Effect of Gender, Physical Activity and Stress-Related Hormones on Adolescent’s Academic Achievements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Assessment of Physical Activity
- BMR calculation for men (metric){BMR = 66.47 + (13.75 × weight in kg) + (5.003 × height in cm) − (6.755 × age in years)}
- BMR calculation for women (metric){BMR = 655.1 + (9.563 × weight in kg) + (1.850 × height in cm) − (4.676 × age in years)}
2.4. Assessment of Maximum Aerobic Power (VO2 Max)
2.5. Assessment of Respiratory Exchange Ratio (RER)
2.6. Assessment of Academic Achievement
2.7. Assessment of Serotonin and Cortisol Levels
2.8. Sample Power Calculation
2.9. Statistical Analysis
3. Results
3.1. Comparison of LTPA, BMR, TEE, and VO2 Max Based on PA and Gender
3.2. Comparison of Stress-Related Hormones Based on PA and Gender
3.3. Comparison of Academic Achievements Based on PA and Gender
3.4. Association between Gender, Age, VO2 Max, BMR, TDEE, LTPA, BMI, Stress-Related Hormones, PA Scores, and Academic Achievement
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
Abbreviations
PA | Physical activity |
TV | Television |
LTPA | Leisure-time physical activity |
METs | Metabolic equivalents |
BMR | Basal metabolic rate |
TDEE | Total daily energy expenditure |
VO2max | Maximum aerobic power |
HR | Heart rate |
HPA | Hypothalamic-pituitary-adrenal axis |
References
- Howie, E.K.; Pate, R.R. Physical activity and academic achievement in children: A historical perspective. J. Sport Health Sci. 2012, 1, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Burgeson, C.R.; Fulton, J.E.; Spain, C.G. Physical education and physical activity: Results from the school health policies and programs study 2006. J. Sch. Health 2007, 77, 435–463. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Gabr, S.A.; Iqbal, Z.A. Effects of sitting time associated with media consumption on physical activity patterns and daily energy expenditure of Saudi school students. J. Phys. Sci. 2015, 27, 2807–2812. [Google Scholar] [CrossRef] [Green Version]
- Alghadir, A.; Gabr, S.; Iqbal, Z.A. Television watching, diet and body mass index of school children in Saudi Arabia. Pediatr. Int. 2016, 58, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.D.; Reis, J.; Zhu, N.; Jacobs, D.R.; Launer, L.J.; Whitmer, R.A.; Sidney, S.; Yaffe, K. Effect of early adult patterns of physical activity and television viewing on midlife cognitive function. JAMA Psychiatry 2016, 73, 73–79. [Google Scholar] [CrossRef]
- Ahn, S.; Fedewa, A.L. A meta-analysis of the relationship between children’s physical activity and mental health. J. Pediatr. Psychol. 2011, 36, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Tomporowski, P.D.; Lambourne, K.; Okumura, M.S. Physical activity interventions and children’s mental function: An introduction and overview. Prev. Med. 2011, 52, S3–S9. [Google Scholar] [CrossRef] [Green Version]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Uijtdewilligen, L.; Twisk, J.W.; van Mechelen, W.; Chinapaw, M.J. Physical activity and performance at school: A systematic review of the literature including a methodological quality assessment. Arch. Pediatr. Adolesc. Med. 2012, 166, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.J.; Brooks-Gunn, J.; Klebanov, P.K. Economic deprivation and early childhood development. Child Dev. 1994, 65, 296–318. [Google Scholar] [CrossRef] [PubMed]
- Pungello, E.P.; Kupersmidt, J.B.; Burchinal, M.R.; Patterson, C.J. Environmental risk factors and children’s achievement from middle childhood to early adolescence. Dev. Psychol. 1996, 32, 755–767. [Google Scholar] [CrossRef]
- La Paro, K.M.; Pianta, R.C. Predicting children’s competence in the early school years: A meta-analytic review. Rev. Educ. Res. 2000, 70, 443–484. [Google Scholar] [CrossRef]
- Lee, V.E.; Burkam, D.T. Gender differences in middle grade science achievement: Subject domain, ability level, and course emphasis. Sci. Educ. 1996, 80, 613–650. [Google Scholar] [CrossRef]
- Wong, K.C.; Lam, Y.R.; Ho, L.M. The effects of schooling on gender differences. Br. Educ. Res. J. 2002, 28, 827–843. [Google Scholar] [CrossRef]
- Hedges, L.V.; Nowell, A. Changes in the black-white gap in achievement test scores. Soc. Educ. 1999, 72, 111–135. [Google Scholar] [CrossRef]
- Meece, J.L.; Jones, M.G. Gender differences in motivation and strategy use in science: Are girls rote learners? J. Res. Sci. Teach. 1996, 33, 393–406. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Dennis, A.; Bandettini, P.A.; Johansen-Berg, H. The effects of aerobic activity on brain structure. Front. Psychol. 2012, 3, 86. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, M.L.; De Groot, R.H.; Savelberg, H.H.; Van Acker, F.; Kirschner, P.A. The association between objectively measured physical activity and academic achievement in Dutch adolescents: Findings from the GOALS study. J. Sport Exerc. Psychol. 2014, 36, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Kamijo, K.; Scudder, M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev. Med. 2011, 52, S21–S28. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, M.L.; De Groot, R.H.; Van Acker, F.; Savelberg, H.H.; Kirschner, P.A. Active commuting to school, cognitive performance, and academic achievement: An observational study in Dutch adolescents using accelerometers. BMC Public Health 2014, 14, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loukas, A.; Murphy, J.L. Middle school student perceptions of school climate: Examining protective functions on subsequent adjustment problems. J. Sch. Psychol. 2007, 45, 293–309. [Google Scholar] [CrossRef]
- Creed, P.A.; Muller, J.; Patton, W. Leaving high school: The influence and consequences for psychological well-being and career-related confidence. J. Adolesc. 2003, 26, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Van Ryzin, M.J.; Gravely, A.A.; Roseth, C.J. Autonomy, belongingness, and engagement in school as contributors to adolescent psychological well-being. J. Youth Adolesc. 2009, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dupéré, V.; Dion, E.; Leventhal, T.; Archambault, I.; Crosnoe, R.; Janosz, M. High school dropout in proximal context: The triggering role of stressful life events. Child Dev. 2018, 89, e107–e122. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, L.R.; Noble, K.G.; Pediatric Imaging, N.; Study, G. Perceived stress is associated with smaller hippocampal volume in adolescence. Psychophysiology 2018, 55, e13025. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Xu, X.; Liu, J.; Fu, R.; Cui, L.; Liu, S. School adjustment of children from rural migrant families in urban China. J. Sch. Psychol. 2019, 72, 14–28. [Google Scholar] [CrossRef]
- Stroud, L.R.; Foster, E.; Papandonatos, G.D.; Handwerger, K.; Granger, D.A.; Kivlighan, K.T.; Niaura, R. Stress response and the adolescent transition: Performance versus peer rejection stressors. Dev. Psychopathol. 2009, 21, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Neville, H.J.; Stevens, C.; Pakulak, E.; Bell, T.A.; Fanning, J.; Klein, S.; Isbell, E. Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proc. Natl. Acad. Sci. USA 2013, 110, 12138–12143. [Google Scholar] [CrossRef] [Green Version]
- Conway, C.C.; Slavich, G.M.; Hammen, C. Daily stress reactivity and serotonin transporter gene (5-HTTLPR) variation: Internalizing responses to everyday stress as a possible transdiagnostic phenotype. Biol. Mood Anxiety Disord. 2014, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Blair, C.; Raver, C.C. Closing the achievement gap through modification of neurocognitive and neuroendocrine function: Results from a cluster randomized controlled trial of an innovative approach to the education of children in kindergarten. PLoS ONE 2014, 9, e112393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghadir, A.H.; Gabr, S.A.; Rizk, A.A. Physical fitness, adiposity, and diets as surrogate measures of bone health in schoolchildren: A biochemical and cross-sectional survey analysis. J. Clin. Densitom. 2018, 21, 406–419. [Google Scholar] [CrossRef]
- Monasta, L.; Lobstein, T.; Cole, T.; Vignerová, J.; Cattaneo, A. Defining overweight and obesity in pre-school children: IOTF reference or WHO standard? Obes. Rev. 2011, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- De Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the third national health and nutrition examination survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashwell, M.; Lejeune, S. Ratio of waist circumference to height may be better indicator of need for weight management. BMJ 1996, 312, 377. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Trinh, O.T.; Nguyen, N.D.; van der Ploeg, H.P.; Dibley, M.J.; Bauman, A. Test-retest repeatability and relative validity of the Global Physical Activity Questionnaire in a developing country context. J. Phys. Act. Health 2009, 6, S46–S53. [Google Scholar] [CrossRef]
- Han, T.S.; Sattar, N.; Lean, M. ABC of obesity. Assessment of obesity and its clinical implications. BMJ 2006, 333, 695–698. [Google Scholar] [CrossRef] [Green Version]
- Ashok, P.; Kharche, J.S.; Raju, R.; Godbole, G. Metabolic equivalent task assessment for physical activity in medical students. Natl. J. Physiol. Pharm. Pharmacol. 2017, 7, 236. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. Biometric standards for energy requirements in human nutrition. Sci. Mon. 1919, 8, 2–19. [Google Scholar]
- Alghadir, A.H.; Gabr, S.A.; Iqbal, Z.A.; Al-Eisa, E. Association of physical activity, vitamin E levels, and total antioxidant capacity with academic performance and executive functions of adolescents. BMC Pediatr. 2019, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Iqbal, Z.A.; Gabr, S.A. Differences among Saudi and expatriate students: Body composition indices, sitting time associated with media use and physical activity pattern. Int. J. Environ. Res. Public Health 2020, 17, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworska, N.; Courtright, A.K.; De Somma, E.; MacQueen, G.M.; MacMaster, F.P. Aerobic exercise in depressed youth: A feasibility and clinical outcomes pilot. Early Interv. Psychiatry 2019, 13, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frese, E.M.; Fick, A.; Sadowsky, H.S. Blood pressure measurement guidelines for physical therapists. Cardiopulm. Phys. Ther. J. 2011, 22, 5. [Google Scholar] [CrossRef]
- Sharman, J.; LaGerche, A. Exercise blood pressure: Clinical relevance and correct measurement. J. Hum. Hypertens. 2015, 29, 351–358. [Google Scholar] [CrossRef]
- Grant, J.A.; Joseph, A.N.; Campagna, P.D. The prediction of VO2max: A comparison of 7 indirect tests of aerobic power. J. Strength Cond. Res. 1999, 13, 346–352. [Google Scholar] [CrossRef]
- Medicine, A.C.O.S. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Karila, C.; de Blic, J.; Waernessyckle, S.; Benoist, M.-R.; Scheinmann, P. Cardiopulmonary exercise testing in children: An individualized protocol for workload increase. Chest 2001, 120, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Aly, F.A.; Alghadir, A.H.; Gabr, S.A. Adiponectin response to supervised aerobic training in type II diabetic patients. Asian Biomed. 2014, 8, 597–602. [Google Scholar] [CrossRef] [Green Version]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Nutrition, Energy, and Human Performance; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Larry, K.W.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise, Human Kinetics; Courier Companies Inc.: Champaign, IL, USA, 2012. [Google Scholar]
- Widmaier, E.P.; Raff, H.; Strang, K.T.; Vander, A.J. Vander’s Human Physiology: The Mechanisms of Body Function; McGraw-Hill Higher Education: Boston, MA, USA, 2008. [Google Scholar]
- Peronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar]
- Ratamess, N.A.; Falvo, M.J.; Mangine, G.T.; Hoffman, J.R.; Faigenbaum, A.D.; Kang, J. The effect of rest interval length on metabolic responses to the bench press exercise. Eur. J. Appl. Physiol. 2007, 100, 1–17. [Google Scholar] [CrossRef]
- Bull, R.; Scerif, G. Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Dev. Neuropsychol. 2001, 19, 273–293. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayes, S.D.; Calhoun, S.L.; Bixler, E.O.; Zimmerman, D.N. IQ and neuropsychological predictors of academic achievement. Learn. Individ. Differ 2009, 19, 238–241. [Google Scholar] [CrossRef]
- Sanchez-Lopez, M.; Pardo-Guijarro, M.J.; Del Campo, D.G.; Silva, P.; Martinez-Andres, M.; Gulias-Gonzalez, R.; Diez-Fernandez, A.; Franquelo-Morales, P.; Martinez-Vizcaino, V. Physical activity intervention (Movi-Kids) on improving academic achievement and adiposity in preschoolers with or without attention deficit hyperactivity disorder: Study protocol for a randomized controlled trial. Trials 2015, 16, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voyer, D.; Voyer, S.D. Gender differences in scholastic achievement: A meta-analysis. Psychol. Bull. 2014, 140, 1174–1204. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.; Granger, D.; Peters Razza, R. Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Dev. 2005, 76, 554–567. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Karst, H.; Joels, M. Corticosteroid hormones in the central stress response: Quick-and-slow. Front. Neuroendocrinol. 2008, 29, 268–272. [Google Scholar] [CrossRef]
- Fox, E.; Zougkou, K.; Ridgewell, A.; Garner, K. The serotonin transporter gene alters sensitivity to attention bias modification: Evidence for a plasticity gene. Biol. Psychiatry 2011, 70, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, P.; Cases, O.; Maroteaux, L. The developmental role of serotonin: News from mouse molecular genetics. Nature reviews. Neuroscience 2003, 4, 1002–1012. [Google Scholar]
- Kristjansson, A.L.; Sigfusdottir, I.D.; Allegrante, J.P.; Helgason, A.R. Adolescent Health Behavior, Contentment in School, and Academic Achievement. Am. J. Health Behav. 2009, 33, 69–79. [Google Scholar]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature reviews. Neuroscience 2009, 10, 434–445. [Google Scholar] [PubMed]
- Heim, C.; Nemeroff, C.B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biol. Psychiatry 2001, 49, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- Trickett, P.K.; Negriff, S.; Ji, J.Y.; Peckins, M. Child maltreatment and adolescent development. J. Res. Adolesc. 2011, 21, 3–20. [Google Scholar] [CrossRef]
- Childs, E.; de Wit, H. Regular exercise is associated with emotional resilience to acute stress in healthy adults. Front. Physiol. 2014, 5, 161. [Google Scholar] [CrossRef]
- Melancon, M.O.; Lorrain, D.; Dionne, I.J. Changes in markers of brain serotonin activity in response to chronic exercise in senior men. Appl. Physiol. Nutr. Metab. 2014, 39, 1250–1256. [Google Scholar] [CrossRef]
- Anderson, D.E.; Bell, T.A.; Awh, E. Polymorphisms in the 5-HTTLPR gene mediate storage capacity of visual working memory. J. Cogn. Neurosci. 2012, 24, 1069–1076. [Google Scholar] [CrossRef]
- Salminen, L.E.; Schofield, P.R.; Pierce, K.D.; Lane, E.M.; Heaps, J.M.; Bolzenius, J.D.; Baker, L.M.; Luo, X.; Paul, R.H. Triallelic relationships between the serotonin transporter polymorphism and cognition among healthy older adults. Int. J. Neurosci. 2014, 124, 331–338. [Google Scholar] [CrossRef]
- Borg, J.; Henningsson, S.; Saijo, T.; Inoue, M.; Bah, J.; Westberg, L.; Lundberg, J.; Jovanovic, H.; Andree, B.; Nordstrom, A.L.; et al. Serotonin transporter genotype is associated with cognitive performance but not regional 5-HT1A receptor binding in humans. Int. J. Neuropsychopharmacol. 2009, 12, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Hillman, C.H.; Pontifex, M.B.; Motl, R.W.; O’Leary, K.C.; Johnson, C.R.; Scudder, M.R.; Raine, L.B.; Castelli, D.M. From ERPs to academics. Dev. Cognit. Neurosci. 2012, 2, S90–S98. [Google Scholar] [CrossRef] [Green Version]
- Olsson, S.J.; Borjesson, M.; Ekblom-Bak, E.; Hemmingsson, E.; Hellenius, M.L.; Kallings, L.V. Effects of the Swedish physical activity on prescription model on health-related quality of life in overweight older adults: A randomised controlled trial. BMC Public Health 2015, 15, 687. [Google Scholar] [CrossRef] [Green Version]
- Guinhouya, B.C.; Lemdani, M.; Vilhelm, C.; Hubert, H.; Apete, G.K.; Durocher, A. How school time physical activity is the “big one” for daily activity among schoolchildren: A semi-experimental approach. J. Phys. Act. Health 2009, 6, 510–519. [Google Scholar] [CrossRef]
- Kriemler, S.; Zahner, L.; Schindler, C.; Meyer, U.; Hartmann, T.; Hebestreit, H.; Brunner-La Rocca, H.P.; van Mechelen, W.; Puder, J.J. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: Cluster randomised controlled trial. BMJ 2010, 340, c785. [Google Scholar] [CrossRef] [Green Version]
- Kuepper-Nybelen, J.; Lamerz, A.; Bruning, N.; Hebebrand, J.; Herpertz-Dahlmann, B.; Brenner, H. Major differences in prevalence of overweight according to nationality in preschool children living in Germany: Determinants and public health implications. Arch. Dis. Child. 2005, 90, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.A.; Fulton, J.E.; Lee, S.M.; Maynard, L.M.; Brown, D.R.; Kohl, H.W., III; Dietz, W.H. Physical education and academic achievement in elementary school: Data from the early childhood longitudinal study. Am. J. Public Health 2008, 98, 721–727. [Google Scholar] [CrossRef]
- Fox, C.K.; Barr-Anderson, D.; Neumark-Sztainer, D.; Wall, M. Physical activity and sports team participation: Associations with academic outcomes in middle school and high school students. J. Sch. Health 2010, 80, 31–37. [Google Scholar] [CrossRef]
- Marks, G.N. Accounting for the gender gaps in student performance in reading and mathematics: Evidence from 31 countries. Oxf. Rev. Educ. 2008, 34, 89–109. [Google Scholar] [CrossRef]
- Skaalvik, E.M. Gender differences in general academic self-esteem and in success expectations on defined academic problems. J. Educ. Psychol. 1990, 82, 593–598. [Google Scholar] [CrossRef]
- Skaalvik, E.M.; Rankin, R.J. Math, verbal, and general academic self-concept—The internal external frame of reference model and gender differences in self-concept structure. J. Educ. Psychol. 1990, 82, 546–554. [Google Scholar] [CrossRef]
- Goodwin, I. Debunking a gender gap. Phys. Today 1997, 50, 69. [Google Scholar] [CrossRef]
- Manuck, S.B.; Flory, J.D.; Ferrell, R.E.; Muldoon, M.F. Socio-economic status covaries with central nervous system serotonergic responsivity as a function of allelic variation in the serotonin transporter gene-linked polymorphic region. Psychoneuroendocrinology 2004, 29, 651–668. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Agnew, L.L. Cytokines and depression: Findings, issues, and treatment implications. Rev. Neurosci. 2011, 22, 295–302. [Google Scholar] [CrossRef] [PubMed]
Parameters | Boys | Girls | Total |
---|---|---|---|
(n = 90, 60%) | (n = 60; 40%) | (n = 150) | |
Age (years) | 16.5 ± 0.76 | 16.11 ± 0.8 | 16.3 ± 0.78 |
BMI (kg/m2) | 23.8 ± 1.47 | 22.46 ± 1.18 | 23.13 ± 1.32 |
Waist (cm) | 86.6 ± 8.34 | 84.4 ± 9.3 | 85.5 ± 8.82 |
Hips (cm) | 88.12 ± 9.17 | 88.7 ± 10.4 | 8.41 ± 9.8 |
WHR | 1.0 ± 0.11 | 0.97 ± 0.14 | 0.98 ± 0.12 |
MP (beat·min−1) | 7.5 ± 10.7 | 81.6 ± 10.8 | 79.5 ± 12.0 |
Systolic BP (mmHg) | 102 ± 1.3 | 106 ± 2.7 | 104 ± 2.0 |
Diastolic BP (mmHg) | 89.2 ± 2.86 | 84.7 ± 4.5 | 86.95 ± 3.7 |
Mean HbA1c value, %(SD) | 2.98 ± 0.41 | 3.4 ± 0.85 | 3.19 ± 0.63 |
VO2 (mL/min) | 1769 ± 237 | 1778 ± 239 | 1780 ± 243 |
VCO2 (mL/min) | 1582 ± 214 | 1579 ± 212 | 1586 ± 215 |
RER (VCO2/VO2) | 0.87 ± 0.05 | 0.86 ± 0.06 | 0.89 ± 0.06 |
VO2 max (ml·kg·min−1) | 42.8 ± 3.7 | 43.4 ± 4.3 | 42.9 ± 4.1 |
Parameters | Mild (n = 40; 27%) (≤500 METs-min/week) | Moderate (n = 60; 40%) (500–2500 METs-min/week) | Active (n = 50; 33%) (≥2500 METs-min/week) | |||
---|---|---|---|---|---|---|
Boys | Girls | Boys | Girls | Boys | Girls | |
(n = 25) | (n = 15) | (n = 45) a | (n = 15) b | (n = 30) b,c | (n = 20) b,c | |
LTPA (MET-H/week) | 61.52 ± 7.2 | 65.1 ± 9.7 | 104 ± 11.4 | 100 ± 10.4 | 157.13 ± 10.1 | 155.2 ± 10.5 |
BMR (kcal/day) | 1.99 ± 0.44 | 1.8 ± 0.48 | 3.42 ± 0.62 | 3.56 ± 0.8 | 4.13 ± 0.57 | 3.7 ± 0.58 |
TDEE (kcal/day) | 2.2 ± 0.65 | 1.82 ± 0.41 | 3.47 ± 0.8 | 3.16 ± 0.73 | 4.36 ± 0.67 | 4.63 ± 0.87 |
VO2 max (mL/kg*min) | 29.5 ± 2.7 | 31.7 ± 3.8 | 37.8 ± 3.4 | 36.9 ± 6.1 | 42.5 ± 3.5 | 45.3 ± 2.1 |
Cortisol (pg/mL) | 58.6 ± 6.9 | 60.3 ± 7.3 | 42.1 ± 7.9 | 36.1 ± 5.9 | 29.1 ± 8.0 | 23.6 ± 6.9 |
Serotonin (ng/mL) | 38.44 ± 9.8 | 33.6 ± 1.1 | 46.8 ± 8.3 | 39.8 ± 9.8 | 59.25 ± 6.9 | 48.6 ± 6.4 |
Parameters | Mild (n = 40; 27%) (≤500 METs-min/week) | Moderate (n = 60; 40%) (500–2500 METs-min/week) | Active (n = 50; 33%) (≥2500 METs-min/week) | |||
---|---|---|---|---|---|---|
Boys | Girls | Boys | Girls | Boys | Girls | |
(n = 25) | (n = 15) | (n = 45) b,c | (n = 15) b,c | (n = 30) b,c | (n = 20) b,c | |
Academic Achievement | 4.68 ± 0.71 | 4.96 ± 0.77 | 6.2 ± 0.34 | 7.2 ± 0.77 | 7.3 ± 0.29 | 7.6 ± 0.36 |
Executive function | 4.74 ± 0.68 | 4.3 ± 0.65 | 6.3 ± 0.26 | 6.86 ± 0.66 | 6.9 ± 0.43 | 6.98 ± 0.74 |
Parameters | AA Score | MP Score | ||||||
---|---|---|---|---|---|---|---|---|
R-Squared | T-Value | VIF | p-Value | R-Squared | T-Value | VIF | p-Value | |
Mean HbA1c value | 0.984 | −1.9752 | 11.45 | 0.245 | 0.86 | −1.674 | 12.86 | 0.130 |
VO2 max | 0.962 | −1.9894 | 14.56 | 0.176 | 0.961 | −1.328 | 13.96 | 0.147 |
LTPA (MET-H/week) | 0.94 | 1.612 | 12.4 | 0.157 | 0.974 | 1.354 | 13.23 | 0.125 |
BMR (kcal/day) | 0.987 | −1.389 | 11.8 | 0.258 | 0.981 | −1.769 | 9.15 | 0.231 |
TDEE (kcal/day) | 0.941 | 0.9781 | 8.63 | 0.215 | 0.897 | 0.239 | 10.3 | 0.124 |
Waist (cm) | 0.86 | 1.421 | 16.73 | 0.145 | 0.974 | 1.974 | 15.98 | 0.324 |
Hips (cm) | 0.927 | −1.356 | 13.49 | 0.113 | 0.869 | −1.743 | 12.78 | 0.298 |
WHR | 0.9716 | 0.456 | 12.31 | 0.178 | 0.897 | 0.9186 | 13.87 | 0.182 |
Age | 0.34 | 4.783 | 1.45 | 0.003 | 0.48 | 3.451 | 2.95 | 0.002 |
Gender | 0.56 | 5.375 | 4.2 | 0.002 | 0.78 | 2.789 | 3.789 | 0.001 |
BMI (kg/m2) | 0.38 | 4.17 | 3.731 | 0.001 | 0.58 | 4.125 | 1.974 | 0.005 |
Cortisol (pg/mL) | 0.64 | 7.56 | 3.1 | 0.004 | 0.672 | 6.315 | 2.561 | 0.001 |
Serotonin (ng/mL) | 0.372 | 6.78 | 1.39 | 0.001 | 0.741 | 5.7821 | 3.891 | 0.002 |
Physical activity score | 0.692 | 6.75 | 1.98 | 0.003 | 0.497 | 5.897 | 2.89 | 0.003 |
Parameters | Academic Achievement | Mathematics Performance |
---|---|---|
β (R2) a | β (R2) b | |
Age | 25.8 (−0. 45) | 15.4 (−0.41) |
Gender | 6.1 (0.041) | 8.1 (0.028) |
BMI (kg/m2) | 24.5 (−0.071) | 18.1 (−0.061) |
Cortisol (pg/mL) | 11.9 (−0.059) | 12.5 (−0.063) |
Serotonin (ng/mL) | 9.3 (0.037) | 7.5 (0.064) |
Physical activity score | 0.28 (0.036) | 0.31 (0.089) |
ΣR2 (%) | 77.9 | 61.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghadir, A.H.; Gabr, S.A.; Iqbal, Z.A. Effect of Gender, Physical Activity and Stress-Related Hormones on Adolescent’s Academic Achievements. Int. J. Environ. Res. Public Health 2020, 17, 4143. https://doi.org/10.3390/ijerph17114143
Alghadir AH, Gabr SA, Iqbal ZA. Effect of Gender, Physical Activity and Stress-Related Hormones on Adolescent’s Academic Achievements. International Journal of Environmental Research and Public Health. 2020; 17(11):4143. https://doi.org/10.3390/ijerph17114143
Chicago/Turabian StyleAlghadir, Ahmad H., Sami A. Gabr, and Zaheen A. Iqbal. 2020. "Effect of Gender, Physical Activity and Stress-Related Hormones on Adolescent’s Academic Achievements" International Journal of Environmental Research and Public Health 17, no. 11: 4143. https://doi.org/10.3390/ijerph17114143
APA StyleAlghadir, A. H., Gabr, S. A., & Iqbal, Z. A. (2020). Effect of Gender, Physical Activity and Stress-Related Hormones on Adolescent’s Academic Achievements. International Journal of Environmental Research and Public Health, 17(11), 4143. https://doi.org/10.3390/ijerph17114143