Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, A.; Yick, K.-L.; Ng, S.; Yip, J. Case study on the effects of fit and material of sports gloves on hand performance. Appl. Ergon. 2019, 75, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Leyk, D.; Gorges, W.; Ridder, D.; Wunderlich, M.; Rüther, T.; Sievert, A.; Essfeld, D. Hand-grip strength of young men, women and highly trained female athletes. Eur. J. Appl. Physiol. 2007, 99, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Turnes, T.; Silva, B.A.; Kons, R.L.; Detanico, D. Is bilateral deficit in handgrip strength associated with performance in specific judo tasks? J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Ng, P.K.; Saptari, A.; Jee, K.S. Ergonomics aspects of knob designs: A literature review. TIES 2015, 16, 86–98. [Google Scholar] [CrossRef]
- Toselli, S.; Badicu, G.; Bragonzoni, L.; Spiga, F.; Mazzuca, P.; Campa, F. Comparison of the effect of different resistance training frequencies on phase angle and handgrip strength in obese women: A randomized controlled trial. IJERPH 2020, 17, 1163. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Silva, A.; Toselli, S. Changes in phase angle and handgrip strength induced by suspension training in older women. Int. J. Sports Med. 2018, 39, 442–449. [Google Scholar] [CrossRef]
- Trivic, T.; Eliseev, S.; Tabakov, S.; Raonic, V.; Casals, C.; Jahic, D.; Jaksic, D.; Drid, P. Somatotypes and hand-grip strength analysis of elite cadet sambo athletes. Medicine 2020, 99. [Google Scholar] [CrossRef]
- Lee, K.-S.; Jung, M. Ergonomic evaluation of biomechanical hand function. Saf. Health Work 2014, 6, 9–17. [Google Scholar] [CrossRef] [Green Version]
- AlAhmari, K.; Silvian, S.P.; Reddy, R.S.; Kakaraparthi, V.N.; Ahmad, I.; Alam, M.M. Hand grip strength determination for healthy males in Saudi Arabia: A study of the relationship with age, body mass index, hand length and forearm circumference using a hand-held dynamometer. J. Int. Med. Res. 2017, 45, 540–548. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; López-Jaramillo, P.; Avezum, A.; Orlandini, A.; Serón, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prospective Urban Rural Epidemiology (PURE) study investigators. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Oliveira, V.H.F.; Wiechmann, S.L.; Narciso, A.M.; Deminice, R. Knee extension and flexion strength asymmetry in Human Immunodeficiency Virus positive subjects: A cross-sectional study. Braz. J. Phys. Ther. 2017, 21, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Oksuzyan, A.; Demakakos, P.; Shkolnikova, M.; Thinggaard, M.; Vaupel, J.W.; Christensen, K.; Shkolnikov, V.M. Handgrip strength and its prognostic value for mortality in Moscow, Denmark, and England. PLoS ONE 2017, 12, e0182684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabelo, N.D.D.A.; Lucareli, P.R.G. Do hip muscle weakness and dynamic knee valgus matter for the clinical evaluation and decision-making process in patients with patellofemoral pain? Braz. J. Phys. Ther. 2017, 22, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Matos, S.; Pitanga, F.; Maia, H. Handgrip strength as discriminator of sarcopenia and sarcopenia obesity in adults of the ELSA-Brasil. Eur. J. Public Health 2018, 28 (Suppl. 4). [Google Scholar] [CrossRef]
- Ekşioğlu, M. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms. Appl. Ergon. 2016, 52, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, D.; Cahalane, E.; Conroy, R.; Fitzgerald, D.; Hardiman, O. Maximum voluntary isometric contraction: Reference values and clinical application. Amyotroph. Lateral Scler. 2007, 8, 47–55. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and pinch strength: Normative data for adults. Arch. Phys. Med. Rehabil. 1985, 66, 69–74. [Google Scholar]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Sağiroğlu, I.; Kurt, C.; Kurt Ömürlü, I.; Çatikkaş, F. Does hand grip strength change with gender? The traditional method vs. the allometric normalisation method. EJPESS 2016, 2, 84–93. [Google Scholar]
- Chelliah, K.; Rizam, R. Association of dominant hand grip strength with anthropometric measurements and Body Mass Index. Int. J. Pharm. Sci. Res. 2018, 10, 525–531. [Google Scholar]
- Andersen-Ranberg, K.; Petersen, I.; Frederiksen, H.; MacKenbach, J.P.; Christensen, K. Cross-national differences in grip strength among 50+ year-old Europeans: Results from the SHARE study. Eur. J. Ageing 2009, 6, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Amo-Setién, F.J.; Leal-Costa, C.; Abajas-Bustillo, R.; González-Lamuño, D.; Redondo-Figuero, C. Factors associated with grip strength among adolescents: An observational study. J. Hand Ther. 2020, 33, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kamon, E.; Goldfuss, A.J. In-plant evaluation of the muscle strength of workers. Am. Ind. Hyg. Assoc. J. 1978, 39, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Peolsson, A.; Massy-Westropp, N.; Desrosiers, J.; Bear-Lehman, J. Reference values for adult grip strength measured with a Jamar dynamometer: A descriptive meta-analysis. Physiotherapy 2006, 92, 11–15. [Google Scholar] [CrossRef]
- Malina, R.M.; Zavaleta, A.N.; Little, B.B. Body size, fatness, and leanness of Mexican American children in Brownsville, Texas: Changes between 1972 and 1983. Am. J. Public Health 1987, 77, 573–577. [Google Scholar] [CrossRef]
- Häger, C.K.; Rösblad, B. Norms for grip strength in children aged 4-16 years. Acta Paediatr. 2002, 91, 617–625. [Google Scholar] [CrossRef]
- Singh, A.P.; Koley, S.; Sandhu, J.S. Association of hand grip strength with some anthropometric traits in collegiate population of Amritsar. Orient. Anthr. A Bi-Annual Int. J. Sci. Man 2009, 9, 99–110. [Google Scholar] [CrossRef]
- Koley, S.; Yadav, M.K. An association of hand grip strength with some anthropometric variables in Indian Cricket players. Phys. Educ. Sport 2009, 7, 113–123. [Google Scholar]
- Koley, S.; Singh, A.P. Pal an association of dominant hand grip strength with some anthropometric variables in indian collegiate population. Anthr. Anz. 2009, 67, 21–28. [Google Scholar] [CrossRef]
- Jürimäe, T.; Hurbo, T.; Jürimäe, J. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children. HOMO 2009, 60, 225–238. [Google Scholar] [CrossRef]
- Kaur, M. Age-related changes in hand grip strength among rural and urban Haryanvi Jat females. HOMO 2009, 60, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Kallman, D.A.; Plato, C.C.; Tobin, J.D. The Role of muscle loss in the age-related decline of grip strength: Cross-sectional and longitudinal perspectives. J. Gerontol. 1990, 45, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Vallow, J.; Preston, A.; Cooper, R.G. Predicting ‘normal’ grip strength for rheumatoid arthritis patients. Rheumatology 1999, 38, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anakwe, R.E.; Huntley, J.; McEachan, J.E. Grip strength and forearm circumference in a healthy population. J. Hand Surg. Eur. Vol. 2007, 32, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Incel, N.A.; Ceceli, E.; Durukan, P.B.; Erdem, H.R.; Yorgancioglu, Z.R. Grip strength: Effect of hand dominance. Singap. Med. J. 2002, 43, 234–237. [Google Scholar]
- Dolcos, F.; Rice, H.J.; Cabeza, R. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002, 26, 819–825. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip strength: A summary of studies comparing dominant and nondominant limb measurements. Percept. Mot. Ski. 2003, 96, 728–730. [Google Scholar] [CrossRef]
- Roy, E.A.; Bryden, P.; Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 2003, 53, 315–317. [Google Scholar] [CrossRef]
- Noguchi, T.; Demura, S.; Aoki, H. Superiority of the dominant and nondominant hands in static strength and controlled force exertion. Percept. Mot. Ski. 2009, 109, 339–346. [Google Scholar] [CrossRef]
- Aoki, H.; Demura, S. Laterality and accuracy of force exertion in elbow flexion. Adv. Phys. Educ. 2017, 7, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C. Handedness and cerebral asymmetry: An evolutionary perspective. In The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres; Hugdahl, K., Westerhausen, R., Eds.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Annett, M. Handedness as a continuous variable with dextral shift: Sex, generation, and family handedness in subgroups of left- and right-handers. Behav. Genet. 1994, 24, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Pontier, M.; Dufour, A.-B.; Møller, A.P. Frequency-dependent maintenance of left handedness in humans. Proc. R. Soc. B Boil. Sci. 1996, 263, 1627–1633. [Google Scholar] [CrossRef]
- Bryden, M.; Roy, E.; Manus, I.; Mc Bulman-Fleming, M. On the Genetics and Measurement of Human Handedness. Laterality 1997, 2, 317–336. [Google Scholar] [CrossRef] [PubMed]
- McManus, C. Right Hand Left Hand: The Origins of Asymmetry in Brains, Bodies, Atoms and Culture; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Porac, C.; Coren, S.; Duncan, P. Life-span Age Trends in Laterality. J. Gerontol. 1980, 35, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, N.; Galaburda, A.M. Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology; MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Halpern, D.F.; Coren, S. Handedness and life span. N. Engl. J. Med. 1991, 324, 998. [Google Scholar] [CrossRef] [PubMed]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Hove, UK, 2002. [Google Scholar]
- Musalek, M. Skilled performance tests and their use in diagnosing handedness and footedness at children of lower school age 8–10. Front. Psychol. 2015, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Roy, E.; Rohr, L.; Bryden, P. Using hand performance measures to predict handedness. Laterality 2006, 11, 1–14. [Google Scholar] [CrossRef]
- Whittington, J.E.; Richards, P.N. The stability of children’s laterality prevalences and their relationship to measures of performance. Br. J. Educ. Psychol. 1987, 57, 45–55. [Google Scholar] [CrossRef]
- Sommer, I.E.C.; Aleman, A.; Somers, M.; Boks, M.P.M.; Kahn, R.S. Sex differences in handedness, asymmetry of the Planum Temporale and functional language lateralization. Brain Res. 2008, 1206, 76–88. [Google Scholar] [CrossRef]
- Johnston, D.W.; Nicholls, M.E.R.; Shah, M.; Shields, M.A. Nature’s experiment? Handedness and early childhood development. Demography 2009, 46, 281–301. [Google Scholar] [CrossRef]
- Shahida, M.N.; Zawiah, M.S.; Case, K.; Shalahim, N.S.M. The relationship between anthropometry and hand grip strength among elderly Malaysians. Int. J. Ind. Ergon. 2015, 50, 17–25. [Google Scholar] [CrossRef]
- Rønn, P.F.; Andersen, G.S.; Lauritzen, T.; Christensen, D.L.; Aadahl, M.; Carstensen, B.; Jørgensen, M.E. Ethnic differences in anthropometric measures and abdominal fat distribution: A cross-sectional pooled study in Inuit, Africans and Europeans. J. Epidemiol. Community Health 2017, 71, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Mongraw-Chaffin, M.; Golden, S.H.; Allison, M.; Ding, J.; Ouyang, P.; Schreiner, P.J.; Szklo, M.; Woodward, M.; Young, J.H.; Anderson, C.A.M.; et al. The sex and race specific relationship between anthropometry and body fat composition determined from computed tomography: Evidence from the multi-ethnic study of atherosclerosis. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S.; et al. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, R. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Stöckel, T.; Vater, C. Hand preference patterns in expert basketball players: Interrelations between basketball-specific and everyday life behavior. Hum. Mov. Sci. 2014, 38, 143–151. [Google Scholar] [CrossRef]
- Gualdi-Russo, E.; Rinaldo, N.; Pasini, A.; Zaccagni, L. Hand preference and performance in basketball tasks. Int. J. Environ. Res. Public Health 2019, 16, 4336. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.J.; Roache, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Rinaldo, N.; Gualdi-Russo, E. Anthropometric techniques. Annali Online Università Ferrara Sez. Didattica Formazione Docente 2015, 10, 275–289. [Google Scholar]
- Centers for Disease Control and Prevention. National Youth fitness Survey (NYFS) Muscle Strength (grip) Procedures Manual. 2012. Available online: www.cdc.gov/nchs/data/nnyfs/Handgrip_Muscle_Strength.pdf (accessed on 7 October 2019).
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods; Lawrence Radiation Laboratory: Berkeley, CA, USA, 1956. [Google Scholar]
- James, W.P.T.; Leach, R.; Kalamara, E.; Shayeghi, M. The worldwide obesity epidemic. Obes. Res. 2001, 9, 228S–233S. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Frisancho, A. Anthropometric Standards: An. Interactive Nutritional Reference of Body Size and Body Composition for Children and Adults, 2nd ed.; University of Michigan Press: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Zaccagni, L.; Barbieri, D.; Gualdi-Russo, E. Body composition and physical activity in Italian university students. J. Transl. Med. 2014, 12, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toselli, S.; Gualdi-Russo, E.; Mazzuca, P.; Campa, F. Ethnic differences in body composition, sociodemographic characteristics and lifestyle in people with type 2 diabetes mellitus living in Italy. Endocrine 2019, 65, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Lunaheredia, E.; Martinpena, G.; Ruiz-Galiana, J. Handgrip dynamometry in healthy adults. Clin. Nutr. 2005, 24, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Hjelmborg, J.; Mortensen, J.; McGue, M.; Vaupel, J.W.; Christensen, K. Age trajectories of grip strength: Cross-sectional and longitudinal data among 8,342 danes aged 46 to 102. Ann. Epidemiol. 2006, 16, 554–562. [Google Scholar] [CrossRef]
- Chilima, D.M.; Ismail, S.J. Nutrition and handgrip strength of older adults in rural Malawi. Public Health Nutr. 2001, 4, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Koley, S.; Kaur, N.; Sandhu, J. A study on hand grip strength in female labourers of Jalandhar, Punjab, India. J. LIFE Sci. 2009, 1, 57–62. [Google Scholar] [CrossRef]
- Massy-Westropp, N.; Gill, T.K.; Taylor, A.W.; Bohannon, R.; Hill, C.L. Hand grip strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef] [Green Version]
- Vuoksimaa, E.; Koskenvuo, M.; Rose, R.J.; Kaprio, J. Origins of handedness: A nationwide study of 30161 adults. Neuropsychologia 2009, 47, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Annett, M. Handedness and cerebral dominance: The right shift theory. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 459–469. [Google Scholar] [CrossRef]
- Al Lawati, I.; Al Maskari, H.; Ma, S. “I am a lefty in a right-handed world”: Qualitative analysis of clinical learning experience of left-handed undergraduate dental students. Eur. J. Dent. Educ. 2019, 23, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Marcori, A.J.; Monteiro, P.H.M.; Okazaki, V.H.A. Changing handedness: What can we learn from preference shift studies? Neurosci. Biobehav. Rev. 2019, 107, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Innes, E. Handgrip strength testing: A review of the literature. Aust. Occup. Ther. J. 1999, 46, 120–140. [Google Scholar] [CrossRef]
- Nicolay, C.W.; Walker, A.L. Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. Int. J. Ind. Ergon. 2005, 35, 605–618. [Google Scholar] [CrossRef]
- Werle, S.; Goldhahn, J.; Drerup, S.; Sprott, H.; Simmen, B.; Herren, D.B. Age- and gender-specific normative data of grip and pinch strength in a healthy adult Swiss Population. J. Hand Surg. Eur. Vol. 2009, 34, 76–84. [Google Scholar] [CrossRef]
- Koley, S.; Singh, A.P. Effect of hand dominance in grip strength in collegiate population of Amritsar, Punjab, India. Anthropologist 2010, 12, 13–16. [Google Scholar] [CrossRef]
- McGrath, R.; Hackney, K.J.; Ratamess, N.A.; Vincent, B.M.; Clark, B.C.; Kraemer, W.J. Absolute and body mass index normalized handgrip strength percentiles by gender, ethnicity, and hand dominance in Americans. Adv. Geriatr. Med. Res. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Dopsaj, M.; Ivanović, J.; Blagojević, M.; Vučković, G. Descriptive, functional and sexual dimorphism of explosive isometric hand grip force in healthy university students in Serbia. Facta Univ. Ser. Phys. Educ. Sport. 2009, 7, 125–139. [Google Scholar]
- Günther, C.M.; Burger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip strength in healthy caucasian adults: Reference values. J. Hand Surg. 2008, 33, 558–565. [Google Scholar] [CrossRef]
- Chun, S.-W.; Kim, W.; Choi, K.H. Comparison between grip strength and grip strength divided by body weight in their relationship with metabolic syndrome and quality of life in the elderly. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Schmidt, R.T.; Toews, J.V. Grip strength as measured by the Jamar dynamometer. Arch. Phys. Med. Rehabil. 1970, 51, 321–327. [Google Scholar] [PubMed]
- Crosby, C.A.; Wehbé, M.A. Hand strength: Normative values. J. Hand Surg. 1994, 19, 665–670. [Google Scholar] [CrossRef]
- Lee, K.-S.; Hwang, J. Investigation of grip strength by various body postures and gender in Korean adults. Work 2019, 62, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; De Luca, C.J.; Erim, Z. Hand dominance and motor unit firing behavior. J. Neurophysiol. 1998, 80, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Deora, H.; Tripathi, M.; Yagnick, N.S.; Deora, S.; Mohindra, S.; Batish, A. Changing hands: Why being ambidextrous is a trait that needs to be acquired and nurtured in neurosurgery. World Neurosurg. 2019, 122, 487–490. [Google Scholar] [CrossRef]
- Özcan, A.; Tulum, Z.; Pınar, L.; Başkurt, F. Comparison of pressure pain threshold, grip strength, dexterity and touch pressure of dominant and non-dominant hands within and between right- and left-handed subjects. J. Korean Med. Sci. 2004, 19, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, B.; Ghosh, A.; Prasad, C.; Krishnan, K.; Chandrasharma, B. Age and anthropometric traits predict handgrip strength in healthy normals. J. Hand Microsurg. 2010, 2, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Otten, L.; Bosy-Westphal, A.; Ordemann, J.; Rothkegel, E.; Stobäus, N.; Elbelt, U.; Norman, K. Abdominal fat distribution differently affects muscle strength of the upper and lower extremities in women. Eur. J. Clin. Nutr. 2016, 71, 372–376. [Google Scholar] [CrossRef]
- Ploegmakers, J.J.; Hepping, A.M.; Geertzen, J.H.; Bulstra, S.K.; Stevens, M. Grip strength is strongly associated with height, weight and gender in childhood: A cross sectional study of 2241 children and adolescents providing reference values. J. Physiother. 2013, 59, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Keevil, V.L.; Luben, R.N.; Dalzell, N.; Hayat, S.; Sayer, A.A.; Wareham, N.J.; Khaw, K.-T. Cross-sectional associations between different measures of obesity and muscle strength in men and women in a British cohort study. J. Nutr. Health Aging 2015, 19, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Detanico, D.; Arins, F.B.; Pupo, J.D.; Dos Santos, S.G. Strength parameters in judo athletes: An approach using hand dominance and weight categories. Hum. Mov. 2012, 13, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Malina, R.M.; Katzmarzyk, P.T. Validity of the body mass index as an indicator of the risk and presence of overweight in adolescents. Am. J. Clin. Nutr. 1999, 70, 131S–136S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzigalli, L.; Cremasco, M.M.; La Torre, A.; Rainoldi, A.; Benis, R. Hand grip strength and anthropometric characteristics in Italian female national basketball teams. J. Sports Med. Phys. Fit. 2016, 57, 521–528. [Google Scholar]
- Haynes, E.; DeBeliso, M. The relationship between CrossFit performance and grip strength. Turk. J. Kinesiol. 2019, 5, 15–21. [Google Scholar] [CrossRef]
- Jakobsen, L.H.; Rask, I.K.; Kondrup, J. Validation of handgrip strength and endurance as a measure of physical function and quality of life in healthy subjects and patients. Nutrition 2010, 26, 542–550. [Google Scholar] [CrossRef]
- Angst, F.; Drerup, S.; Werle, S.; Herren, D.; Simmen, B.R.; Goldhahn, J. Prediction of grip and key pinch strength in 978 healthy subjects. BMC Musculoskelet. Disord. 2010, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2006, 36, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.-D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef]
- Norman, K.; Kirchner, H.; Freudenreich, M.; Ockenga, J.; Lochs, H.; Pirlich, M. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease—A randomized controlled trial. Clin. Nutr. 2008, 27, 48–56. [Google Scholar] [CrossRef]
Anthropometric Traits | Males | Females | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Stature (cm) | 178.0 | 7.0 | 163.6 | 6.1 | <0.0001 |
Weight (kg) | 74.9 | 11.1 | 58.2 | 8.0 | <0.0001 |
BMI (kg/m2) | 23.6 | 2.9 | 21.7 | 2.6 | <0.0001 |
WC (cm) | 79.7 | 7.8 | 69.3 | 5.4 | <0.0001 |
L MUAC (cm) | 30.4 | 3.5 | 26.5 | 2.8 | <0.0001 |
R MUAC (cm) | 30.7 | 3.3 | 26.6 | 2.7 | <0.0001 |
D MUAC (cm) | 30.6 | 3.3 | 26.6 | 2.8 | <0.0001 |
L Triceps skinfold (mm) | 9.8 | 4.8 | 17.0 | 5.1 | <0.0001 a |
R Triceps skinfold (mm) | 9.9 | 5.0 | 16.9 | 5.2 | <0.0001 a |
D Triceps skinfold (mm) | 9.9 | 4.9 | 16.9 | 5.1 | <0.0001 a |
D TUA (cm2) | 75.4 | 16.6 | 56.5 | 12.4 | <0.0001 |
D UMA (cm2) | 61.2 | 14.8 | 36.1 | 7.6 | <0.0001 |
D UFA (cm2) | 14.4 | 7.2 | 20.4 | 7.5 | <0.0001 |
D AFI (%) | 18.9 | 7.7 | 35.5 | 8.0 | <0.0001 |
%F | 14.4 | 4.4 | 25.8 | 4.5 | <0.0001 |
FM (kg) | 11.0 | 4.5 | 15.2 | 4.3 | <0.0001 |
FFM (kg) | 63.9 | 8.3 | 43.0 | 4.9 | <0.0001 |
L HGS (kg) | 43.9 | 8.1 | 27.5 | 5.0 | <0.0001 |
R HGS (kg) | 45.9 | 8.3 | 28.8 | 4.8 | <0.0001 |
D HGS (kg) | 45.7 | 8.2 | 28.9 | 4.7 | <0.0001 |
D HGS/weight | 0.6 | 0.1 | 0.5 | 0.1 | <0.0001 |
Sports and PA | |||||
Sport amount (h/week) | 7.0 | 4.0 | 6.1 | 4.1 | 0.0169 |
Sport practice (years) | 9.2 | 5.2 | 8.9 | 5.2 | 0.5458 |
PA (METs) | 4827.6 | 3268.7 | 3621.4 | 3300.5 | 0.0005 |
N | % | N | % | p | |
Weight status | <0.0001 | ||||
Under weight | 5 | 1.4 | 16 | 8.5 | |
Normal weight | 269 | 75.6 | 155 | 82.4 | |
Overweight | 70 | 19.7 | 15 | 8.0 | |
Obese | 12 | 3.4 | 2 | 1.1 | |
Fat status | 0.0065 | ||||
Under fat | 23 | 6.5 | 26 | 13.8 | |
Normal fat | 295 | 82.8 | 152 | 80.9 | |
Overfat | 34 | 9.6 | 10 | 5.3 | |
Very overfat | 4 | 1.1 | 0 | 0.0 | |
Distribution by categories of sports by METs | 0.9595 | ||||
METs < 2 | 11 | 3.1 | 6 | 3.3 | |
2 ≤ METs < 4 | 8 | 2.3 | 3 | 1.6 | |
4 ≤ METs < 6.5 | 74 | 20.8 | 40 | 21.2 | |
METs ≥ 6.5 | 262 | 73.8 | 139 | 73.9 | |
Distribution by categories of PA by METs | 0.0463 | ||||
Light | 13 | 3.6 | 11 | 5.6 | |
Moderate | 70 | 19.8 | 54 | 28.9 | |
Intense | 273 | 76.7 | 123 | 65.5 |
Handedness | Males | Females | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
R score | 45.0 | 42.7 | 54.2 | 37.7 | 0.0347 |
Frequencies | N | % | N | % | 0.0075 |
Right-handed | 212 | 59.6 | 137 | 72.9 | |
Left-handed | 18 | 5.1 | 8 | 4.3 | |
Ambidextrous | 126 | 35.4 | 43 | 22.9 |
Handedness Category | Right Handgrip Strength | Left Handgrip Strength | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Males | |||||
Right-handed | 46.0 | 8.8 | 43.6 | 8.4 | <0.0001 a |
Left-handed | 40.9 | 6.3 | 43.3 | 6.3 | 0.0468 b |
Ambidextrous | 46.6 | 7.9 | 44.6 | 8.3 | <0.0001 a |
Females | |||||
Right-handed | 29.0 | 4.9 | 27.4 | 5.2 | <0.0001 a |
Left-handed | 25.3 | 5.8 | 26.6 | 4.9 | 0.2489 b |
Ambidextrous | 28.8 | 4.1 | 28.0 | 4.5 | 0.0693 a |
Anthropometric Traits (Males) | 1st Tercile (Strength ≤ 42.0 kg) | 3rd Tercile (Strength ≥ 49.5 kg) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Stature (cm) | 176.0 | 6.6 | 180.5 | 6.6 | 0.0000 |
Weight (kg) | 69.5 | 8.8 | 80.9 | 10.9 | 0.0000 |
BMI (kg/m2) | 22.4 | 2.5 | 24.8 | 2.9 | 0.0000 |
WC (cm) | 76.8 | 6.8 | 82.1 | 8.6 | 0.0000 |
D Triceps skinfold (mm) | 9.7 | 4.6 | 9.9 | 5.8 | 0.1969 a |
D MUAC (cm) | 28.9 | 2.8 | 32.5 | 3.2 | 0.0000 |
D TUA (cm2) | 67.5 | 13.1 | 85.0 | 17.3 | 0.0000 |
D UMA (cm2) | 54.5 | 11.1 | 70.2 | 15.9 | 0.0000 |
D UFA (cm2) | 13.3 | 6.1 | 15.1 | 8.6 | 0.0647 |
D AFI (%) | 19.3 | 7.2 | 17.6 | 8.3 | 0.0963 |
%F | 14.0 | 4.3 | 14.4 | 4.7 | 0.5185 |
FM (kg) | 9.9 | 3.8 | 11.9 | 5.2 | 0.0008 |
FFM (kg) | 59.6 | 6.5 | 69.2 | 7.8 | 0.0000 |
Sports and PA | |||||
Sport amount (h/week) | 6.6 | 3.7 | 7.4 | 4.3 | 0.1149 |
Sport practice (years) | 10.1 | 5.1 | 8.2 | 5.2 | 0.0062 |
PA (METs) | 4431.9 | 2912.9 | 4853.0 | 3050.2 | 0.3625 |
% | % | p | |||
Weight status | 0.0001 | ||||
Underweight | 4 | 3.2 | 0 | 0.0 | |
Normal weight | 103 | 83.2 | 75 | 63.6 | |
Overweight | 16 | 12.8 | 36 | 30.5 | |
Obese | 1 | 0.8 | 7 | 5.9 | |
Fat status | 0.8168 | ||||
Under fat | 10 | 8.0 | 7 | 6.0 | |
Normal fat | 102 | 82.4 | 95 | 81.2 | |
Overfat | 11 | 8.8 | 14 | 12.0 | |
Obese | 1 | 0.8 | 1 | 0.9 | |
Distribution by categories of sports by METs | 0.0038 | ||||
METs < 2 | 4 | 3.2 | 4 | 3.4 | |
2 ≤ METs < 4 | 0 | 0.0 | 4 | 3.4 | |
4 ≤ METs < 6.5 | 18 | 14.5 | 35 | 29.7 | |
METs ≥ 6.5 | 102 | 82.3 | 75 | 63.6 | |
Distribution by categories of PA by METs | 0.7627 | ||||
Light | 3 | 2.7 | 2 | 2.1 | |
Moderate | 28 | 22.7 | 23 | 19.1 | |
Intense | 93 | 74.7 | 93 | 78.7 | |
Handedness categories | 0.2947 | ||||
Right-handed | 75 | 60.8 | 76 | 64.4 | |
Left-handed | 10 | 8.0 | 4 | 3.4 | |
Ambidextrous | 39 | 31.2 | 38 | 32.2 |
Anthropometric Traits (Females) | 1st Tercile (Strength ≤ 26.8 kg) | 3rd Tercile (Strength ≥ 30.5 kg) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Stature (cm) | 162.0 | 6.4 | 165.1 | 6.2 | 0.0062 |
Weight (kg) | 55.6 | 6.1 | 61.8 | 8.7 | 0.0000 |
BMI (kg/m2) | 21.2 | 2.1 | 22.6 | 2.8 | 0.0015 |
WC (cm) | 68.2 | 4.4 | 70.7 | 5.2 | 0.0037 |
D Triceps skinfold (mm) | 15.5 | 4.8 | 18.0 | 4.9 | 0.0026 a |
D MUAC (cm) | 25.7 | 2.1 | 27.5 | 2.8 | 0.0002 |
D TUA (cm2) | 52.9 | 8.9 | 60.5 | 13.4 | 0.0007 |
D UMA (cm2) | 34.2 | 6.4 | 38.4 | 8.3 | 0.0036 |
D UFA (cm2) | 18.7 | 6.0 | 22.1 | 7.8 | 0.0107 |
D AFI (%) | 35.0 | 8.4 | 36.2 | 7.3 | 0.4105 |
%F | 25.2 | 4.5 | 26.6 | 4.0 | 0.0597 |
FM (kg) | 14.1 | 3.4 | 16.7 | 4.5 | 0.0006 |
FFM (kg) | 41.5 | 4.3 | 45.1 | 5.1 | 0.0000 |
Sports and PA | |||||
Sport amount (h/week) | 5.4 | 3.6 | 7.0 | 3.7 | 0.0153 |
Sport practice (yrs) | 9.0 | 5.6 | 9.1 | 5.2 | 0.9536 |
PA (METs) | 2910.4 | 3080.9 | 3908.1 | 3373.6 | 0.1571 |
% | % | p | |||
Weight status | 0.3834 | ||||
Under weight | 4 | 6.9 | 4 | 6.0 | |
Normal weight | 51 | 87.9 | 54 | 80.6 | |
Overweight | 3 | 5.2 | 7 | 10.4 | |
Obese | 0 | 0.0 | 2 | 3.0 | |
Fat status | 0.1797 | ||||
Under fat | 11 | 18.3 | 5 | 7.5 | |
Normal fat | 45 | 78.3 | 59 | 88.1 | |
Overfat | 2 | 3.3 | 3 | 4.5 | |
Obese | 0 | 0.0 | 0 | 0.0 | |
Distribution by categories of sports by METs | 0.4536 | ||||
METs < 2 | 1 | 1.8 | 2 | 3.0 | |
2 ≤ METs < 4 | 2 | 3.5 | 0 | 0.0 | |
4 ≤ METs < 6.5 | 9 | 15.8 | 12 | 17.9 | |
METs ≥ 6.5 | 46 | 78.9 | 53 | 79.1 | |
Distribution by categories of PA by METs | 0.0948 | ||||
Light | 3 | 5.9 | 4 | 6.8 | |
Moderate | 22 | 38.2 | 14 | 20.3 | |
Intense | 32 | 55.9 | 49 | 72.9 | |
Handedness categories | 0.1770 | ||||
Right-handed | 39 | 67.2 | 49 | 73.1 | |
Left-handed | 5 | 8.6 | 1 | 1.5 | |
Ambidextrous | 14 | 24.1 | 17 | 25.4 |
Dominant Handgrip Strength | Males | Females |
---|---|---|
Stature | 0.229 * | 0.245 * |
Weight | 0.436 * | 0.392 * |
BMI | 0.372 * | 0.293 * |
WC | 0.272 * | 0.270 * |
D MUAC | 0.502 * | 0.319 * |
D Triceps skinfold (Log) | −0.047 | 0.201 * |
D TUA | 0.501 * | 0.317 * |
D UMA | 0.522 * | 0.275 * |
D UFA | 0.089 | 0.232 * |
D AFI | −0.125 * | 0.076 |
%F | 0.037 | 0.162 |
FM | 0.176 * | 0.300 * |
FFM | 0.490 * | 0.375 * |
Predictor Variables | Dominant Handgrip Strength | ||
---|---|---|---|
β | t | p | |
Sex (male) | 0.1980 | 3.4323 | 0.0007 |
D UMA | 0.3463 | 5.9100 | 0.0000 |
D AFI | 0.1345 | 2.1342 | 0.0335 |
FM | −0.1784 | −3.6116 | 0.0003 |
FFM | 0.4420 | 6.2158 | 0.0000 |
R2 | 0.7491 | ||
R2 adjusted | 0.7457 | ||
p | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccagni, L.; Toselli, S.; Bramanti, B.; Gualdi-Russo, E.; Mongillo, J.; Rinaldo, N. Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. Int. J. Environ. Res. Public Health 2020, 17, 4273. https://doi.org/10.3390/ijerph17124273
Zaccagni L, Toselli S, Bramanti B, Gualdi-Russo E, Mongillo J, Rinaldo N. Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. International Journal of Environmental Research and Public Health. 2020; 17(12):4273. https://doi.org/10.3390/ijerph17124273
Chicago/Turabian StyleZaccagni, Luciana, Stefania Toselli, Barbara Bramanti, Emanuela Gualdi-Russo, Jessica Mongillo, and Natascia Rinaldo. 2020. "Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality" International Journal of Environmental Research and Public Health 17, no. 12: 4273. https://doi.org/10.3390/ijerph17124273
APA StyleZaccagni, L., Toselli, S., Bramanti, B., Gualdi-Russo, E., Mongillo, J., & Rinaldo, N. (2020). Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. International Journal of Environmental Research and Public Health, 17(12), 4273. https://doi.org/10.3390/ijerph17124273