Natural Patterns of Sitting, Standing and Stepping During and Outside Work—Differences between Habitual Users and Non-Users of Sit–Stand Workstations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Outcomes
2.3.1. Descriptive Characteristics
2.3.2. Movement Behaviour Outcomes
2.4. Analyses
3. Results
3.1. Participants
3.2. Movement Behaviour Outcomes for Working and Non-Working Hours
3.3. Number of Sitting Bouts for Working and Non-Working Hours
3.4. Movement Behaviour Outcomes for Total Days, Workdays and Non-Workdays
4. Discussion
4.1. Study Limitations and Strengths
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prince, S.A.; Elliott, C.G.; Scott, K.; Visintini, S.; Reed, J.L. Device-measured physical activity, sedentary behaviour and cardiometabolic health and fitness across occupational groups: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Sui, W.; Smith, S.T.; Fagan, M.J.; Rollo, S.; Prapavessis, H. The effects of sedentary behaviour interventions on work-related productivity and performance outcomes in real and simulated office work: A systematic review. Appl. Ergon. 2019, 75, 27–73. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; Kukkonen-Harjula, K.T.; Verbeek, J.H.; Ijaz, S.; Hermans, V.; Pedisic, Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst. Rev. 2018, 6, CD010912. [Google Scholar] [CrossRef] [PubMed]
- Dupont, F.; Leger, P.M.; Begon, M.; Lecot, F.; Senecal, S.; Labonte-Lemoyne, E.; Mathieu, M.E. Health and productivity at work: Which active workstation for which benefits: A systematic review. Occup. Environ. Med. 2019, 76, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Ojo, S.O.; Bailey, D.P.; Chater, A.M.; Hewson, D.J. The Impact of Active Workstations on Workplace Productivity and Performance: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 417. [Google Scholar] [CrossRef] [Green Version]
- Parry, S.P.; Coenen, P.; Shrestha, N.; O’Sullivan, P.B.; Maher, C.G.; Straker, L.M. Workplace interventions for increasing standing or walking for decreasing musculoskeletal symptoms in sedentary workers. Cochrane Database Syst. Rev. 2019, 2019. [Google Scholar] [CrossRef]
- Chambers, A.J.; Robertson, M.M.; Baker, N.A. The effect of sit-stand desks on office worker behavioral and health outcomes: A scoping review. Appl. Ergon. 2019, 78, 37–53. [Google Scholar] [CrossRef]
- Alkhajah, T.A.; Reeves, M.M.; Eakin, E.G.; Winkler, E.A.; Owen, N.; Healy, G.N. Sit-stand workstations: A pilot intervention to reduce office sitting time. Am. J. Prev. Med. 2012, 43, 298–303. [Google Scholar] [CrossRef]
- Edwardson, C.L.; Yates, T.; Biddle, S.J.H.; Davies, M.J.; Dunstan, D.W.; Esliger, D.W.; Gray, L.J.; Jackson, B.; O’Connell, S.E.; Waheed, G.; et al. Effectiveness of the Stand More AT (SMArT) Work intervention: Cluster randomised controlled trial. BMJ 2018, 363, k3870. [Google Scholar] [CrossRef] [Green Version]
- Healy, G.N.; Eakin, E.G.; Owen, N.; Lamontagne, A.D.; Moodie, M.; Winkler, E.A.H.; Fjeldsoe, B.S.; Wiesner, G.; Willenberg, L.; Dunstan, D.W. A Cluster Randomized Controlled Trial to Reduce Office Workers’ Sitting Time. Med. Sci. Sports Exerc. 2016, 48, 1787–1797. [Google Scholar] [CrossRef]
- Mazzotta, M.A.; Ferrar, K.; Fraysse, F.; Lewis, L.K.; McEvoy, M. Usage of Sit-Stand Workstations and Associations Between Work and Nonwork Sitting Time: An Observational Study. J. Occup. Environ. Med. 2018, 60, e268–e272. [Google Scholar] [CrossRef] [PubMed]
- Asvold, B.O.; Midthjell, K.; Krokstad, S.; Rangul, V.; Bauman, A. Prolonged sitting may increase diabetes risk in physically inactive individuals: An 11 year follow-up of the HUNT Study, Norway. Diabetologia 2017, 60, 830–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Berg, J.D.; Stehouwer, C.D.; Bosma, H.; van der Velde, J.H.; Willems, P.J.; Savelberg, H.H.; Schram, M.T.; Sep, S.J.; van der Kallen, C.J.; Henry, R.M.; et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. Diabetologia 2016, 59, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.P.; Hewson, D.J.; Champion, R.B.; Sayegh, S.M. Sitting Time and Risk of Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2019, 57, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, l4570. [Google Scholar] [CrossRef] [Green Version]
- Chastin, S.F.; Egerton, T.; Leask, C.; Stamatakis, E. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring) 2015, 23, 1800–1810. [Google Scholar] [CrossRef]
- Josaphat, K.J.; Kugathasan, T.A.; ER Reid, R.; Begon, M.; Leger, P.M.; Labonte-Lemoyne, E.; Senecal, S.; Arvisais, D.; Mathieu, M.E. Use of Active Workstations in Individuals with Overweight or Obesity: A Systematic Review. Obesity (Silver Spring) 2019, 27, 362–379. [Google Scholar] [CrossRef]
- Agarwal, S.; Steinmaus, C.; Harris-Adamson, C. Sit-stand workstations and impact on low back discomfort: A systematic review and meta-analysis. Ergonomics 2018, 61, 538–552. [Google Scholar] [CrossRef]
- Benatti, F.B.; Ried-Larsen, M. The Effects of Breaking up Prolonged Sitting Time: A Review of Experimental Studies. Med. Sci. Sports Exerc. 2015, 47, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Thorp, A.A.; Kingwell, B.A.; Sethi, P.; Hammond, L.; Owen, N.; Dunstan, D.W. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med. Sci. Sports Exerc. 2014, 46, 2053–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, E.A.H.; Chastin, S.; Eakin, E.G.; Owen, N.; Lamontagne, A.D.; Moodie, M.; Dempsey, P.C.; Kingwell, B.A.; Dunstan, D.W.; Healy, G.N. Cardiometabolic Impact of Changing Sitting, Standing, and Stepping in the Workplace. Med. Sci. Sports Exerc. 2018, 50, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzari, E.; Wijndaele, K.; Brage, S.; Griffin, S.J.; Marteau, T.M. Impact of sit-stand desks at work on energy expenditure and sedentary time: Protocol for a feasibility study. Pilot Feasibility Stud. 2016, 2, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Ploeg, H.P.; Hillsdon, M. Is sedentary behaviour just physical inactivity by another name? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Rempel, D.; Krause, N. Do Sit-Stand Workstations Improve Cardiovascular Health? J. Occup. Environ. Med. 2018, 60, e319–e320. [Google Scholar] [CrossRef] [Green Version]
- Gilson, N.; Straker, L.; Parry, S. Occupational sitting: Practitioner perceptions of health risks, intervention strategies and influences. Health Promot. J. Aust. 2012, 23, 208–212. [Google Scholar] [CrossRef]
- Hadgraft, N.T.; Brakenridge, C.L.; Dunstan, D.W.; Owen, N.; Healy, G.N.; Lawler, S.P. Perceptions of the acceptability and feasibility of reducing occupational sitting: Review and thematic synthesis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 90. [Google Scholar] [CrossRef]
- Garrett, G.; Zhao, H.; Pickens, A.; Mehta, R.; Preston, L.; Powell, A.; Benden, M. Computer-based Prompt’s impact on postural variability and sit-stand desk usage behavior; a cluster randomized control trial. Appl. Ergon. 2019, 79, 17–24. [Google Scholar] [CrossRef]
- Graves, L.E.; Murphy, R.C.; Shepherd, S.O.; Cabot, J.; Hopkins, N.D. Evaluation of sit-stand workstations in an office setting: A randomised controlled trial. BMC Public Health 2015, 15, 1145. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.P.; Mehta, R.K.; Pickens, A.; Han, G.; Benden, M. Sit-Stand Desk Software Can Now Monitor and Prompt Office Workers to Change Health Behaviors. Hum. Factors 2019, 61, 816–824. [Google Scholar] [CrossRef] [Green Version]
- Renaud, L.R.; Jelsma, J.G.M.; Huysmans, M.A.; van Nassau, F.; Lakerveld, J.; Speklé, E.M.; Bosmans, J.E.; Stijnman, D.P.M.; Loyen, A.; van der Beek, A.J.; et al. Effectiveness of the multi-component dynamic work intervention to reduce sitting time in office workers—Results from a pragmatic cluster randomised controlled trial. Appl. Ergon. 2020, 84. [Google Scholar] [CrossRef] [PubMed]
- Robroek, S.J.; van Lenthe, F.J.; van Empelen, P.; Burdorf, A. Determinants of participation in worksite health promotion programmes: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Maurice, P.F.; Welk, G.J.; Russell, D.W.; Huberty, J. Moderating influences of baseline activity levels in school physical activity programming for children: The Ready for Recess project. BMC Public Health 2014, 14, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, K.; McLean, S.M.; Moffett, J.K.; Gardiner, E. Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Man. Ther. 2010, 15, 220–228. [Google Scholar] [CrossRef]
- Clemes, S.A.; O’Connell, S.E.; Edwardson, C.L. Office workers’ objectively measured sedentary behavior and physical activity during and outside working hours. J. Occup. Environ. Med. 2014, 56, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Renaud, L.R.; Huysmans, M.A.; van der Ploeg, H.P.; Spekle, E.M.; van der Beek, A.J. Long-Term Access to Sit-Stand Workstations in a Large Office Population: User Profiles Reveal Differences in Sitting Time and Perceptions. Int. J. Environ. Res. Public Health 2018, 15, 2019. [Google Scholar] [CrossRef] [Green Version]
- Grant, P.M.; Ryan, C.G.; Tigbe, W.W.; Granat, M.H. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br. J. Sports Med. 2006, 40, 992–997. [Google Scholar] [CrossRef] [Green Version]
- Kozey-Keadle, S.; Libertine, A.; Lyden, K.; Staudenmayer, J.; Freedson, P.S. Validation of wearable monitors for assessing sedentary behavior. Med. Sci. Sports Exerc. 2011, 43, 1561–1567. [Google Scholar] [CrossRef] [Green Version]
- Winkler, E.A.; Bodicoat, D.H.; Healy, G.N.; Bakrania, K.; Yates, T.; Owen, N.; Dunstan, D.W.; Edwardson, C.L. Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol. Meas. 2016, 37, 1653–1668. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Yoshikawa, A.; Qiu, L.; Lu, Z.; Lee, C.; Ory, M. Healthy workplaces, active employees: A systematic literature review on impacts of workplace environments on employees’ physical activity and sedentary behavior. Build. Environ. 2020, 168. [Google Scholar] [CrossRef]
- Mansoubi, M.; Pearson, N.; Biddle, S.J.; Clemes, S.A. Using Sit-to-Stand Workstations in Offices: Is There a Compensation Effect? Med. Sci. Sports Exerc. 2016, 48, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, S.K.; Winkler, E.A.H.; Eakin, E.G.; Clark, B.K.; Owen, N.; Moodie, M.; La Montagne, A.D.; Dunstan, D.W.; Healy, G.N. Temporal features of sitting, standing and stepping changes in a cluster-randomised controlled trial of a workplace sitting-reduction intervention. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Powell, K.E.; Jakicic, J.M.; Troiano, R.P.; Piercy, K.; Tennant, B.; Physical Activity Guidelines Advisory Commuttee. Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Med. Sci. Sports Exerc. 2019, 51, 1227–1241. [Google Scholar] [CrossRef]
- Judice, P.B.; Hamilton, M.T.; Sardinha, L.B.; Zderic, T.W.; Silva, A.M. What is the metabolic and energy cost of sitting, standing and sit/stand transitions? Eur. J. Appl. Physiol. 2016, 116, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Hawari, N.S.; Al-Shayji, I.; Wilson, J.; Gill, J.M. Frequency of Breaks in Sedentary Time and Postprandial Metabolic Responses. Med. Sci. Sports Exerc. 2016, 48, 2495–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuchsen, F.; Hannerz, H.; Burr, H.; Krause, N. Prolonged standing at work and hospitalisation due to varicose veins: A 12 year prospective study of the Danish population. Occup. Environ. Med. 2005, 62, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Waters, T.R.; Dick, R.B. Evidence of health risks associated with prolonged standing at work and intervention effectiveness. Rehabil. Nurs. 2015, 40, 148–165. [Google Scholar] [CrossRef] [Green Version]
- Messing, K.; Stock, S.; Cote, J.; Tissot, F. Is sitting worse than static standing? How a gender analysis can move us toward understanding determinants and effects of occupational standing and walking. J. Occup. Environ. Hyg. 2015, 12, D11–D17. [Google Scholar] [CrossRef]
- Ryan, C.G.; Dall, P.M.; Granat, M.H.; Grant, P.M. Sitting patterns at work: Objective measurement of adherence to current recommendations. Ergonomics 2011, 54, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Thorp, A.A.; Healy, G.N.; Winkler, E.; Clark, B.K.; Gardiner, P.A.; Owen, N.; Dunstan, D.W. Prolonged sedentary time and physical activity in workplace and non-work contexts: A cross-sectional study of office, customer service and call centre employees. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Huysmans, M.A.; Srinivasan, D.; Mathiassen, S.E. Consistency of Sedentary Behavior Patterns among Office Workers with Long-Term Access to Sit-Stand Workstations. Ann. Work Expo. Health 2019, 63, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Heiden, M.; Aadahl, M.; Korshoj, M.; Jorgensen, M.B.; Holtermann, A. What Is the Effect on Obesity Indicators from Replacing Prolonged Sedentary Time with Brief Sedentary Bouts, Standing and Different Types of Physical Activity during Working Days? A Cross-Sectional Accelerometer-Based Study among Blue-Collar Workers. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, D.E.; Palarea-Albaladejo, J.; Dall, P.M.; Del Pozo Cruz, B.; Chastin, S.F. Compositional analysis of the association between mortality and 24-h movement behaviour from NHANES. Eur. J. Prev. Cardiol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Mathiassen, S.E.; Mateu-Figueras, G.; Heiden, M.; Hallman, D.M.; Jorgensen, M.B.; Holtermann, A. A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Ojo, S.O.; Bailey, D.P.; Brierley, M.L.; Hewson, D.J.; Chater, A.M. Breaking barriers: Using the behavior change wheel to develop a tailored intervention to overcome workplace inhibitors to breaking up sitting time. BMC Public Health 2019, 19, 1126. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.M.; Ciriello, V.M.; Garabet, A.M. Office ergonomics training and a sit-stand workstation: Effects on musculoskeletal and visual symptoms and performance of office workers. Appl. Ergon. 2013, 44, 73–85. [Google Scholar] [CrossRef]
- Antle, D.M.; Vézina, N.; Côté, J.N. Comparing standing posture and use of a sit-stand stool: Analysis of vascular, muscular and discomfort outcomes during simulated industrial work. Int. J. Ind. Ergon. 2015, 45, 98–106. [Google Scholar] [CrossRef]
Descriptive Characteristics | Users N = 24 | Non-Users N = 25 | p-Value |
---|---|---|---|
Gender, N males (%) | 19 (79%) | 16 (64%) | 0.24 |
Age, mean (SD) years | 40.46 (7.04) | 43.80 (6.81) | 0.10 |
BMI, mean (SD) kg/m2 | 23.88 (3.19) | 23.78 (3.88) | 0.92 |
Education with PhD degree, N(%) | 11 (46%) | 13 (52%) | 0.67 |
Work experience, mean (SD) years | 10.42 (5.75) | 13.16 (8.17) | 0.18 |
Work time, mean hours (SD) / week | 38.00 (4.98) | 38.74 (3.98) | 0.58 |
Transportation to work by car, N (%) | 8 (33%) | 9 (36%) | 0.85 |
Based at workstation > 6 h per workday 1, N (%) | 18 (75%) | 24 (96%) | 0.05 * |
Self-reported standing episodes at own workstation | |||
Frequency 2 per day, mean (SD) | 2.63 (1.30) | - | |
1−2 times per day, N (%) | 13 (54%) | - | |
3−4 times per day, N (%) | 9 (38%) | - | |
5 times of more per day, N (%) | 2 (8%) | - | |
Duration 2 per episode, mean (SD) hour | 0.94 (0.54) | - | |
<15 min, N (%) | - | - | |
15–30 min, N (%) | 5 (21%) | - | |
30–60 min, N (%) | 13 (54%) | - | |
60–90 min, N (%) | 4 (17%) | - | |
90 min or longer, N (%) | 2 (8%) | - |
Outcomes in Mean (SD) Per 8 h Workday | Users N = 24 | Non-Users N = 25 | β (95% CI) | |
---|---|---|---|---|
Sitting time, hour | Working hours | 3.98 (1.19) | 5.62 (1.00) | –1.64 (−2.27–−1.01) * |
Non-working hours | 4.11 (0.87) | 4.11 (0.71) | −0.01 (−0.46- 0.45) | |
Standing time, hour | Working hours | 3.30 (1.09) | 1.79 (0.96) | 1.51 (0.92–2.10) * |
Non-working hours | 2.58 (0.63) | 2.61 (0.49) | −0.03 (−0.36 −0.29) | |
Stepping time, hour | Working hours | 0.73 (0.3) | 0.60 (0.21) | 0.13 (−0.02–0.28) |
Non-working hours | 1.31 (0.45) | 1.28 (0.41) | 0.04 (−0.21–0.29) | |
Number of sit-to-stand transitions | Working hours | 22.34 (7.8) | 32.06 (20.99) | −9.72 (−18.90–−0.54) * |
Non-working hours | 28.04 (8.18) | 29.64 (8.39) | −1.60 (−6.37–3.17) | |
Time in sitting bouts <30 min, hour | Working hours | 2.27 (0.83) | 3.13 (1.00) | −0.86 (−1.39–−0.33) * |
Non-working hours | 2.37 (0.59) | 2.24 (0.63) | 0.13 (−0.22–0.48) | |
Time in sitting bouts ≥30 min, hour | Working hours | 1.7 (0.94) | 2.48 (1.65) | −0.78 (−1.56–−0.003)* |
Non-working hours | 1.74 (1.00) | 1.87 (0.89) | −0.14 (−0.70– 0.41) | |
Time in static standing bouts 1 | Working hours | 0.56 (0.19−1.08) | 0.07 (0–0.17) | |
Non-working hours | 0.01 (0−0.10) | 0.05 (0–0.12) |
Outcomes in Mean (SD) per 16 h day | Users N = 24 | Non-Users N = 25 | β (95% CI) | |
---|---|---|---|---|
Sitting time, hour | Total days | 8.25 (1.44) | 9.20 (1.13) | −0.95 (−1.69–−0.21) * |
Workdays | 8.15 (1.59) | 9.77 (1.33) | −1.62 (−2.46–−0.78) * | |
Non-workdays | 8.47 (1.77) | 7.75 (1.59) | 0.73 (−0.25–1.70) | |
Standing time, hour | Total day | 5.65 (1.15) | 4.77 (0.98) | 0.88 (0.27−1.49) * |
Workday | 5.87 (1.32) | 4.37 (1.20) | 1.50 (0.78−2.23) * | |
Non-workday | 5.17 (1.35) | 5.75 (1.27) | –0.57 (–1.34–0.19) | |
Stepping time, hour | Total day | 2.10 (0.64) | 2.03 (0.52) | 0.07 (–0.26−0.41) |
Workday | 1.98 (0.57) | 1.86 (0.48) | 0.12 (–0.18–0.43) | |
Non-workday | 2.35 (0.86) | 2.51 (0.82) | −0.15 (–0.64–0.34) | |
Number of steps | Total day | 5378 (1812) | 5108 (1442) | 270 (−669−1210) |
Workday | 5220 (1588) | 4802 (1372) | 417 (−435−1269) | |
Non-workday | 5645 (2521) | 6032 (2390) | −386 (−1813–1041) | |
Number of sit-to-stand transitions | Workday | 50.43 (12.21) | 61.37 (25.35) | −10.94 (–22.45−0.58) |
Non-workday | 60.22 (26.92) | 57.87 (17.86) | 2.35 (–10.82−15.53) | |
Time in sitting bouts <30 min, hour | Workday | 4.71 (1.03) | 5.36 (1.44) | −0.65 (–1.37−0.08) |
Non-workday | 4.41 (1.12) | 4.25 (1.30) | 0.16 (–0.55–0.87) | |
Time in sitting bouts ≥30 min, hour | Workday | 3.43 (1.63) | 4.41 (2.27) | −0.98 (−2.12−0.16) |
Non-workday | 4.07 (1.81) | 3.50 (1.56) | 0.57 (–0.41–1.55) | |
Time in static standing bouts 1 | Workday | 0.66 (0.25–1.11) | 0.16 (0.06–0.36) | |
Non-workday | 0.14 (0−0.28) | 0 (0–0.37) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renaud, L.R.; Huysmans, M.A.; van der Ploeg, H.P.; Speklé, E.M.; van der Beek, A.J. Natural Patterns of Sitting, Standing and Stepping During and Outside Work—Differences between Habitual Users and Non-Users of Sit–Stand Workstations. Int. J. Environ. Res. Public Health 2020, 17, 4075. https://doi.org/10.3390/ijerph17114075
Renaud LR, Huysmans MA, van der Ploeg HP, Speklé EM, van der Beek AJ. Natural Patterns of Sitting, Standing and Stepping During and Outside Work—Differences between Habitual Users and Non-Users of Sit–Stand Workstations. International Journal of Environmental Research and Public Health. 2020; 17(11):4075. https://doi.org/10.3390/ijerph17114075
Chicago/Turabian StyleRenaud, Lidewij R., Maaike A. Huysmans, Hidde P. van der Ploeg, Erwin M. Speklé, and Allard J. van der Beek. 2020. "Natural Patterns of Sitting, Standing and Stepping During and Outside Work—Differences between Habitual Users and Non-Users of Sit–Stand Workstations" International Journal of Environmental Research and Public Health 17, no. 11: 4075. https://doi.org/10.3390/ijerph17114075
APA StyleRenaud, L. R., Huysmans, M. A., van der Ploeg, H. P., Speklé, E. M., & van der Beek, A. J. (2020). Natural Patterns of Sitting, Standing and Stepping During and Outside Work—Differences between Habitual Users and Non-Users of Sit–Stand Workstations. International Journal of Environmental Research and Public Health, 17(11), 4075. https://doi.org/10.3390/ijerph17114075