Distribution of Geochemical Fractions of Phosphorus in Surface Sediment in Daya Bay, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Analysis
2.3. Extraction Method for Phosphorus
2.4. Statistical Analysis
3. Results
3.1. Physiochemical Properties of Surfaces Sediments
3.2. Spatial Distribution of P Species in Surface Sediments
3.3. Correlation and Principal Component Analysis
3.4. Sedimentary TOC to O-P
4. Discussion
4.1. Phosphorus species
4.2. Sedimentary Organic Carbon to Phosphorus Ratio
4.3. Bioavailable Forms of P Phosphorus
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ni, J.Y.; Lin, P.; Zhen, Y.; Yao, X.Y.; Guo, L.D. Distribution, source and chemical speciation of phosphorus in surface sediments of the central Pacific Ocean. Deep-Sea Res. 2015, 105, 74–82. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Zhang, G.L. Geochemical characteristics of phosphorus in surface sediments from the continental shelf region of the northern South China Sea. Mar. Chem. 2018, 198, 44–55. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of sea water. In The Sea, Ideas and Observations on Progress in the Study of the Seas; Hill, M.N., Ed.; Interscience: New York, NY, USA, 1963; pp. 29–77. [Google Scholar]
- Wu, M.L.; Wang, Y.S.; Wang, Y.T.; Yin, J.P.; Dong, J.D.; Jiang, Z.Y.; Sun, F.L. Scenarios of nutrient alterations and responses of phytoplankton in changing Daya Bay, South China Sea. J. Mar. Syst. 2017, 165, 1–12. [Google Scholar] [CrossRef]
- Cao, X.Y.; Zhu, J.M.; Lu, M.; Ge, C.F.; Zhou, L.M.; Yang, G.M. Phosphorus sorption behavior on sediments in Sanggou Bay related with their compositions by sequential fractionation. Ecotox. Environ. Saf. 2019, 169, 144–149. [Google Scholar] [CrossRef]
- Junior, L.C.C.; Da Costa Machado, E.; Brandini, N.; Zem, R.C.; Knoppers, B.A. Distributions of total, inorganic and organic phosphorus in surface and recent sediments of the sub-tropical and semi-pristine Guaratuba Bay estuary, SE Brazil. Environ. Earth Sci. 2014, 72, 373–386. [Google Scholar] [CrossRef]
- Yan, Y.; Gao, B.; Hao, H.; Zhou, H.D.; Lu, J. Nitrogen and phosphorus in sediments in China: A national-scale assessment and review. Sci. Total Environ. 2017, 576, 840–849. [Google Scholar]
- Barik, S.K.; Bramh, S.; Bastia, T.K.; Behera, D.; Mohanty, P.K.; Rath, P. Distribution of geochemical fractions of phosphorus and its ecological risk in sediment cores of a largest brackish water lake, South Asia. Int. J. Sediment Res. 2019, 34, 251–261. [Google Scholar] [CrossRef]
- Tang, H.J.; Ke, Z.X.; Yan, M.T.; Wang, W.J.; Nie, H.Y.; Li, B.X.; Zhang, J.P.; Xu, X.R.; Wang, J. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in Daya Bay, China. Water 2018, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S. Ecological environment changes in Daya Bay, China, from 1982–2004. Mar. Pollut. Bull. 2008, 56, 1871–1879. [Google Scholar] [CrossRef]
- Ni, Z.; Zhang, L.; Yu, S.; Jiang, Z.; Zhang, J.; Wu, Y.; Zhao, C.; Liu, S.; Zhou, C.; Huang, X. The porewater nutrient and heavy metal characteristics in sediment cores and their benthic fluxes in Daya Bay, South China. Mar. Pollut. Bull. 2017, 124, 547–554. [Google Scholar] [CrossRef]
- Li, L.; LÜ, S.H.; Cen, J.Y. Spatio-temporal variations of harmful algal blooms along the coast of Guangdong, Southern China during 1980–2016. J. Oceanol. Limnol. 2019, 37, 535–551. [Google Scholar] [CrossRef]
- Ke, Z.X.; Tan, Y.H.; Huang, L.M.; Liu, J.X.; Xiang, C.H.; Zhao, C.Y.; Zhang, J.P. Significantly depleted 15N in suspended particulate organic matter indicating a strong influence of sewage loading in Daya Bay, China. Sci. Total Environ. 2019, 650, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ni, Z.X.; Wu, Y.C.; Zhao, C.Y.; Liu, S.L.; Huang, X.P. Concentrations of porewater heavy metals, their benthic fluxes and the potential ecological risks in Daya Bay, South China. Mar. Pollut. Bull. 2020, 150, 110808. [Google Scholar] [CrossRef]
- Qu, B.X.; Song, J.M.; Yuan, H.M.; Li, X.G.; Li, N.; Duan, L.Q. Intensive anthropogenic activities had affected Daya Bay in South China Sea since the 1980s: Evidence from heavy metal contaminations. Mar. Pollut. Bull. 2018, 135, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.M.; Zhang, X.M.; Bao, L.J.; Zeng, E.Y. Modeling the fate of P, P′-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels’ inputs. Environ. Pollut. 2016, 212, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.X.; Lin, Q.; Ke, C.L.; Du, F.Y.; Gu, Y.G.; Cao, K.; Luo, X.J.; Mai, B.X. Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay, South China. Mar. Pollut. Bull. 2016, 103, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Gao, X.L.; Zhang, Y.; Xing, Q.G.; Tosi, L.; Qin, S. Geochemical characteristics of phosphorus in surface sediments of two major Chinese mariculture areas: The Laizhou Bay and the coastal waters of the Zhangzi Island. Mar. Pollut. Bull. 2014, 83, 343–351. [Google Scholar] [CrossRef]
- Li, G.; Hu, B.; Bi, J.; Leng, Q.; Xiao, C.; Yang, Z. Heavy metals distribution and contamination in surface sediments of the coastal Shandong Peninsula (Yellow Sea). Mar. Pollut. Bull. 2013, 76, 420–426. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460–1482. [Google Scholar] [CrossRef]
- Bastami, K.D.; Neyestani, M.R.; Raeisi, H.; Shafeian, E.; Baniamam, M.; Shirzadi, A.; Esmaeilzadeh, M.; Mozaffari, S.; Shahrokhi, B. Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea. Mar. Pollut. Bull. 2018, 126, 51–57. [Google Scholar] [CrossRef]
- Andrieux, F.; Aminot, A. A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Cont. Shelf Res. 1997, 17, 1229–1245. [Google Scholar] [CrossRef]
- Kang, X.M.; Song, J.M.; Yuan, H.M.; Shi, X.; Yang, W.F.; Li, X.G.; Li, N.; Duan, L.Q. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay. Estuar. Coast. Shelf Sci. 2017, 188, 127–136. [Google Scholar] [CrossRef]
- Zhou, F.X.; Gao, X.L.; Yuan, H.M.; Song, J.M.; Chen, C.T.A.; Liu, H.K.; Zhang, Y. Geochemical forms and seasonal variations of phosphorus in surface sediments of the East China Sea shelf. J. Mar. Syst. 2016, 159, 41–54. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, J.B.; Lu, D.L.; Dan, S.F.; Zhang, D.; Lan, W.L.; Kang, Z.J.; Ning, Z.M.; Cui, D.Y. Phosphorus chemical speciation and seasonal variations in surface sediments of the Maowei Sea, northern Beibu Gulf. Mar. Pollut. Bull. 2019, 141, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Yao, P.; Yu, Z.; Bianchi, T.; Zhao, B.; Pan, H.H.; Li, D. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuar. Coast. Shelf Sci. 2014, 144, 27–38. [Google Scholar] [CrossRef]
- Yang, B.; Kang, Z.J.; Lu, D.L.; Dan, S.F.; Ning, Z.M.; Lanand, W.L.; Zhong, Q.P. Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. Water 2018, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Ruttenberg, K.C.; Goni, M.A. Phosphorus distribution, C: N: P ratios, and δ13Coc in arctic, temperature, and tropical coastal sediments: Tools for characterizing bulk sedimentary organic matter. Mar. Geol. 1997, 139, 123–145. [Google Scholar] [CrossRef]
- Bramha, S.N.; Mohanty, A.K.; Padhi, R.K.; Panigrahi, S.N.; Satpathy, K.K. Phosphorus speciation in the marine sediment of Kalpakkam coast, southeast coast of India. Environ. Monit. Assess. 2014, 186, 6003–6015. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Wu, Y.; Zhang, J. Phosphorus speciation and availability in sediments off the eastern coast of Hainan Island, South China Sea. Cont. Shelf Res. 2016, 118, 111–127. [Google Scholar] [CrossRef]
- Hou, L.J.; Liu, M.; Yang, Y.; Ou, D.N.; Lin, X.; Chen, H.; Xu, S.Y. Phosphorus speciation and availability in intertidal sediments of the Yangtze Estuary, China. Appl. Geochem. 2009, 24, 120–128. [Google Scholar] [CrossRef]
- Koch, M.S.; Benzr, E.; Rudnick, D.T. Solid-phase phosphorus pools in highly organic carb on ate sediment s of Northeastern Florida Bay. Estuar. Coast. Shelf Sci. 2001, 52, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.Y.; Pan, J.M.; Liu, X.Y. Species of phosphorus in sediments from Pearl River Estuary. Mar. Environ. Sci. 2001, 20, 21–25. (In Chinese) [Google Scholar]
- He, T.; Xie, J.; Yu, H.S.; Fang, H.D. Distribution characteristics of phosphorus forms in surface sediments in the Daya Bay. Acta Sci. Nat. Univ. Sunyatseni 2010, 49, 126–131. (In Chinese) [Google Scholar]
- Liu, S.M.; Zhang, J.; Li, D.J. Phosphorus cycling in sediments of the Bohai and Yellow Seas. Estuar. Coast. Shelf Sci. 2004, 59, 209–218. [Google Scholar] [CrossRef]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Water Resources Branch, Ontario Ministry of the Environment: Toronto, ON, Canada, 1993. [Google Scholar]
- Ingall, E.D.; Cappellen, P.V. Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 1990, 54, 373–386. [Google Scholar] [CrossRef]
- Anderson, L.A.; Sarmiento, J.L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 1994, 8, 65–80. [Google Scholar] [CrossRef]
- Sekula-Wood, E.; Benitez-Nelson, C.R.; Bennett, M.A.; Thunell, R. Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, California. Glob. Biogeochem. Cycles 2012, 26, 1–15. [Google Scholar] [CrossRef]
- Song, X.Y.; Huang, L.M.; Zhang, J.L.; Huang, X.P.; Zhang, J.B.; Yin, J.Q.; Tan, Y.H.; Liu, S. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Mar. Pollut. Bull. 2004, 49, 1036–1044. [Google Scholar] [CrossRef]
- Cui, H.; Ou, Y.; Wang, L.X.; Yan, B.X.; Han, L.; Li, Y.X. Change in the Distribution of Phosphorus Fractions in Aggregates under Different Land Uses: A Case in Sanjiang Plain, Northeast China. Int. Environ. Res. Public Health 2019, 16, 212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiong, L.; Zhang, J.; Jiang, Z.; Zhao, C.; Wu, Y.; Liu, S.; Huang, X. The benthic fluxes of nutrients and the potential influences of sediment on the eutrophication in Daya Bay, South China. Mar. Pollut. Bull. 2019, 149, 110540. [Google Scholar] [CrossRef]
- Xie, L.Q.; Xie, P.; Tang, H.J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—An enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Environ. Pollut. 2003, 122, 391–399. [Google Scholar] [CrossRef]
Extraction Agent | Extraction Condition (25 °C) | P-Fraction |
---|---|---|
Step 1: 1 M MgCl2 (pH = 8.0). | Shaking for 2 h twice, wash with pure water for 2 h | Ex-P |
Step 2: 0.30 M Na-citrate 1.0 M NaHCO3 (pH 7.6), 1.125 g of Na-dithionite in 45 mL of citrate bicarbonate solution | Shaking for 8 h; wash with MgCl2 and pure water for 2 h respectively | Fe-P |
Step 3: 1 M Na-acetate buffered to pH 4 with acetic acid | Shaking for 6 h, wash with MgCl2 and pure water for 2 h, respectively | Ca-P |
Step 4: 1 M HCl | Shaking for 16 h | De-P |
Step 5: Ash at 550 °C 1 M HCl | 1 M HCl extraction for 16 h of residue ashed at 550 °C for 2 h | O-P |
Items | Depth (m) | Salinity | Temp (°C) | Eh (mv) | TN (mg/g) | TOC (mg/g) |
---|---|---|---|---|---|---|
Mean | 10.9 | 32.6 | 22.2 | −175.2 | 1.84 | 15.54 |
Max | 20.0 | 34.4 | 24.9 | −61.0 | 2.55 | 22.76 |
Min | 3.3 | 31.0 | 20.4 | −356.0 | 0.94 | 4.86 |
Ex-P | Fe-P | Ca-P | De-P | IP | O-P | TP | TN | TOC | Salinity | Temp | Eh | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ex-P | 1 | |||||||||||
Fe-P | −0.176 | 1 | ||||||||||
Ca-P | −0.189 | −0.09 | 1 | |||||||||
De-P | −0.094 | 0.306 | −0.358 | 1 | ||||||||
IP | −0.169 | 0.614 ** | 0.369 | 0.632 ** | 1 | |||||||
O-P | 0.144 | −0.394 | −0.158 | −0.029 | −0.3 | 1 | ||||||
TP | −0.112 | 0.463 * | 0.313 | 0.643 ** | 0.906 ** | 0.132 | 1 | |||||
TN | 0.385 | −0.235 | 0.024 | −0.008 | −0.054 | 0.856 ** | 0.324 | 1 | ||||
TOC | 0.349 | −0.238 | 0.122 | −0.047 | −0.021 | 0.844 ** | 0.353 | 0.989 ** | 1 | |||
Salinity | −0.014 | 0.422 | −0.328 | 0.220 | 0.131 | −0.705 ** | −0.177 | −0.650 ** | −0.708 ** | 1 | ||
Temp | −0.161 | −0.016 | 0.533* | −0.338 | 0.094 | 0.409 | 0.280 | 0.394 | 0.471 * | −0.632 ** | 1 | |
Eh | −0.376 | −0.042 | −0.330 | 0.117 | −0.207 | −0.266 | −0.333 | −0.551 * | −0.574 * | 0.359 | −0.230 | 1 |
Locations | Ex-P | Fe-P | Ca-P | De-P | O-P | I-P | TP | References |
---|---|---|---|---|---|---|---|---|
Daya Bay | 15.7 | 33.2 | 57.9 | 187.8 | 100.7 | 294.5 | 395.3 | The present study |
Central Pacific Ocean | 10.9 | 44.8 | 621.8 | 809.9 | 94.1 | 1581.4 | [1] | |
South China Sea | 43.2 | 34.9 | 127.8 | 154.1 | 115.2 | 345.8 | 461.0 | [2] |
Laizhou Bay | 10.7 | 40.7 | 60.2 | 320.0 | 62.1 | 423.6 | 493.7 | [18] |
Zhangzi Island | 13.1 | 36.6 | 31.4 | 145.4 | 49.4 | 226.0 | 275.6 | [18] |
Long Island Sound, USA | 34.9 | - | 126.4 | 178.8 | 95.9 | - | 436.0 | [20] |
Southern Caspian Sea | 46.4 | 73.5 | 158.2 | 177.9 | 79.6 | 535.8 | [21] | |
Bay of Seine | 25.3 | 42.5 | 186.4 | - | 75.5 | - | 329.0 | [22] |
East China Sea shelf (spring) | 13.8 | 21.9 | 148.0 | 153.0 | 91.7 | - | 428.4 | [24] |
East China Sea shelf (autumn) | 11.4 | 20.0 | 170.4 | 225.0 | 77.1 | - | 503.9 | [24] |
Maowei Sea, China(summer) | 15.3 | 125.2 | 57.9 | 52.6 | 156.6 | 407.6 | [25] | |
Maowei Sea, China(winter) | 16.6 | 77.1 | 33.0 | 57.3 | 113.0 | 297.0 | [25] | |
Changjiang Estuary and adjacent East China Sea inner shelf | 14.0 | 13.7 | 29.4 | 302.4 | 183.4 | 542.9 | [26] | |
Kalpakkam, India | 63.6 | 58.3 | 737 | 138.0 | 997.0 | [29] | ||
Hailan island | 29.9 | 36.1 | 131.9 | 159.1 | 119.0 | 356.9 | 475.9 | [30] |
Little Madeira Bay | 2.3 | <1 | 73.7 | - | 65.2 | - | 106.0 | [32] |
Pearl River Delta | - | 79.7 | 30.5 | 222.6 | 167.0 | 334.0 | 501.0 | [33] |
Daya Bay | 19.7 | 27.4 | 92.9 | 127.7 | 51.1 | 290.8 | 341.9 | [34] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.; Pan, C.; Gan, L.; Ke, Z.; Tang, H. Distribution of Geochemical Fractions of Phosphorus in Surface Sediment in Daya Bay, China. Int. J. Environ. Res. Public Health 2020, 17, 4430. https://doi.org/10.3390/ijerph17124430
Liao H, Pan C, Gan L, Ke Z, Tang H. Distribution of Geochemical Fractions of Phosphorus in Surface Sediment in Daya Bay, China. International Journal of Environmental Research and Public Health. 2020; 17(12):4430. https://doi.org/10.3390/ijerph17124430
Chicago/Turabian StyleLiao, Hongping, Ciguang Pan, Lian Gan, Zhixin Ke, and Huijuan Tang. 2020. "Distribution of Geochemical Fractions of Phosphorus in Surface Sediment in Daya Bay, China" International Journal of Environmental Research and Public Health 17, no. 12: 4430. https://doi.org/10.3390/ijerph17124430
APA StyleLiao, H., Pan, C., Gan, L., Ke, Z., & Tang, H. (2020). Distribution of Geochemical Fractions of Phosphorus in Surface Sediment in Daya Bay, China. International Journal of Environmental Research and Public Health, 17(12), 4430. https://doi.org/10.3390/ijerph17124430