A Preliminary Investigation on the Statistical Correlations between SARS-CoV-2 Spread and Local Meteorology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measured and Modelled Meteorological Time Series
- (i)
- Mediterranean suboceanic to subcontinental, influenced by mountains climate for BG;
- (ii)
- Mediterranean suboceanic to Mediterranean subcontinental climate for CR, BS, and MN;
- (iii)
- Mediterranean suboceanic climate for PU.
2.2. Epidemiological Data
2.3. Statistical Methods
3. Results
3.1. Statistics of New Cases of COVID-19 vs. Outdoor Temperatures in Five Italian Provinces
3.2. Statistics of New Cases of COVID-19 vs. Outdoor Relative Humidity in Five Italian Provinces
3.3. Resume of the Correlations between the Moving Mean of New Daily Cases and the Meteorological Parameters
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO-World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); WHO: Geneva, Switzerland, 2020. [Google Scholar]
- WHO-World Health Organization. Novel Coronavirus(2019-nCoV) Situation Report–22; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Woo, P.C.; Lau, S.K.; Yuen, K. Infectious diseases emerging from Chinese wet-markets: Zoonotic origins of severe respiratory viral infections. Curr. Opin. Infect. Dis. 2006, 19, 401–407. [Google Scholar] [CrossRef]
- WHO-World Health Organization. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precazution Recommendations; WHO: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Galvani, A.P. Emerging infections: What have we learned from SARS? Emerg. Infect. Dis. 2004, 10, 1351–1352. [Google Scholar] [CrossRef] [PubMed]
- DPCM. Decree of the President of the Council of Ministers 23/02/2020. Disposizioni Attuative del Decreto-Legge 23 Febbraio 2020, n. 6, Recante Misure Urgenti in Materia di Contenimento e Gestione Dell’emergenza Epidemiologica da COVID-19-(20A01228); Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 2020. [Google Scholar]
- DPCM. Decree of the President of the Council of Ministers 25/02/2020. Ulteriori Disposizioni Attuative del Decreto-Legge 23 Febbraio 2020, n. 6, Recante Misure Urgenti in Materia di Contenimento e Gestione Dell’emergenza Epidemiologica da COVID-19-(20A01278); Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 2020. [Google Scholar]
- DPCM. Decree of the President of the Council of Ministers 01/03/2020. Ulteriori Disposizioni Attuative del Decreto-Legge 23 Febbraio 2020, n. 6, recante Misure Urgenti in Materia di Contenimento e Gestione Dell’emergenza Epidemiologica da COVID-19-(20A01381); Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 2020. [Google Scholar]
- DPCM. Decree of the President of the Council of Ministers 07/03/2020. Ulteriori Disposizioni Attuative del Decreto-Legge 23 Febbraio 2020, n. 6, Recante Misure Urgenti in materia di Contenimento e Gestione Dell’emergenza Epidemiologica da COVID-19, Applicabili; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 2020. [Google Scholar]
- Lin, K.; Fong, D.Y.T.; Zhu, B.; Karlberg, J. Environmental factors on the SARS epidemic: Air temperature, passage of time and multiplicative effect of hospital infection. Epidemiol. Infect. 2006, 134, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altamimi, A.; Ahmed, A.E. Climate factors and incidence of Middle East respiratory syndrome coronavirus. J. Infect. Public Health 2019. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liang, H.; Yuan, X.; Hu, Y.; Xu, M.; Zhao, Y.; Zhang, B.; Tian, F.; Zhu, X. Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. medRxiv 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Ficetola, G.F.; Rubolini, D. Climate affects global patterns of COVID-19 early outbreak dynamics. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Shabnam, S.; Erzurumluoglu, A.M. Temperature, humidity, and wind speed are associated with lower Covid-19 incidence. medRxiv 2020. [Google Scholar] [CrossRef]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Wang, J.; Tang, K.; Feng, K.; Lv, W. High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electron. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. No Association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur. Respir. J. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Thilakavathy, K.; Kumar, S.S.; He, G.; Liu, S.V. Potential factors influencing repeated SARS outbreaks in China. Int. J. Environ. Res. Public Health 2020, 17, 1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.; Hossain, G.; Singha, A.C.; Islam, S. A Retrospective Analysis of Influence of Environmental/Air Temperature and Relative Humidity on SARS-CoV-2 Outbreak. Prepr. 2020 2020, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, A.; Gong, L.; Luo, L.; Guo, W.; Li, C.; Zheng, J.; Li, C.; Yang, B.; Zeng, J.; et al. Temperature significant change COVID-19 Transmission in 429 cities. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, K.M.; Auzenbergs, M.; Jafari, Y.; Liu, Y.; Flasche, S.; Lowe, R. Effective Transmission across the Globe: The Role of Climate in COVID-19 Mitigation Strategies. Lancet Planet. Health 2020, 4, e172. [Google Scholar] [CrossRef]
- Martinez, M.E. The calendar of epidemics: Seasonal cycles of infectious diseases. PLoS Pathog. 2018, 14, e1007327. [Google Scholar] [CrossRef] [Green Version]
- Harbert, R.S.; Cunningham, S.W.; Tessler, M. Spatial modeling cannot currently differentiate SARS-CoV-2 coronavirus and human distributions on the basis of climate in the United States. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Agency of European Union European Centre for Disease Prevention and Control. Available online: https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html (accessed on 14 April 2020).
- Jhon, D. The Works of John Donne. vol III. Henry Alford; Parker, J.W., Ed.; John W. Parker: London, UK, 1839. [Google Scholar]
- Costantini, E.A.C.; Fantappié, M.; L’Abate, G. Climate and Pedoclimate of Italy; Springer: Dordrecht, The Netherlands, 2013; pp. 19–37. [Google Scholar]
- ARPAL Regional Agency for the Environmental Protection of Lombardy-Meteorology, Request for Measured Data. Available online: https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-dati-misurati.aspx (accessed on 30 March 2020).
- ASSAM Agrometeorological Service. Available online: http://www.meteo.marche.it/aboutus.aspx (accessed on 30 March 2020).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4. NCAR Tech. Note NCAR/TN-475+STR 2019, 145. [Google Scholar] [CrossRef]
- Rizza, U.; Mancinelli, E.; Canepa, E.; Piazzola, J.; Missamou, T.; Yohia, C.; Morichetti, M.; Virgili, S.; Passerini, G.; Miglietta, M.M. WRF Sensitivity Analysis in Wind and Temperature Fields Simulation for the Northern Sahara and the Mediterranean Basin. Atmosphere (Basel). 2020, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Department of Civil Protection of the Presidency of the Council of Ministers-COVID19 Epidemiological Data. Available online: https://github.com/pcm-dpc/COVID-19/blob/master/dati-province/dpc-covid19-ita-province-20200225.csv (accessed on 30 March 2020).
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- De Natale, G.; Ricciardi, V.; De Luca, G.; De Natale, D.; Di Meglio, G.; Ferragamo, A.; Marchitelli, V.; Piccolo, A.; Scala, A.; Somma, R.; et al. The COVID-19 infection in Italy: A statistical study of an abnormally severe disease. J. Clin. Med. 2020, 9, 1564. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Myers, J.F.; Turkheimer, F. COVID-19: Recovering estimates of the infected fatality rate during an ongoing pandemic through partial data. medRxiv 2020. [Google Scholar] [CrossRef]
- McCarthy, R.V.; McCarthy, M.M.; Ceccucci, W.; Halawi, L.; McCarthy, R.V.; McCarthy, M.M.; Ceccucci, W.; Halawi, L. Predictive Models Using Regression. In Applying Predictive Analytics; Springer International Publishing: Cham, Switzerland, 2019; pp. 89–121. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2004. [Google Scholar]
- Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef] [PubMed]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, L.O.A.I.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef]
- Bukhari, Q.; Jameel, Y. Will Coronavirus Pandemic Diminish by Summer? SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T.; et al. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef]
- Luo, W.; Majumder, M.S.; Liu, D.; Poirier, C.; Mandl, K.D.; Lipsitch, M.; Santillana, M. The role of absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv 2020. [Google Scholar] [CrossRef]
- Iqbal, N.; Fareed, Z.; Shahzad, F.; He, X.; Shahzad, U.; Lina, M. Nexus between COVID-19, temperature and exchange rate in Wuhan City: New findings from Partial and Multiple Wavelet Coherence. Sci. Total Environ. 2020, 729, 138916. [Google Scholar] [CrossRef]
Region | Province | Total Infected Per Province | Total Infected Per Region | Total Tests Per Region |
---|---|---|---|---|
Lombardy | Bergamo | 8424 | 40,476 | 102,563 |
Brescia | 8000 | |||
Cremona | 3639 | |||
Mantova | 1550 | |||
Marche | Pesaro Urbino | 1571 | 3154 | 10,384 |
Region | Province | Latitude | Longitude | Elevation above Sea Level [m] |
---|---|---|---|---|
Lombardy | Cremona | 45°08′35′′ | 10°02′49′′ | 40 |
Bergamo | 45°42′51′′ | 9°41′45′′ | 284 | |
Brescia | 45°30′52′′ | 10°13′02′′ | 122 | |
Mantova | 45°09′45′′ | 10°49′03′′ | 34 | |
Marche | Pesaro Urbino | 43°54′41.767′′ | 12°53′2.965′′ | 40 |
Pearson’s Analysis | Cremona | Bergamo | Brescia | Mantova | Pesaro Urbino |
---|---|---|---|---|---|
Temperature versus new daily cases (5-day moving mean) | R = 0.75 | R = 0.65 | R = 0.7 | R = 0.21 * | R = 0.26 * |
p = 7.2 × 10−6 | p = 2.7 × 10−4 | p = 5.6 × 10−5 | p= 0.3 * | p= 0.2 * | |
Temperature versus adjusted new daily cases (5-day moving mean) | R = 0.74 | R = 0.71 | R = 0.75 | R = 0.29 * | R = 0.52 |
p = 1.6 × 10−5 | p = 4.7 × 10−5 | p = 1.1 × 10−5 | p= 0.15 * | p = 6.3 × 10−3 | |
Temperature versus new daily cases (8-day moving mean) | R = 0.83 | R = 0.73 | R = 0.79 | R = 0.28 * | R = 0.065 * |
p = 8.1 × 10−7 | p = 4.5 × 10−5 | p = 4.3 × 10−6 | p= 0.19 * | p= 0.75 * | |
Temperature versus adjusted new daily cases (8-day moving mean) | R = 0.81 | R = 0.77 | R = 0.83 | R = 0.33 * | R = 0.45 |
p = 2.8 × 10−6 | p = 2 × 10−5 | p = 1.2 × 10−6 | p= 0.13 * | p = 0.03 | |
Relative humidity versus new daily cases (5-day moving mean) | R = −0.68 | R = −0.54 | R = −0.81 | R = −0.82 | R =−0.11 * |
p = 1.1 × 10−4 | p = 4 × 10−3 | p = 3.5 × 10−7 | p = 1.2 × 10−7 | p= 0.59 * | |
Relative humidity versus adjusted new daily cases (5-day moving mean) | R = −0.57 | R = −0.56 | R = −0.75 | R = −0.77 | R =−0.24 * |
p = 2.3 × 10−3 | p = 3.2 × 10−3 | p = 9 × 10−6 | p = 3.5 × 10−6 | p= 0.23 * | |
Relative humidity versus new daily cases (8-day moving mean) | R = −0.72 | R = −0.55 | R = −0.83 | R = −0.94 | R = 0.3 * |
p = 1.2 × 10−4 | p = 5.1 × 10−3 | p = 5.3 × 10−7 | p = 5.4 × 10−11 | p= 0.14 * | |
Relative humidity versus adjusted new daily cases (8-day moving mean) | R = −0.63 | R = −0.57 | R = −0.8 | R = −0.91 | R =−0.33 * |
p = 1.3 × 10−3 | p = 4.7 × 10−3 | p = 4.7 × 10−6 | p = 3 × 10−9 | p= 0.12 * |
Multiple Regression Analysis | Cremona | Bergamo | Brescia | Mantova | Pesaro Urbino | |
---|---|---|---|---|---|---|
Temperature and relative humidity vs. new daily cases (5-day moving mean) | M.R | 0.812 | 0.812 | 0.948 | 0.834 | 0.272 |
I.s.t | 4.286 | 3.403 | 5.932 | 6.265 | 0.488 | |
T.s.t | 6.358 | 5.003 | 7.462 | 1.136 | 1.235 | |
R.H.s.t | −5.320 | −4.028 | −9.755 | −7.184 | −0.355 | |
I.p | 2.55 × 10−4 | 2.44 × 10−3 | 4.78 × 10−6 | 1.78 × 10−6 | 6.30 × 10−1 | |
T.p | 1.42 × 10−6 | 4.62 × 10−5 | 1.39 × 10−7 | 2.67 × 10−1 | 2.29 × 10−1 | |
R.H.p | 1.85 × 10−5 | 5.25 × 10−4 | 1.22 × 10−9 | 2.00 × 10−7 | 7.26 × 10−1 | |
Temperature and relative humidity vs. new daily cases (8-day moving mean) | M.R | 0.910 | 0.891 | 0.980 | 0.938 | 0.349 |
I.s.t | 2.353 | 3.419 | 5.872 | 9.402 | −1.376 | |
T.s.t | 6.053 | 7.061 | 12.150 | −0.716 | 0.915 | |
R.H.s.t | −3.937 | −5.109 | −13.490 | −11.508 | 1.756 | |
I.p | 2.89 × 10−2 | 2.58 × 10−3 | 7.90 × 10−6 | 8.84 × 10−9 | 1.82 × 10−1 | |
T.p | 6.45 × 10−6 | 5.73 × 10−7 | 5.79 × 10−11 | 4.82 × 10−1 | 3.70 × 10−1 | |
R.H.p | 8.15 × 10−4 | 4.64 × 10−5 | 8.17 × 10−12 | 2.84 × 10−10 | 9.25 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passerini, G.; Mancinelli, E.; Morichetti, M.; Virgili, S.; Rizza, U. A Preliminary Investigation on the Statistical Correlations between SARS-CoV-2 Spread and Local Meteorology. Int. J. Environ. Res. Public Health 2020, 17, 4051. https://doi.org/10.3390/ijerph17114051
Passerini G, Mancinelli E, Morichetti M, Virgili S, Rizza U. A Preliminary Investigation on the Statistical Correlations between SARS-CoV-2 Spread and Local Meteorology. International Journal of Environmental Research and Public Health. 2020; 17(11):4051. https://doi.org/10.3390/ijerph17114051
Chicago/Turabian StylePasserini, Giorgio, Enrico Mancinelli, Mauro Morichetti, Simone Virgili, and Umberto Rizza. 2020. "A Preliminary Investigation on the Statistical Correlations between SARS-CoV-2 Spread and Local Meteorology" International Journal of Environmental Research and Public Health 17, no. 11: 4051. https://doi.org/10.3390/ijerph17114051
APA StylePasserini, G., Mancinelli, E., Morichetti, M., Virgili, S., & Rizza, U. (2020). A Preliminary Investigation on the Statistical Correlations between SARS-CoV-2 Spread and Local Meteorology. International Journal of Environmental Research and Public Health, 17(11), 4051. https://doi.org/10.3390/ijerph17114051