.; Carrasco, R.D.; et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 2009, 114, 1046–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shangary, S.; Wang, S. Targeting the MDM2-p53 interaction for cancer therapy. Clin. Cancer Res. 2008, 14, 5318–5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulikov, R.; Letienne, J.; Kaur, M.; Grossman, S.R.; Arts, J.; Blattner, C. Mdm2 facilitates the association of p53 with the proteasome. Proc. Natl. Acad. Sci. USA 2010, 107, 10038–10043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voorhees, P.M.; Dees, E.C.; O’Neil, B.; Orlowski, R.Z. The proteasome as a target for cancer therapy. Clin. Cancer Res. 2003, 9, 6316–6325. [Google Scholar] [PubMed]
- Zha, J.; Lackner, M.R. Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin. Cancer Res. 2010, 16, 2512–2517. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Gaikwad, S.M.; Jinager, A.; Chaudhury, S.; Maheshwari, A.; Ray, P. IGF-1R inhibition potentiates cytotoxic effects of chemotherapeutic agents in early stages of chemoresistant ovarian cancer cells. Cancer Lett. 2014, 354, 254–262. [Google Scholar] [CrossRef]
- Koti, M.; Gooding, R.J.; Nuin, P.; Haslehurst, A.; Crane, C.; Weberpals, J.; Childs, T.; Bryson, P.; Dharsee, M.; Evans, K.; et al. Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer. BMC Cancer 2013, 13, 549. [Google Scholar] [CrossRef] [Green Version]
- Brouwer-Visser, J.; Lee, J.; McCullagh, K.; Cossio, M.J.; Wang, Y.; Huang, G.S. Insulin-like growth factor 2 silencing restores taxol sensitivity in drug resistant ovarian cancer. PLoS ONE 2014, 9, e100165. [Google Scholar] [CrossRef]
- Beltran, P.J.; Calzone, F.J.; Mitchell, P.; Chung, Y.A.; Cajulis, E.; Moody, G.; Belmontes, B.; Li, C.M.; Vonderfecht, S.; Velculescu, V.E.; et al. Ganitumab (AMG 479) inhibits IGF-II–dependent ovarian cancer growth and potentiates platinum-based chemotherapy. Clin. Cancer Res. 2014, 20, 2947–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logsdon, C.D.; Lu, W. The significance of Ras activity in pancreatic cancer initiation. Int. J. Biol. Sci. 2016, 12, 338–346. [Google Scholar] [CrossRef] [PubMed]
- McNew, K.L.; Whipple, W.J.; Mehta, A.K.; Grant, T.J.; Ray, L.; Kenny, C.; Singh, A. MEK and TAK1 Regulate Apoptosis in Colon Cancer cells with KRAS-dependent activation of proinflammatory signaling. Mol. Cancer Res. 2016, 14, 1204–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, A.V.; Porchia, L.; Ringel, M.D. Targeting BRAF in thyroid cancer. Br. J. Cancer 2007, 96, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2016, 109, 314–341. [Google Scholar] [CrossRef]
- Abraham, A.G.; O’Neill, E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem. Soc. Trans. 2014, 42, 798–803. [Google Scholar] [CrossRef]
- Bai, D.; Ueno, L.; Vogt, P.K. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int. J. Cancer 2009, 125, 2863–2870. [Google Scholar] [CrossRef] [Green Version]
- Showkat, M.; Beigh, M.A.; Andrabi, K.I. mTOR signaling in protein translation regulation: Implications in cancer genesis and therapeutic interventions. Mol. Biol. Int. 2014, 2014, 686984. [Google Scholar] [CrossRef] [Green Version]
- Csibi, A.; Lee, G.; Yoon, S.O.; Tong, H.; Ilter, D.; Elia, I.; Fendt, S.M.; Roberts, T.M.; Blenis, J. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr. Biol. 2014, 24, 2274–2280. [Google Scholar] [CrossRef] [Green Version]
- Karar, J.; Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef] [Green Version]
Microarry. Plateform | Case Numbers of OCCC (Homo Sapiens) | Case Numbers of Normal Ovarian Cell (Homo Sapiens) |
---|---|---|
GPL 570 | 49 | 95 |
GPL 6244 | 12 | 0 |
GPL 96 | 11 | 0 |
GPL 6947 | 5 | 5 |
GPL 7264 | 3 | 0 |
Total numbers | 80 | 100 |
Top 20 DEGs | p-Value |
---|---|
1. RPL24 | 1.23 ×10−109 |
2. EIF3F | 7.35 × 10−109 |
3. RPS13 | 9.3 × 10−102 |
4. EIF3L | 1.52 × 10−101 |
5. RPS11 | 1.71 × 10−98 |
6. ITM2B | 6.57 × 10−98 |
7. RPL27 | 7.35 × 10−98 |
8. RPL17 | 5.33 × 10−97 |
9. RPS15 | 2.73 × 10−94 |
10. RPL5 | 2.97 × 10−92 |
11. PLS3 | 1.17 × 10−91 |
12. RPS3A | 1.42 × 10−91 |
13. RPL39 | 7.65 × 10−91 |
14. RPS27L | 7.68 × 10−90 |
15. RPL23 | 9.84 × 10−90 |
16. RPL36AL | 1.60 × 10−89 |
17. RPL34 | 1.98×10−89 |
18. ALDH9A1 | 2.31 × 10−89 |
19. RPL3 | 6.82 × 10−89 |
20. RPL21 | 9.70 × 10−89 |
Gene Group | Genes | p-Value | Function of the Genes |
---|---|---|---|
| RPL24, RPS13, RPS11, RPL27, RPL17, RPS15, RPL5, RPS3A, RPL39, RPS27L, RPL23, RPL36AL, RPL34,RPL3, RPL21, RPL36, RPL30, RPL6, RPL32, RPL31, RPS16, RPL13A, RPS20, RPS12, RPL41, RPS4X, RPSA, RPL18, RPS24, RPL35A, RPS17, RPL13, RPL10A, RPS27, RPS6, RPS18, RPL27A, RPS27A, RPL23A, RPS28, RPS26, RPS2, RPLP2, RPL35, RPS21, RPL8, RPS5, RPL11, RPL10, RPL7, RPS14, RPL7A, RPL14, RPL37, RPL26, RPN2, RPL26L1, RPS6KA2, RPRD2, RPS6KC1, RPRM, RPL10L, RPP40, RPIA, RPP14, RPS6KA3, RPS6KB1, RPP38, RPP25, RPS6KA5, RPP30, RPS6KA6, RPS6KB2, RPL39L, RPS4Y1, RPL3L, RPS6KA1, RPS6KA4 | 1.23 × 10−109 ~ 2.85 × 10−16 |
|
| EIF3F, EIF3L, EIF3E, EIF1, EIF4B, EIF4A2, EIF2S3, EIF4H, EID1, EIF3G, EIF3M, EIF3K, EIF4A3, EIF5, EIF3A, EIF5A, EIF2AK1, EIF1AX, EIF3C, EIF2S2, EIF24, EIF3B, EIF2B1, EIF2B2, EIF6, EIF4EBP2, EIF2B4, EIF5B, EIF2S1, EIF2AK2, EIF4ENIF1, EIF3J, EIF2B5, EIF4G3, EIF4EBP1, EIF5A2, EIF2AK3, EIF1AY | 1.52 × 10−101 ~ 0.00412202 |
|
| LDHA, LDHB, LDOC1, LDLRAP1, LDLR, LDHC, LDHAL6B | 1.38 × 10−72 ~ 9.07 × 10−06 | |
| PSMB4, PSMG2, PSMC1, PSMB6, PSMA4, PSMB5, PSME1, PSMD4, PSMC2, PSMD14, PSMB3, PSMB7, PSMA5, PSMC5, PSMC6, PSMD1, PSMD10, PSMB2, PSMA2, PSMD5, PSMD9, PSMD8, PSMD12, PSME4, PSMA3, PSMD6, PSMD7, PSME3, PSMB8, PSMB9, PSMC4, PSMD11, PSMB10, PSMF1, PSMD13, PSMC3IP, PSMD3 | 3.30 × 10−70 ~ 1.59 × 10−18 | Degradation of unneeded or damaged proteins. Ubiquitin-proteasome pathway: intracellular protein turnover.
|
| PTGIS, PTGES3, PTGS1, PTGER4, PTGDS, PTGES, PTGER2, PTGES2, PTGIR, PTGDR, PTGS2, PTGFR, PTGER3, PTGER1 | 1.60 × 10−66 ~ 1.80 × 10−13 |
|
| IGFBP3, IGFBP6, IGFBP5, IGFBP2, IGFALS, IGFBP1 | 2.72 × 10−57 ~ 5.00 × 10−08 |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-H.; Wang, P.-H.; Chang, C.-M. Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes. Int. J. Environ. Res. Public Health 2020, 17, 3951. https://doi.org/10.3390/ijerph17113951
Hsu Y-H, Wang P-H, Chang C-M. Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes. International Journal of Environmental Research and Public Health. 2020; 17(11):3951. https://doi.org/10.3390/ijerph17113951
Chicago/Turabian StyleHsu, Yueh-Han, Peng-Hui Wang, and Chia-Ming Chang. 2020. "Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes" International Journal of Environmental Research and Public Health 17, no. 11: 3951. https://doi.org/10.3390/ijerph17113951
APA StyleHsu, Y. -H., Wang, P. -H., & Chang, C. -M. (2020). Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes. International Journal of Environmental Research and Public Health, 17(11), 3951. https://doi.org/10.3390/ijerph17113951