Associations of Heart Rate Measures during Physical Education with Academic Performance and Executive Function in Children: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Materials and Measures
2.2.1. Heart Rate Data
2.2.2. Academic Performance
2.2.3. Executive Function
2.2.4. Potential Confounders
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V.; et al. Role of physical Activity and Sedentary Behavior in the Mental Health of preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sport Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical Activity, Cognition, and Brain Outcomes. Med. Sci. Sport Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkenborghs, S.R.; Noetel, M.; Hillman, C.H.; Nilsson, M.; Smith, J.J.; Ortega, F.B.; Lubans, D.R. The Impact of physical Activity on Brain Structure and Function in Youth: A Systematic Review. Pediatrics 2019, 144, e20184032. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.; Logan, N.; Shigeta, T. A Review of Acute physical Activity Effects on Brain and Cognition in Children. Transl. J. Am. Coll. Sport Med. 2019, 4, 132. [Google Scholar]
- Best, J.R. Effects of physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Dev. Rev. 2010, 30, 331–551. [Google Scholar] [CrossRef]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Verburgh, L.; Königs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Cortés Pascual, A.; Moyano Muñoz, N.; Quílez Robres, A. The Relationship Between Executive Functions and Academic performance in primary Education: Review and Meta-Analysis. Front. Psychol. 2019. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Ciaccioni, S.; Thomas, G.; Vergeer, I. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychol. Sport Exerc. 2019, 42, 146–155. [Google Scholar] [CrossRef]
- Singh, A.S.; Saliasi, E.; van den Berg, V.; Uijtdewilligen, L.; de Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019, 53, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.; Santos, D.A.; Hillman, C.H.; Sardinha, L.B. How does academic achievement relate to cardiorespiratory fitness, self-reported physical activity and objectively reported physical activity: A systematic review in children and adolescents aged 6–18 years. Br. J. Sports Med. 2018, 52, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazou, S.; Pesce, C.; Lakes, K.; Smiley-Oyen, A. More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. Psychol. 2019, 17, 153–178. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Van praag, H. Neurogenesis and Exercise: Past and Future Directions. Neuromol. Med. 2008, 10, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Croce, R.; Ben-Soussan, T.D.; Vazou, S.; McCullick, B.; Tomporowski, P.D.; Horvat, M. Variability of practice as an interface between motor and cognitive development. Int. J. Sport Exerc. Psychol. 2019, 17, 133–152. [Google Scholar] [CrossRef]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4 to 12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, C.; Smith, L.; Charman, S.; Harvey, S.; Savory, L.; Fairclough, S.; Govus, A. physical education contributes to total physical activity levels and predominantly in higher intensity physical activity categories. Eur. Phys. Educ. Rev. 2018, 24, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.A.S.; Chaput, J.-P.; Katzmarzyk, P.T.; Fogelholm, M.; Hu, G.; Maher, C.; Olds, T.; Onywera, V.; Sarmiento, O.L.; Standage, M.; et al. Physical Education Classes, physical Activity, and Sedentary Behavior in Children. Med. Sci. Sport Exerc. 2018, 50, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively Engaging Chronic physical Activity, But Not Aerobic Exercise, Affects Executive Functions in primary School Children: A Group-Randomized Controlled Trial. J. Sport Exerc. Psychol. 2015, 37, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Van der Fels, I.M.J.; Smith, J.; de Bruijn, A.G.M.; Bosker, R.J.; Königs, M.; Oosterlaan, J.; Visscher, C.; Hartman, E. Relations between gross motor skills and executive functions, controlling for the role of information processing and lapses of attention in 8–10 year old children. PLoS ONE 2019, 14, e0224219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudd, J.R.; O’Callaghan, L.; Williams, J. Physical Education pedagogies Built upon Theories of Movement Learning: How Can Environmental Constraints Be Manipulated to Improve Children’s Executive Function and Self-Regulation Skills? Int. J. Environ. Res. Public Health 2019, 16, 1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, S.A.; Fulton, J.E.; Lee, S.M.; Maynard, L.M.; Brown, D.R.; Kohl, H.W.; Dietz, W.H. Physical Education and Academic Achievement in Elementary School: Data From the Early Childhood Longitudinal Study. Am. J. Public Health 2008, 98, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Rasberry, C.N.; Lee, S.M.; Robin, L.; Laris, B.A.; Russell, L.A.; Coyle, K.K.; Nihiser, A.J. The association between school-based physical activity, including physical education, and academic performance: A systematic review of the literature. Prev. Med. (Balt.) 2011, 52, S10–S20. [Google Scholar] [CrossRef]
- Pindus, D.M.; Drollette, E.S.; Raine, L.B.; Kao, S.-C.; Khan, N.; Westfall, D.R.; Hamill, M.; Shorin, R.; Calobrisi, E.; John, D.; et al. Moving fast, thinking fast: The relations of physical activity levels and bouts to neuroelectric indices of inhibitory control in preadolescents. J. Sport Heal. Sci. 2019, 8, 301–314. [Google Scholar] [CrossRef]
- Castelli, D.M.; Hillman, C.H.; Hirsch, J.; Hirsch, A.; Drollette, E. FIT Kids: Time in target heart zone and cognitive performance. Prev. Med. (Balt.) 2011, 52, S55–S59. [Google Scholar] [CrossRef]
- Coe, D.P.; Pivarnik, J.M.; Womack, C.J.; Reeves, M.J.; Malina, R.M. Effect of physical Education and Activity Levels on Academic Achievement in Children. Med. Sci. Sport Exerc. 2006, 38, 1515–1519. [Google Scholar] [CrossRef] [Green Version]
- Booth, J.N.; Leary, S.D.; Joinson, C.; Ness, A.R.; Tomporowski, P.D.; Boyle, J.M.; Reilly, J.J. Associations between objectively measured physical activity and academic attainment in adolescents from a UK cohort. Br. J. Sports Med. 2014, 48, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020. [Google Scholar] [CrossRef]
- Sirard, J.R.; Pate, R.R. Physical Activity Assessment in Children and Adolescents. Sport Med. 2001, 31, 439–454. [Google Scholar] [CrossRef]
- Freedson, P.S.; Miller, K. Objective monitoring of physical activity using motion sensors and heart rate. Res. Q. Exerc. Sport 2000, 71, S21–S29. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R. Validity and reliability issues in objective monitoring of physical activity. Res. Q. Exerc. Sport 2000, 71, S30–S36. [Google Scholar] [CrossRef] [PubMed]
- Eckard, M.L.; Kuwabara, H.C.; Van Camp, C.M. Using heart rate as a physical activity metric. J. Appl. Behav. Anal. 2019, 52, 718–732. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Cicone, Z.S.; Holmes, C.J.; Fedewa, M.V.; MacDonald, H.V.; Esco, M.R. Age-Based prediction of Maximal Heart Rate in Children and Adolescents: A Systematic Review and Meta-Analysis. Res. Q. Exerc. Sport 2019, 90, 417–428. [Google Scholar] [CrossRef]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J. The Delis-Kaplan Executive Function System: A Review. Can. J. Sch. Psychol. 2005. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Benítez-porres, J.; López-Fernández, I.; Raya, J.F.; Álvarez Carnero, S.; Alvero-Cruz, J.R.; Álvarez Carnero, E. Reliability and Validity of the PAQ-C Questionnaire to Assess physical Activity in Children. J. Sch. Health 2016, 86, 677–685. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Lima, R.A.; Pfeiffer, K.A.; Møller, N.C.; Andersen, L.B.; Bugge, A. Physical Activity and Sedentary Time Are Positively Associated With Academic Performance: A 3-Year Longitudinal Study. J. Phys. Act. Heal. 2019, 16, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Tejero-González, C.M.; Martinez-Gomez, D.; Cabanas-Sánchez, V.; Fernández-Santos, J.R.; Conde-Caveda, J.; Sallis, J.F.; Veiga, O.L. Objectively measured physical activity has a negative but weak association with academic performance in children and adolescents. Acta Paediatr. 2014, 103, e501–e506. [Google Scholar] [CrossRef]
- Kwak, L.; Kremers, S.P.J.; Bergman, P.; Ruiz, J.R.; Rizzo, N.S.; Sjöström, M. Associations between physical activity, fitness, and academic achievement. J. Pediatr. 2009, 155, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Kyan, A.; Takakura, M.; Miyagi, M. Mediating effect of aerobic fitness on the association between physical activity and academic achievement among adolescents: A cross-sectional study in Okinawa, Japan. J. Sports Sci. 2019, 37, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, M.M.; Martin, C.K.; Han, H.; Newton, R.; Sothern, M.; Webber, L.S.; Davis, A.B.; Williamson, D.A. Adiposity and Physical Activity Are Not Related to Academic Achievement in School-Aged Children. J. Dev. Behav. Pediatr. 2012, 33, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.; Lewis, L.; Katzmarzyk, P.T.; Dumuid, D.; Cassidy, L.; Olds, T. The associations between physical activity, sedentary behaviour and academic performance. J. Sci. Med. Sport 2016, 19, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Pindus, D.M.; Drollette, E.S.; Scudder, M.R.; Khan, N.A.; Raine, L.B.; Sherar, L.B.; Esliger, D.W.; Kramer, A.F.; Hillman, C.H. Moderate-to-vigorous physical activity, indices of cognitive control, and academic achievement in preadolescents. J. Pediatr. 2016, 173, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Herold, F.; Müller, P.; Gronwald, T.; Müller, N.G. Dose–Response Matters! A perspective on the Exercise prescription in Exercise-Cognition Research. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Van der Niet, A.G.; Smith, J.; Scherder, E.J.A.; Oosterlaan, J.; Hartman, E.; Visscher, C. Associations between daily physical activity and executive functioning in primary school-aged children. J. Sci. Med. Sport 2015, 18, 673–677. [Google Scholar] [CrossRef]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Migueles, J.H.; Molina-Garcia, P.; Rodriguez-Ayllon, M.; Henriksson, P.; Pontifex, M.B.; Catena, A.; Ortega, F.B. Physical Fitness, Physical Activity, and the Executive Function in Children with Overweight and Obesity. J. Pediatr. 2019, 1–8. [Google Scholar] [CrossRef]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Hillman, C.H.; Lubans, D.R. High-Intensity Interval Training for Cognitive and Mental Health in Adolescents. Med. Sci. Sport Exerc. 2016, 48, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; McAuley, E.; Erickson, K.I.; Liu-Ambrose, T.; Kramer, A.F. On mindful and mindless physical activity and executive function: A response to Diamond and Ling (2016). Dev. Cogn. Neurosci. 2019, 37, 100529. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Ling, D.S. Aerobic-Exercise and resistance-training interventions have been among the least effective ways to improve executive functions of any method tried thus far. Dev. Cogn. Neurosci. 2019, 37, 100572. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.R.; Ribeiro, M.L.S.; Melo, T.; de Tarso Maciel-Pinheiro, P.; Guimarães, T.T.; Araújo, N.B.; Ribeiro, S.; Deslandes, A.C. Motor Coordination Correlates with Academic Achievement and Cognitive Function in Children. Front. Psychol. 2016, 7, 318. [Google Scholar] [CrossRef]
Outcomes | All (n = 130) | Fourth Grade (n = 51) | Fifth Grade (n = 40) | Sixth Grade (n = 39) | ||||
---|---|---|---|---|---|---|---|---|
Mean or n | SD or % | Mean or n | SD or % | Mean or n | SD or % | Mean or n | SD or % | |
Age (years) | 10.69 | 0.96 | 9.78 | 0.41 | 10.83 | 0.59 | 11.74 | 0.59 |
Weight (kg) | 39.32 | 8.94 | 35.19 | 7.66 | 41.18 | 9.06 | 42.83 | 8.40 |
Height (m) | 1.48 | 0.09 | 1.41 | 0.07 | 1.50 | 0.08 | 1.54 | 0.06 |
Body mass index (kg/m²) | 17.91 | 2.84 | 17.70 | 3.08 | 18.10 | 2.65 | 17.98 | 2.77 |
Overweight and obesity (n, %) | 26 | 20.00 | 12 | 23.50 | 9 | 22.50 | 5 | 12.80 |
Parental education university level (n, %) | 29 | 22.30 | 9 | 17.60 | 10 | 25.00 | 10 | 25.60 |
Physical activity levels (PAQ-C) | 2.86 | 0.53 | 2.72 | 0.59 | 2.95 | 0.50 | 2.97 | 0.42 |
Heart rate measures | ||||||||
Minimum HR (bpm) | 90.06 | 11.07 | 92.51 | 11.28 | 90.37 | 9.60 | 86.53 | 11.52 |
Average HR (bpm) | 140.44 | 8.47 | 142.64 | 7.77 | 140.54 | 7.78 | 137.46 | 9.30 |
Maximum HR (bpm) | 190.82 | 9.43 | 192.77 | 7.87 | 190.71 | 9.29 | 188.38 | 11.00 |
RangeHR (bpm) | 100.77 | 11.66 | 100.27 | 11.70 | 100.35 | 10.72 | 101.85 | 12.71 |
Edwards’ TRIMP (min) | 105.55 | 26.52 | 112.71 | 25.21 | 104.14 | 22.96 | 97.64 | 29.57 |
Calories burned (kcal) | 390.50 | 68.35 | 414.97 | 61.18 | 382.83 | 57.08 | 366.38 | 78.26 |
Heart rate zones (min × average/lesson) | ||||||||
Very light (50–60% of HRmax) | 10.25 | 4.17 | 10.28 | 4.06 | 10.21 | 4.37 | 10.24 | 4.22 |
Light (60–70% of HRmax) | 13.64 | 3.51 | 13.30 | 2.65 | 14.32 | 4.36 | 13.38 | 3.51 |
Moderate (70–80% of HRmax) | 11.13 | 3.51 | 12.15 | 3.21 | 10.96 | 3.51 | 9.98 | 3.59 |
Hard (80–90% of HRmax) | 6.71 | 3.73 | 7.70 | 3.75 | 6.41 | 3.86 | 5.71 | 3.33 |
Very hard (90–100% of HRmax) | 1.56 | 2.19 | 1.71 | 2.40 | 1.35 | 1.98 | 1.57 | 2.15 |
Moderate + Hard + Very hard | 19.40 | 7.73 | 21.56 | 7.29 | 18.72 | 7.50 | 17.26 | 7.99 |
Total sensor wear time (min) | 43.29 | 5.83 | 45.15 | 5.14 | 43.26 | 4.46 | 40.88 | 7.05 |
Academic performance (0–10) | ||||||||
Maths | 6.54 | 1.41 | 6.31 | 1.32 | 6.90 | 1.53 | 6.46 | 1.35 |
Spanish language | 7.04 | 1.16 | 7.02 | 1.05 | 7.27 | 1.18 | 6.82 | 1.28 |
Catalan language | 7.17 | 1.24 | 7.12 | 0.97 | 7.40 | 1.17 | 7.00 | 1.57 |
Physical education | 8.12 | 1.03 | 8.20 | 0.75 | 8.05 | 1.01 | 8.10 | 1.33 |
GPA | 7.22 | 0.92 | 7.16 | 0.70 | 7.41 | 0.90 | 7.10 | 1.16 |
Executive function | ||||||||
Cognitive flexibility (s) | ||||||||
Trail Making Test | ||||||||
Condition 1: Visual Scanning | 69.08 | 7.69 | 69.43 | 6.47 | 71.25 | 6.43 | 66.41 | 9.53 |
Condition 2: Number Sequencing | 60.11 | 8.63 | 59.90 | 8.28 | 60.08 | 9.34 | 60.41 | 8.53 |
Condition 3: Letter Sequencing | 68.90 | 6.42 | 69.02 | 6.20 | 70.58 | 5.57 | 67.03 | 7.13 |
Condition 4: Number–Letter Switching | 140.58 | 39.91 | 134.02 | 38.53 | 154.85 | 33.24 | 134.51 | 44.83 |
Condition 5: Motor Speed | 63.02 | 9.14 | 64.73 | 7.76 | 63.95 | 8.20 | 59.82 | 10.96 |
4-2 (condition time difference) ‡ | 80.47 | 36.52 | 74.12 | 36.14 | 94.78 | 29.22 | 74.10 | 40.25 |
Inhibition (s) | ||||||||
Stroop Test | ||||||||
Condition 1: Word reading | 69.28 | 9.11 | 70.43 | 8.88 | 66.60 | 7.54 | 70.54 | 10.43 |
Condition 2: Color naming | 53.15 | 11.26 | 51.75 | 9.74 | 53.10 | 12.68 | 55.03 | 11.58 |
Condition 3: Named color-word | 28.02 | 7.72 | 28.51 | 6.93 | 28.20 | 9.39 | 27.21 | 6.90 |
Interference score (3-1 conditions) ‡ | 41.26 | 10.41 | 41.92 | 9.72 | 38.40 | 12.43 | 43.33 | 8.45 |
Physical Education Lessons | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Heart rate measures | ||||||||
Minimum HR (bpm) | 86.97 | 21.30 | 90.35 | 16.00 | 86.78 | 15.85 | 79.65 | 34.23 |
Average HR (bpm) | 134.75 | 20.87 | 140.61 | 13.73 | 139.30 | 10.85 | 122.19 | 49.56 |
Maximum HR (bpm) | 182.52 | 25.52 | 190.86 | 16.90 | 191.82 | 10.86 | 164.73 | 66.54 |
Range HR (bpm) | 95.55 | 21.62 | 100.51 | 18.13 | 105.05 | 16.33 | 85.08 | 37.07 |
Edwards’ TRIMP (min) | 82.35 | 42.28 | 106.66 | 38.78 | 107.28 | 31.77 | 98.15 | 53.57 |
Calories burned (kcal) | 322.81 | 115.01 | 396.82 | 100.28 | 399.94 | 83.43 | 351.06 | 170.28 |
Heart rate zones (min × average/lesson) | ||||||||
Very light (50–60% of HRmax) | 11.21 | 6.59 | 9.02 | 6.13 | 10.90 | 5.80 | 7.43 | 6.40 |
Light (60–70% of HRmax) | 12.03 | 5.52 | 13.24 | 5.43 | 14.22 | 5.06 | 11.49 | 7.46 |
Moderate (70–80% of HRmax) | 8.58 | 5.83 | 10.93 | 5.08 | 11.45 | 4.59 | 10.50 | 6.51 |
Hard (80–90% of HRmax) | 4.41 | 4.91 | 7.24 | 4.83 | 6.58 | 4.58 | 6.72 | 6.03 |
Very hard (90–100% of HRmax) | 0.74 | 1.86 | 1.88 | 3.01 | 1.45 | 3.06 | 1.87 | 3.90 |
Moderate + Hard + Very hard | 13.73 | 3.93 | 20.05 | 4.55 | 19.48 | 5.00 | 19.09 | 4.33 |
Total sensor wear time (min) | 36.98 | 13.07 | 42.13 | 11.61 | 44.60 | 7.22 | 38.01 | 17.49 |
Academic Performance | Maths | Spanish Language | Catalan Language | Physical Education | GPA | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | |
HR measures | ||||||||||
Minimum HR (bpm) | 0.001 | 0.823 | 0.078 | 0.392 | 0.096 | 0.299 | −0.054 | 0.559 | 0.050 | 0.589 |
Average HR (bpm) | 0.145 | 0.120 | 0.151 | 0.105 | 0.197 | 0.034 | 0.079 | 0.404 | 0.191 | 0.040 |
Maximum HR (bpm) | 0.229 | 0.012 ‡ | 0.171 | 0.063 | 0.232 | 0.012 ‡ | 0.201 | 0.029 | 0.275 | 0.002 ‡ |
Range HR (bpm) | 0.153 | 0.082 | 0.058 | 0.512 | 0.089 | 0.321 | 0.199 | 0.025 | 0.162 | 0.067 |
Edwards’ TRIMP (min) | 0.080 | 0.386 | 0.124 | 0.180 | 0.107 | 0.247 | 0.195 | 0.035 | 0.160 | 0.083 |
Calories burned (kcal) | 0.071 | 0.450 | 0.110 | 0.244 | 0.108 | 0.255 | 0.174 | 0.066 | 0.147 | 0.121 |
HR zones (min) | ||||||||||
Very light (50–60% of HRmax) | −0.162 | 0.067 | −0.146 | 0.102 | −0.115 | 0.200 | −0.035 | 0.696 | −0.156 | 0.079 |
Light (60–70% of HRmax) | 0.007 | 0.933 | 0.083 | 0.348 | 0.078 | 0.384 | 0.030 | 0.741 | 0.063 | 0.476 |
Moderate (70–80% of HRmax) | 0.041 | 0.660 | 0.081 | 0.383 | 0.094 | 0.309 | 0.082 | 0.374 | 0.095 | 0.301 |
Hard (80–90% of HRmax) | 0.099 | 0.277 | 0.169 | 0.064 | 0.115 | 0.212 | 0.192 | 0.035 | 0.183 | 0.044 |
Very hard (90–100% of HRmax) | 0.075 | 0.410 | −0.012 | 0.896 | 0.002 | 0.986 | 0.114 | 0.213 | 0.057 | 0.532 |
Moderate + Hard + Very hard | 0.089 | 0.335 | 0.116 | 0.208 | 0.099 | 0.283 | 0.164 | 0.074 | 0.149 | 0.104 |
Cognitive Flexibility | Visual Scanning | Number Sequencing | Letter Sequencing | Number–Letter Switching | Motor Speed | 4-2 (Condition Time Difference) * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | β | p | |
HR measures | ||||||||||||
Minimum HR (bpm) | −0.248 | 0.006 ‡ | −0.200 | 0.027 | −0.089 | 0.329 | −0.150 | 0.100 | −0.053 | 0.551 | −0.117 | 0.202 |
Average HR (bpm) | −0.188 | 0.043 | −0.149 | 0.109 | −0.039 | 0.671 | −0.161 | 0.085 | −0.041 | 0.653 | −0.140 | 0.134 |
Maximum HR (bpm) | −0.035 | 0.706 | −0.023 | 0.801 | 0.036 | 0.692 | −0.102 | 0.268 | −0.009 | 0.925 | −0.106 | 0.251 |
Range HR (bpm) | 0.195 | 0.027 | 0.161 | 0.068 | 0.106 | 0.227 | 0.057 | 0.520 | 0.041 | 0.635 | 0.025 | 0.783 |
Edwards’ TRIMP (min) | −0.009 | 0.924 | −0.101 | 0.272 | 0.028 | 0.758 | −0.033 | 0.726 | 0.113 | 0.212 | −0.012 | 0.900 |
Calories burned (kcal) | −0.035 | 0.710 | −0.101 | 0.282 | 0.017 | 0.855 | −0.066 | 0.490 | 0.094 | 0.310 | −0.048 | 0.617 |
HR zones (min) | ||||||||||||
Very light (50–60% of HRmax) | −0.019 | 0.836 | 0.094 | 0.293 | −0.026 | 0.766 | 0.024 | 0.790 | −0.052 | 0.548 | 0.044 | 0.965 |
Light (60–70% of HRmax) | −0.098 | 0.268 | −0.079 | 0.373 | −0.122 | 0.165 | −0.019 | 0.831 | −0.017 | 0.844 | −0.002 | 0.981 |
Moderate (70–80% of HRmax) | 0.075 | 0.419 | −0.095 | 0.303 | 0.054 | 0.553 | 0.054 | 0.556 | 0.132 | 0.141 | 0.082 | 0.377 |
Hard (80–90% of HRmax) | 0.028 | 0.757 | −0.087 | 0.338 | 0.071 | 0.430 | −0.018 | 0.841 | 0.090 | 0.313 | 0.000 | 0.996 |
Very hard (90–100% of HRmax) | −0.056 | 0.540 | −0.015 | 0.872 | 0.011 | 0.900 | −0.100 | 0.275 | 0.051 | 0.570 | −0.150 | 0.250 |
Moderate + Hard + Very hard | 0.032 | 0.732 | −0.090 | 0.328 | 0.063 | 0.491 | −0.013 | 0.887 | 0.119 | 0.186 | 0.007 | 0.941 |
Inhibition | Word Reading | Color Naming | Named Color-Word | Interference Score (3-1 Conditions) * | ||||
---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |
HR measures | ||||||||
Minimum HR (bpm) | 0.155 | 0.091 | 0.198 | 0.028 | 0.054 | 0.558 | 0.096 | 0.300 |
Average HR (bpm) | 0.100 | 0.288 | 0.278 | 0.002‡ | 0.040 | 0.669 | 0.057 | 0.543 |
Maximum HR (bpm) | −0.010 | 0.915 | 0.252 | 0.005‡ | 0.006 | 0.946 | −0.013 | 0.887 |
Range HR (bpm) | −0.146 | 0.101 | 0.013 | 0.886 | −0.044 | 0.626 | −0.095 | 0.287 |
Edwards’ TRIMP (min) | −0.043 | 0.643 | 0.064 | 0.483 | −0.021 | 0.823 | −0.022 | 0.811 |
Calories burned (kcal) | −0.005 | 0.961 | 0.057 | 0.547 | −0.028 | 0.770 | 0.017 | 0.862 |
HR zones (min) | ||||||||
Very light (50–60% of HRmax) | 0.025 | 0.779 | −0.105 | 0.236 | −0.026 | 0.772 | 0.041 | 0.646 |
Light (60–70% of HRmax) | 0.085 | 0.338 | 0.026 | 0.764 | 0.026 | 0.775 | 0.056 | 0.532 |
Moderate (70–80% of HRmax) | −0.037 | 0.692 | −0.004 | 0.967 | −0.078 | 0.401 | 0.026 | 0.783 |
Hard (80–90% of HRmax) | −0.084 | 0.362 | 0.049 | 0.591 | 0.002 | 0.986 | −0.074 | 0.419 |
Very hard (90–100% of HRmax) | −0.021 | 0.820 | 0.113 | 0.212 | 0.015 | 0.868 | −0.030 | 0.748 |
Moderate + Hard + Very hard | −0.064 | 0.491 | 0.055 | 0.550 | −0.030 | 0.746 | −0.033 | 0.719 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntaner-Mas, A.; Vidal-Conti, J.; Salmon, J.; Palou-Sampol, P. Associations of Heart Rate Measures during Physical Education with Academic Performance and Executive Function in Children: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 4307. https://doi.org/10.3390/ijerph17124307
Muntaner-Mas A, Vidal-Conti J, Salmon J, Palou-Sampol P. Associations of Heart Rate Measures during Physical Education with Academic Performance and Executive Function in Children: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2020; 17(12):4307. https://doi.org/10.3390/ijerph17124307
Chicago/Turabian StyleMuntaner-Mas, Adrià, Josep Vidal-Conti, Jo Salmon, and Pere Palou-Sampol. 2020. "Associations of Heart Rate Measures during Physical Education with Academic Performance and Executive Function in Children: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 17, no. 12: 4307. https://doi.org/10.3390/ijerph17124307
APA StyleMuntaner-Mas, A., Vidal-Conti, J., Salmon, J., & Palou-Sampol, P. (2020). Associations of Heart Rate Measures during Physical Education with Academic Performance and Executive Function in Children: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 17(12), 4307. https://doi.org/10.3390/ijerph17124307