Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation
Abstract
:1. Introduction
2. Towards a Semi-Supervised Classification Framework of Literature
2.1. Research Question and Inclusion Criteria
2.2. Board Searches and Removal of Duplicates
2.3. Text Scoring
2.4. BiLSTM-Based Active Learning
2.5. Inclusion, Perfomance and Rationality
2.6. Information Extraction and Analysis
3. Results and Discussions
3.1. Semi-Supervised Text Classification
3.2. Dengue Landscape Factors
- Land cover (LC) refers to the physical and biological cover over the land surface, including built-up areas, vegetation, water/wetlands, open land and savannah. Among them, vegetation often has an association with the vectors’ behaviours and biological cycles, which could be linked with the spatial and temporal dynamics of vectors or the potential resting and breeding sites. Water and wetlands often provide information of places of stagnant water, which are potential breeding sites for dengue vectors.
- Land use (LU) refers to a territory characterized by current and future planned functional or socio-economic purposes, including agricultural areas, commercial areas, construction areas, industrial areas, ponds, religious areas, residential areas, transport, unused areas, urban areas and rural areas. LU types not only indicate whether the areas are favourable to vector breeding, but also provide information of human behaviour and activities in the areas, the levels of human–Aedes encounters, dispersal of mosquitoes and people movement, which are significantly related to dengue epidemics.
- Topographic factors may provide a proxy of habitat suitability or climate conditions, including elevation, aspect, slope, drainage network, and flow accumulation.
- Spatially continuous land surface features include spectral indices of vegetation, water and built-up areas (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), vegetation fraction index (VFC), normalized difference water index (NDWI), and normalized difference built-up index (NDBI)). Moreover, land surface temperature (LST) refers to a measure of radiative skin temperature of the land surface, which is a significant factor affecting the dengue transmission.
3.3. Satellite Earth Observation Data
4. Possible Future Directions: Landscape Patterns, Satellite Sensors and Deep Learning
4.1. In Terms of Landscape Patterns
4.2. In Terms of Satellite Sensors
4.3. In Terms of Deep Learning
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Board Searches
No. | Search Terms | WS | SD | Scopus | PubMed |
---|---|---|---|---|---|
1 | dengue AND dwelling | 266 | 7 | 66 | 19 |
2 | dengue AND earth observation | 13 | 0 | 4 | 3 |
3 | dengue AND habitation | 37 | 3 | 22 | 11 |
4 | dengue AND household | 618 | 54 | 101 | 282 |
5 | dengue AND land cover | 114 | 4 | 31 | 20 |
6 | dengue AND land use | 1164 | 15 | 120 | 35 |
7 | dengue AND landscape | 179 | 11 | 101 | 70 |
8 | dengue AND precipitation | 238 | 30 | 175 | 125 |
9 | dengue AND remote sensing | 117 | 10 | 56 | 25 |
10 | dengue AND satellite. | 112 | 11 | 56 | 41 |
11 | dengue AND temperature | 1976 | 145 | 1120 | 748 |
12 | Aedes AND dwelling | 733 | 8 | 139 | 52 |
13 | Aedes AND earth observation | 11 | 1 | 3 | 2 |
14 | Aedes AND habitation | 88 | 3 | 38 | 14 |
15 | Aedes AND household | 551 | 31 | 430 | 187 |
16 | Aedes AND land cover | 266 | 4 | 46 | 39 |
17 | Aedes AND land use | 3232 | 19 | 203 | 46 |
18 | Aedes AND landscape | 295 | 9 | 153 | 95 |
19 | Aedes AND precipitation | 332 | 21 | 197 | 127 |
20 | Aedes AND remote sensing | 133 | 0 | 54 | 24 |
21 | Aedes AND satellite | 124 | 13 | 68 | 46 |
22 | Aedes AND temperature | 3443 | 171 | 1616 | 824 |
Appendix B. Word Embedding
Appendix C. Bidirectional Long Short-Term Memory Model
Appendix D. List of Articles Derived from the Semi-Supervised Text Classification Framework. Reference List was Alphabetized by the Last Name of the First Author of Each Work. References by the Same Author were Listed Chronologically with the Earliest Work First
ID [Ref.] | First Author/Year | Title | EO Data | Landscape Factors | |
---|---|---|---|---|---|
1 [36] | Acharya et al., 2018 | Temporal Variations and Associated Remotely Sensed Environmental Variables of Dengue Fever in Chitwan District, Nepal | MODIS | MOD13C25 | NDVI, EVI |
MODIS | MYD11C3 | nLST, dLST | |||
9 [37] | Acharya et al., 2018 | Modeling the spatially varying risk factors of dengue fever in Jhapa district, Nepal, using the semi-parametric geographically weighted regression model | Landsat 8 OLI/TIRS | Thermal band | LST |
Landsat 8 OLI/TIRS | G, R, NIR, SWIR | NDVI, NDWI, NDBI | |||
2 [38] | Akter et al., 2017 | Socio-demographic, ecological factors and dengue infection trends in Australia | - | - | |
3 [39] | Albrieu-Llinas et al., 2018 | Urban environmental clustering to assess the spatial dynamics of Aedes aegypti breeding sites | SPOT 5 | Spectral bands | Bare soil, Water, Wetlands, Grass, Tree, Built-up |
Landsat | NIR, SWIR, TIR | NBRT | |||
4 [40] | Ali and Ahmad, 2018 | Using analytic hierarchy process with GIS for Dengue risk mapping in Kolkata Municipal Corporation, West Bengal, India | SRTM (SIR-C) | SRTM DEM | Elevation |
Sentinel 2 | Spectral bands | Bare soil, Water, Vegetation, Built-up | |||
Landsat 7 ETM+ | Thermal band | LST | |||
5 [41] | Anno et al., 2015 | Space-time clustering characteristics of dengue based on ecological, socio-economic and demographic factors in northern Sri Lanka | ALOS/AVNIR-2 | B, G, R, NIR | Urbanization ratio |
6 [42] | Araujo et al., 2014 | Sao Paulo urban heat islands have a higher incidence of dengue than other urban areas | Landsat 5 TM | Thermal band | LST |
Landsat 5 TM | NIR | Vegetation | |||
7 [43] | Arboleda et al., 2009 | Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburra Valley, Colombia | SRTM (SIR-C) | SRTM DEM | Elevation, Aspect, Slope |
Landsat 7 ETM + | R, NIR | NDVI | |||
Landsat 7 ETM + | Spectral bands | B, G, R, NIR, SWIR1, SWIR 2, Thermal band | |||
8 [44] | Arboleda et al., 2011 | Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia | SRTM (SIR-C) | SRTM DEM | Slope, Aspect, Slope |
Landsat 7 ETM + | R, NIR | NDVI | |||
Landsat 7 ETM + | Spectral bands | B, G, R, NIR, SWIR1, SWIR 2, Thermal band | |||
10 [45] | Ashby et al., 2017 | Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and Boosted Regression Trees | MODIS | MYD11A1 | nLST, dLST |
MODIS | MYD09GQ | EVI | |||
SRTM (SIR-C) | SRTM DEM | Elevation | |||
MODIS | MCD12Q1 | Bare soil, Cropland, Forest, Savanna, Urban, Wetlands, Shrubland | |||
11 [46] | Attaway et al., 2016 | Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools) | - | - | - |
12 [47] | Aziz, S. et al. (2014) | Spatial density of Aedes distribution in urban areas: A case study of Breteau index in Kuala Lumpur, Malaysia | SPOT 5 | - | Water, Built-up, Sparse vegetation, Dense vegetation, Cleared area |
13 [48] | Beilhe, Leila Bagny et al. (2012) | Spread of invasive Aedes albopictus and decline of resident Aedes aegypti in urban areas of Mayotte 2007–2010 | - | - | - |
14 [49] | Bett, Bernard et al. (2019) | Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk. | MODIS | MCD12Q1 | Forest, Woodland, Grass, Shrub, Cropland, Built-up, Wetlands |
15 [50] | Bhardwaj et al. (2012) | Developing a statistical dengue risk prediction model for the state of Delhi based on various environmental variables | Landsat 7 ETM+ | - | Built-up, Vegetation |
16 [51] | Buczak et al. (2012) | A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data | MODIS | - | NDVI, EVI |
17 [52] | Buczak et al. (2014) | Prediction of High Incidence of Dengue in the Philippines | MODIS | - | NDVI, EVI |
18 [53] | Butt et al. (2019) | Towards a Web GIS-based approach for mapping a dengue outbreak | Landsat 5 TM | TIR | LST |
Landsat 5 TM | R, NIR | NDVI | |||
Landsat 5 TM | Spectral bands | Built-up, Vegetation, Water, Bare soil, Mixed areas | |||
19 [54] | Cao et al. (2017) | Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis | MODIS | MOD13A3 | NDVI, VFC |
Landsat 8 OLI/Quickbird | - | Urban villages | |||
20 [55] | Carbajo et al. (2001) | Dengue transmission risk maps of Argentina | - | - | - |
22 [56] | Chen et al. (2018) | Neighborhood level real-time forecasting of dengue cases in tropical urban Singapore | - | - | - |
21 [57] | Chen et al. (2019) | Spatiotemporal Transmission Patterns and Determinants of Dengue Fever: A Case Study of Guangzhou, China | SPOT 5/Baidu map | Panchromatic and spectral bands | Road, Subway, Ponds, Residential areas |
23 [58] | Cheong et al. (2014) | Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees | Landsat 7 ETM +/SPOT 4 | - | Residential areas, Agricultural areas, Forest, Water, Mixed horticulture, Open land, Rubber, Oil palm, Swamp forest, Mining, Orchard |
24 [59] | Chiu et al. (2014) | A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method | - | - | - |
25 [60] | Chuang et al. (2018) | Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan | - | - | - |
26 [61] | Cox et al. (2007) | Habitat segregation of dengue vectors along an urban environmental gradient | Landsat 7 ETM + | - | Urban, Suburban, Rural, Forest, High density housing, Low density housing |
27 [62] | Dhewantara, Pandji Wibawa et al. (2019) | Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study | ASTER | GDEM | Elevation |
28 [63] | Dom et al. (2013) | Coupling of remote sensing data and environmental-related parameters for dengue transmission risk assessment in Subang Jaya, Malaysia | IKONOS | - | Residential areas, Industrial areas, Commercial areas, Open area |
30 [64] | Espinosa et al.(2016) | Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina) | SPOT 5 | Spectral bands | Water, High vegetation, Low vegetation, Cropland, Bare soil, Urban area |
29 [65] | Espinosa et al., 2018 | Operational satellite-based temporal modelling of Aedes population in Argentina | MODIS | MOD13Q1 | NDVI, NDWI |
MODIS | MOD11A2 | dLST, nLST | |||
31 [66] | Estallo et al. (2016) | MODIS Environmental Data to Assess Chikungunya, Dengue, and Zika Diseases Through Aedes (Stegomia) aegypti Oviposition Activity Estimation | MODIS | MOD13Q1 | NDVI |
MODIS | MOD11A2 | dLST | |||
32 [67] | Fareed et al. (2016) | Spatio-Temporal Extension and Spatial Analyses of Dengue from Rawalpindi, Islamabad and Swat during 2010–2014 | ASTER | GDEM | Elevation, Drainage network |
Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI | Spectral bands | Bare soil, Built-up, Water, Vegetation, Construction area | |||
33 [68] | Fatima, Syeda Hira et al. (2016) | Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan | SRTM (SIR-C) | SRTM DEM | Elevation |
Landsat 8 OLI | - | Vegetation, Water, Built-up, Road | |||
35 [69] | Fuller et al. (2009) | El Nino Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. | MODIS | MOD13C1 | EVI, NDVI |
34 [70] | Fuller et al. (2010) | Dengue vector (Aedes aegypti) larval habitats in an urban environment of Costa Rica analysed with ASTER and QuickBird imagery | Quickbird | - | Built-up, Tree |
36 [71] | Garcia et al. (2011) | An examination of the spatial factors of dengue cases in Quezon City, Philippines: A Geographic Information System (GLS)-based approach, 2005–2008 | - | - | - |
37 [72] | German et al. (2018) | Exploring satellite based temporal forecast modelling of Aedes aegypti oviposition from an operational perspective | MODIS | MOD13Q1 | NDVI, NDWI, |
MODIS | MOD11A2 | nLST, dLST | |||
38 [73] | Hira et al. (2018) | Patterns of occurrence of dengue and chikungunya, and spatial distribution of mosquito vector Aedes albopictus in Swabi district, Pakistan | SRTM (SIR-C) | SRTM DEM | Elevation |
39 [74] | Huang et al. (2018) | Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness | MODIS | MxD09A1 | NDVI |
40 [75] | Husnina et al. (2019) | Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: a spatiotemporal analysis | - | - | - |
41 [76] | Kesetyaningsi et al. (2018) | Determination of environmental factors affecting dengue incidence in Sleman District, Yogyakarta, Indonesia | Quickbird | - | Vegetation |
43 [77] | Khalid and Ghaffar. (2014) | Dengue transmission based on urban environmental gradients in different cities of Pakistan | SRTM (SIR-C) | SRTM DEM | Flow accumulation, Stream feature, Drainage density |
SPOT 5/Landsat TM | Spectral bands | Urban area, Bare soil, Forest, Water, Vegetation, Wedged land, Waterlogged land, Dry bare land, Rocky bare land, Deserted land | |||
42 [78] | Khalid and Ghaffar. (2015) | Environmental risk factors and hotspot analysis of dengue distribution in Pakistan | SRTM (SIR-C) | SRTM DEM | Drainage |
44 [79] | Khormi and Kumar. (2011) | Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study | SPOT 5 | - | Quality of neighborhood |
45 [80] | Koyadun et al. (2012) | Ecologic and sociodemographic risk determinants for dengue transmission in urban areas in Thailand. | - | - | - |
46 [81] | Lana et al. (2017) | The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis | - | - | - |
47 [82] | Landau and Leeuwen. (2012) | Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona | NAIP aerial image/LiDAR elevation | Spectral bands | Bare soil, Pavement, Structure, Pool, Water (ponds and lakes), Grass, Shrub, Tree |
48 [83] | Lee et al. (2019) | Human Activities Attract Harmful Mosquitoes in a Tropical Urban Landscape. | - | - | - |
49 [84] | Li et al. (2013) | Abiotic Determinants to the Spatial Dynamics of Dengue Fever in Guangzhou | MODIS | MOD13Q1 | Cropland, Built-up, Construction area, Vegetation, Water |
50 [85] | Lian, Cheah Whye et al. (2006) | Spatial, environmental and entomological risk factors analysis on a rural dengue outbreak in Lundu District in Sarawak, Malaysia | - | - | - |
51 [86] | Lippi et al. (2019) | Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control | - | - | - |
52 [87] | Little et al. (2011) | Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico | WorldView 2 | Spectral bands | Bare soil, Grass, Scrub, Tree, Urban area |
53 [88] | Little et al. (2017) | Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City | - | - | - |
54 [89] | Little et al. (2017) | Socio-Ecological Mechanisms Supporting High Densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD | Landsat | R, NIR | NDVI |
55 [90] | Liu et al. (2018) | Spatiotemporal patterns and determinants of dengue at county level in China from 2005–2017 | - | - | - |
56 [91] | Lozano-Fuentes et al. (2012) | The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in Mexico | - | - | - |
57 [5] | Machault et al., 2014 | Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data | Geoeye-1 | Spectral bands | NDVI, MNDWI, ANDWI |
Geoeye-1 | Spectral bands | Sparsely vegetated soil, Grass, Asphalt | |||
58 [92] | Mahabir et al. (2012) | Impact of road networks on the distribution of dengue fever cases in Trinidad, West Indies | - | - | - |
59 [93] | Mahmood et al. (2019) | Spatiotemporal analysis of dengue outbreaks in Samanabad town, Lahore metropolitan area, using geospatial techniques | - | - | - |
60 [94] | Mala and Jat. (2018) | Implications of meteorological and physiographical parameters on dengue fever occurrences in Delhi | Landsat 7 ETM+, Landsat 8 OLI, IRS-P6, Sentinel-2 | Panchromatic and spectral bands | Built-up, Water, Vegetation |
61 [95] | Martinez-Bello et al. (2017) | Spatiotemporal modeling of relative risk of dengue disease in Colombia | MODIS | MOD11A2 | LST |
MODIS | MOD13Q1 | NDVI | |||
62 [96] | Martinez-Bello et al. (2017) | Relative risk estimation of dengue disease at small spatial scale | MODIS | MOD11A2 | LST |
Landsat 7 ETM+, Landsat 8 OLI | R, NIR | NDVI | |||
63 [97] | McClure et al. (2018) | Land Use and Larval Habitat Increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) Abundance in Lowland Hawaii | Quickbird | - | Developed land |
64 [98] | Messina et al. (2019) | The current and future global distribution and population at risk of dengue | - | - | - |
65 [99] | Murdock et al. (2017) | Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease | - | - | - |
66 [100] | Nakhapakorn and Tripathi. (2005) | An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence | Landsat TM | - | Agricultural areas, Forest, Water, Built-up |
67 [101] | Nejati et al. (2017) | Potential Risk Areas of Aedes albopictus in South-Eastern Iran: A Vector of Dengue Fever, Zika, and Chikungunya | ASTER | ASTER DEM | Elevation |
Landsat 8 OLI | R, NIR | NDVI | |||
Landsat 8 OLI | Spectral bands | Water, Urban area (residential), Rural area (residential) | |||
68 [102] | Nitatpattana et al. (2007) | Potential association of dengue hemorrhagic fever incidence and remote senses land surface temperature, Thailand, 1998 | National Oceanic and Atmospheric Administration-14 | - | LST |
69 [103] | Ogashawara et al. (2019) | Spatial-Temporal Assessment of Environmental Factors Related to Dengue Outbreaks in São Paulo, Brazil | Landsat 8 TIRS | Thermal bands | LST |
Landsat 8 OLI | Spectral bands | NDVI, NDWI, NDBI | |||
70 [104] | Pineda-Cortel et al. (2019) | Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data | MODIS | MOD11C3 | nLST, dLST |
MODIS | MOD13Q1 | NDVI | |||
71 [105] | Qu et al. (2018) | Effects of socio-economic and environmental factors on the spatial heterogeneity of dengue fever investigated at a fine scale | - | - | - |
72 [106] | Qureshi et al. (2017) | The distribution of Aedes aegypti (diptera, culicidae) in eight selected parks of Lahore, using oviposition traps during rainy season | - | - | - |
73 [107] | Rahm et al. (2016) | Forecasting of Dengue Disease Incident Risks Using Non-stationary Spatial of Geostatistics Model in Bone Regency Indonesia | - | - | - |
74 [108] | Ren et al. (2019) | Urban villages as transfer stations for dengue fever epidemic: A case study in Guangzhou, China | ZY-3 | Panchromatic and spectral bands | Normal construction areas, Urban villages, Water, Vegetation, Unused land |
75 [109] | Restrepo et al. (2014) | National spatial and temporal patterns of notified dengue cases, Colombia 2007–2010 | - | - | - |
76 [110] | Richards et al. (2006) | Spatial analysis of Aedes albopictus (Diptera: Culicidae) oviposition in suburban neighborhoods of a piedmont community in North Carolina | - | - | - |
77 [111] | Rogers et al. (2014) | Using global maps to predict the risk of dengue in Europe | MODIS | - | nLST, dLST |
MODIS | - | NDVI, EVI | |||
78 [112] | Rosa-Freitas et al. (2010) | Dengue and land cover heterogeneity in Rio de Janeiro | - | - | - |
79 [113] | Rotela et al. (2007) | Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, Northern Argentina | Landsat 5 TM | Spectral bands | Road, River, Street, Vegetation |
Landsat 5 TM | Spectral bands | TCB, TCG, TCW, Landsat bands (7 to 13) | |||
80 [114] | Saravanabavan et al. (2019) | Identification of dengue risk zone: a geo-medical study on Madurai city | - | - | - |
82 [115] | Sarfraz et al. (2012) | Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping | - | - | - |
81 [116] | Sarfraz et al. (2014) | Near real-time characterisation of urban environments: a holistic approach for monitoring dengue fever risk areas | ALOS AVNIR-2 | Spectral bands | Built-up, Vegetation, Water, Bare soil, Road, Institution, Religious areas, Market |
83 [117] | Sarfraz et al. (2014) | Mapping urban and peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process based on climatic and physical parameters | SRTM (SIR-C) | SRTM DEM | Elevation |
MODIS | MYD11C3 | dLST, nLST | |||
84 [118] | Scavuzzo et al. (2018) | Modeling Dengue vector population using remotely sensed data and machine learning | MODIS | MOD13Q1 | NDVI, NDWI |
MODIS | MOD11A2 | nLST, dLST | |||
85 [119] | Shafie (2011) | Evaluation of the Spatial Risk Factors for High Incidence of Dengue Fever and Dengue Hemorrhagic Fever Using GIS Application | - | - | - |
86 [120] | Sheela et al. (2015) | Assessment of changes of vector borne diseases with wetland characteristics using multivariate analysis | IRSP6 LISSIII | - | Wetlands, Inland areas, Inland waterlogged areas, Inland river, Inland man made ponds, Inland reservoirs, Coastal lagoons, Coastal beaches and creek, Aquatic vegetation, Turbidity |
87 [121] | Sheela et al. (2017) | Assessment of relation of land use characteristics with vector-borne diseases in tropical areas | - | - | - |
88 [122] | Stanforth et al., (2016) | Exploratory Analysis of Dengue Fever Niche Variables within the Rio Magdalena Watershed | MODIS | MYD11A1 | LST |
MODIS | MYD09GQ | EVI | |||
SRTM (SIR-C) | SRTM DEM | Elevation | |||
MODIS | MCD12Q1 | Bare soil, Cropland, Forest, Urban | |||
89 [123] | Tariq and Zaidi. (2019) | Geostatistical modeling of dengue disease in Lahore, Pakistan | SPOT 5 | Spectral bands | NDVI, NDWI |
Landsat 5 TM | Spectral bands | LST | |||
90 [124] | Teurlai et al. (2015) | Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia | - | - | - |
91 [125] | Tian et al. (2016) | Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China | Landsat 4 TM, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI | Spectral bands | Water |
92 [126] | Tiong et al. (2015) | Evaluation of land cover and prevalence of dengue in Malaysia | - | - | - |
93 [127] | Tipayamongkholgul and Lisakulruk. (2011) | Socio-geographical factors in vulnerability to dengue in Thai villages: a spatial regression analysis | - | - | - |
94 [128] | Troyo et al. (2009) | Urban structure and dengue fever in Puntarenas, Costa Rica. | MODIS | - | EVI |
ASTER | Spectral bands | NDVI | |||
Quickbird | Panchrmatic and spectral bands | Built-up, Tree | |||
95 [129] | Tsuda et al. (2006) | Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban-rural gradient and the relating environmental factors examined in three villages in northern Thailand | - | - | - |
96 [130] | Van Benthem et al. (2005) | Spatial patterns of and risk factors for seropositivity for dengue infection | Landsat 2000 | - | Vegetation, Built-up, Cropland |
97 [131] | Vanwambeke et al. (2006) | Multi-level analyses of spatial and temporal determinants for dengue infection | Landsat 2000 | - | Orchard, Water, Bare soil, Village areas, Agricultural areas |
98 [132] | Vezzani et al. (2005) | Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina | - | - | - |
99 [133] | Wiese et al. (2019) | Integrating environmental and neighborhood factors in MaxEnt modeling to predict species distributions: A case study of Aedes albopictus in southeastern Pennsylvania | MODIS | MOD13Q1 | EVI |
MODIS | MOD09Q1 | NDWI | |||
SRTM (SIR-C) | SRTM DEM | Elevation, Slope, Flow accumulation | |||
100 [134] | Yue et al. (2018) | Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014 | GaoFen-1 | Spectral bands | NDWI |
GaoFen-1 | Spectral bands | Water, Vegetation, Built-up | |||
MODIS | MOD11A2 | nLST, dLST | |||
101 [135] | Zheng et al. (2019) | Spatiotemporal characteristics and primary influencing factors of typical dengue fever epidemics in China | - | - | - |
References
- WHO. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 1 June 2020).
- Horstick, O.; Tozan, Y.; Wilder-Smith, A. Reviewing dengue: Still a neglected tropical disease? PLoS Negl. Trop. Dis. 2015, 9, e0003632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, J.P.; Pan, W.K. Different ontologies: Land change science and health research. Curr. Opin. Environ. Sustain. 2013, 5, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Patz, J.A.; Olson, S.H.; Uejio, C.K.; Gibbs, H.K. Disease emergence from global climate and land use change. Med. Clin. N. Am. 2008, 92, 1473–1491. [Google Scholar] [CrossRef] [PubMed]
- Machault, V.; Yébakima, A.; Etienne, M.; Vignolles, C.; Palany, P.; Tourre, Y.; Guérécheau, M.; Lacaux, J.-P. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data. ISPRS Int. J. Geo Inf. 2014, 3, 1352–1371. [Google Scholar] [CrossRef] [Green Version]
- LaDeau, S.L.; Allan, B.F.; Leisnham, P.T.; Levy, M.Z. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 2015, 29, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Parselia, E.; Kontoes, C.; Tsouni, A.; Hadjichristodoulou, C.; Kioutsioukis, I.; Magiorkinis, G.; Stilianakis, N.I. Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review. Remote Sens. 2019, 11, 1862. [Google Scholar] [CrossRef] [Green Version]
- Sallam, M.F.; Fizer, C.; Pilant, A.N.; Whung, P.Y. Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes mosquito Habitat for Risk Mapping. Int. J. Environ. Res. Public Health 2017, 14, 1230. [Google Scholar] [CrossRef] [Green Version]
- Marti, R.; Li, Z.; Catry, T.; Roux, E.; Mangeas, M.; Handschumacher, P.; Gaudart, J.; Tran, A.; Demagistri, L.; Faure, J.-F.; et al. A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires. Remote Sens. 2020, 12, 932. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Sucharew, H.; Macaluso, M. Progress Notes: Methods for Research Evidence Synthesis: The Scoping Review Approach. J. Hosp. Med. 2019, 14, 416–418. [Google Scholar] [CrossRef] [Green Version]
- Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef] [Green Version]
- García Adeva, J.J.; Pikatza Atxa, J.M.; Ubeda Carrillo, M.; Ansuategi Zengotitabengoa, E. Automatic text classification to support systematic reviews in medicine. Expert Syst. Appl. 2014, 41, 1498–1508. [Google Scholar] [CrossRef]
- Bannach-Brown, A.; Przybyła, P.; Thomas, J.; Rice, A.S.C.; Ananiadou, S.; Liao, J.; Macleod, M.R. Machine learning algorithms for systematic review: Reducing workload in a preclinical review of animal studies and reducing human screening error. Syst. Rev. 2019, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsafnat, G.; Glasziou, P.; Choong, M.K.; Dunn, A.; Galgani, F.; Coiera, E. Systematic review automation technologies. Syst. Rev. 2014, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Liao, S.; Wang, J.; Yu, R.; Sato, K.; Cheng, Z. CNN for situations understanding based on sentiment analysis of twitter data. Procedia Comput. Sci. 2017, 111, 376–381. [Google Scholar] [CrossRef]
- Cao, W.; Song, A.; Furuzuki, T. Stacked residual recurrent neural network with word weight for text classification. IAENG Int. J. Comput. Sci. 2017, 44, 277–284. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- An, B.; Wu, W.; Han, H. Deep Active Learning for Text Classification. In Proceedings of the 2nd International Conference on Vision, Image and Signal Processing; ACM: New York, NY, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, L.; MacEachren, A.; Mitra, P.; Onorati, T. Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review. ISPRS Int. J. Geo Inf. 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chen, Q.; Wang, X. Active deep learning method for semi-supervised sentiment classification. Neurocomputing 2013, 120, 536–546. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the International Conference on Learning Representations 2013, Scottsdale, AZ, USA, 2–4 May 2013. [Google Scholar]
- Zhou, C.; Sun, C.; Liu, Z.; Lau, F.C.M. A c-lstm neural network for text classification. Comput. Sci. 2015, 1, 39–44. [Google Scholar]
- Hamm, N.A.S.; Soares Magalhães, R.J.; Clements, A.C.A. Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases. PLoS Negl. Trop. Dis. 2015, 9, e0004164. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Li, Z.; Roux, E.; Dessay, N.; Girod, R.; Stefani, A.; Nacher, M.; Moiret, A.; Seyler, F. Mapping a Knowledge-Based Malaria Hazard Index Related to Landscape Using Remote Sensing: Application to the Cross-Border Area between French Guiana and Brazil. Remote Sens. 2016, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Catry, T.; Dessay, N.; da Costa Gurgel, H.; Aparecido de Almeida, C.; Barcellos, C.; Roux, E. Regionalization of a Landscape-Based Hazard Index of Malaria Transmission: An Example of the State of Amapá, Brazil. Data 2017, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Catry, T.; Pottier, A.; Marti, R.; Li, Z.; Roux, E.; Herbreteau, V.; Mangeas, M.; Demagistri, L.; Gurgel, H.; Dessay, N. Apports de la combinaison d’images satellites optique et RADAR dans l’étude des maladies à transmission vectorielle: Cas du paludisme à la frontière Guyane française–Brésil. Confins 2018, 37. [Google Scholar] [CrossRef]
- Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Gurgel, H.; Mangeas, M.; Seyler, F.; Dessay, N. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing. Int. J. Environ. Res. Public Health 2018, 15, 468. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xu, K.; Li, Z.; Meng, F.; Tu, T.; Xu, L.; Liu, Q. Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method. Int. J. Environ. Res. Public Health 2020, 17, 453. [Google Scholar] [CrossRef] [Green Version]
- Laureano-Rosario, A.E.; Duncan, A.P.; Mendez-Lazaro, P.A.; Garcia-Rejon, J.E.; Gomez-Carro, S.; Farfan-Ale, J.; Savic, D.A.; Muller-Karger, F.E. Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop. Med. Infect. Dis. 2018, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, N.A.; Saif, U.; Chunara, R. Deep Landscape Features for Improving Vector-borne Disease Prediction. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recongnition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Acharya, B.K.; Cao, C.; Xu, M.; Khanal, L.; Naeem, S.; Pandit, S. Temporal Variations and Associated Remotely Sensed Environmental Variables of Dengue Fever in Chitwan District, Nepal. ISPRS Int. J. Geo Inf. 2018, 7, 275. [Google Scholar] [CrossRef] [Green Version]
- Acharya, B.K.; Cao, C.; Lakes, T.; Chen, W.; Naeem, S.; Pandit, S. Modeling the spatially varying risk factors of dengue fever in Jhapa district, Nepal, using the semi-parametric geographically weighted regression model. Int. J. Biometeorol. 2018, 62, 1973–1986. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Naish, S.; Hu, W.; Tong, S. Socio-demographic, ecological factors and dengue infection trends in Australia. PLoS ONE 2017, 12, e0185551. [Google Scholar] [CrossRef] [PubMed]
- Albrieu-Llinas, G.; Espinosa, M.O.; Quaglia, A.; Abril, M.; Scavuzzo, C.M. Urban environmental clustering to assess the spatial dynamics of Aedes aegypti breeding sites. Geospat. Health 2018, 13, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ajim Ali, S.; Ahmad, A. Using analytic hierarchy process with GIS for Dengue risk mapping in Kolkata Municipal Corporation, West Bengal, India. Spat. Inf. Res. 2018, 26, 449–469. [Google Scholar] [CrossRef]
- Anno, S.; Imaoka, K.; Tadono, T.; Igarashi, T.; Sivaganesh, S.; Kannathasan, S.; Kumaran, V.; Surendran, S.N. Space-time clustering characteristics of dengue based on ecological, socio-economic and demographic factors in northern Sri Lanka. Geospat. Health 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Araujo, R.V.; Albertini, M.R.; Costa-da-Silva, A.L.; Suesdek, L.; Franceschi, N.C.; Bastos, N.M.; Katz, G.; Cardoso, V.A.; Castro, B.C.; Capurro, M.L.; et al. Sao Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz. J. Infect. Dis. 2015, 19, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, S.; Jaramillo-O, N.; Peterson, A.T. Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia. Int. J. Environ. Res. Public Health 2009, 6, 3040–3055. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, S.; Jaramillo, O.N.; Peterson, A.T. Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia. J. Vector Ecol. 2012, 37, 37–48. [Google Scholar] [CrossRef]
- Ashby, J.; Moreno-Madrinan, M.J.; Yiannoutsos, C.T.; Stanforth, A. Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and Boosted Regression Trees. Remote Sens. 2017, 9, 328. [Google Scholar] [CrossRef] [Green Version]
- Attaway, D.F.; Jacobsen, K.H.; Falconer, A.; Manca, G.; Waters, N.M. Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools). Acta Trop. 2016, 158, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Aidil, R.M.; Nisfariza, M.N.; Ngui, R.; Lim, Y.A.; Yusoff, W.S.; Ruslan, R. Spatial density of Aedes distribution in urban areas: A case study of breteau index in Kuala Lumpur, Malaysia. J. Vector Borne Dis. 2014, 51, 91–96. [Google Scholar] [PubMed]
- Bagny Beilhe, L.; Arnoux, S.; Delatte, H.; Lajoie, G.; Fontenille, D. Spread of invasive Aedes albopictus and decline of resident Aedes aegypti in urban areas of Mayotte 2007–2010. Biol. Invasions 2012, 14, 1623–1633. [Google Scholar] [CrossRef]
- Bett, B.; Grace, D.; Lee, H.S.; Lindahl, J.; Nguyen-Viet, H.; Phuc, P.D.; Quyen, N.H.; Tu, T.A.; Phu, T.D.; Tan, D.Q.; et al. Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk. PLoS ONE 2019, 14, e0224353. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.C.; Joshi, P.K.; Sinha, V.S.P. Developing a Statistical Dengue Risk Prediction Model for the State of Delhi Based on Various Environmental Variables. Int. J. Geoinform. 2012, 8, 45–52. [Google Scholar]
- Buczak, A.L.; Koshute, P.T.; Babin, S.M.; Feighner, B.H.; Lewis, S.H. A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Med. Inform. Decis. Mak. 2012, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.S.; Buczak, A.L.; Baugher, B.; Babin, S.M.; Ramac-Thomas, L.C.; Guven, E.; Elbert, Y.; Koshute, P.T.; Velasco, J.M.S.; Roque, V.G.; et al. Prediction of High Incidence of Dengue in the Philippines. PLoS Negl. Trop. Dis. 2014, 8, e2771. [Google Scholar] [CrossRef]
- Butt, M.A.; Khalid, A.; Ali, A.; Mahmood, S.A.; Sami, J.; Qureshi, J.; Waheed, K.; Khalid, A. Towards a Web GIS-based approach for mapping a dengue outbreak. Appl. Geomat. 2019, 12, 121–131. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, T.; Li, X.; Wang, J.; Lin, H.; Chen, L.; Wu, Z.; Ma, W. Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis. Int. J. Environ. Res. Public Health 2017, 14, 795. [Google Scholar] [CrossRef] [Green Version]
- Carbajo, A.E.; Schweigmann, N.; Curto, S.I.; de Garin, A.; Bejaran, R. Dengue transmission risk maps of Argentina. Trop. Med. Int. Health 2001, 6, 170–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Ong, J.H.Y.; Rajarethinam, J.; Yap, G.; Ng, L.C.; Cook, A.R. Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore. BMC Med. 2018, 16, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhao, Z.; Li, Z.; Li, W.; Li, Z.; Guo, R.; Yuan, Z. Spatiotemporal Transmission Patterns and Determinants of Dengue Fever: A Case Study of Guangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheong, Y.L.; Leitão, P.J.; Lakes, T. Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spat. Spatio Temporal Epidemiol. 2014, 10, 75–84. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Wen, T.-H.; Chien, L.-C.; Yu, H.-L. A Probabilistic Spatial Dengue Fever Risk Assessment by a Threshold-Based-Quantile Regression Method. PLoS ONE 2014, 9, e106334. [Google Scholar] [CrossRef] [Green Version]
- Chuang, T.-W.; Ng, K.-C.; Nguyen, T.; Chaves, L. Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan. Int. J. Environ. Res. Public Health 2018, 15, 396. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Grillet, M.E.; Ramos, O.M.; Amador, M.; Barrera, R. Habitat segregation of dengue vectors along an urban environmental gradient. Am. J. Trop. Med. Hyg. 2007, 76, 820–826. [Google Scholar] [CrossRef]
- Dhewantara, P.W.; Marina, R.; Puspita, T.; Ariati, Y.; Purwanto, E.; Hananto, M.; Hu, W.; Soares Magalhaes, R.J. Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Med. Infect. Dis. 2019, 32, 101437. [Google Scholar] [CrossRef]
- Dom, N.C.; Ahmad, A.H.; Latif, Z.A.; Ismail, R.; Pradhan, B. Coupling of remote sensing data and environmental-related parameters for dengue transmission risk assessment in Subang Jaya, Malaysia. Geocarto Int. 2013, 28, 258–272. [Google Scholar] [CrossRef]
- Espinosa, M.; Weinberg, D.; Rotela, C.H.; Polop, F.; Abril, M.; Marcelo Scavuzzo, C. Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding Sites, in the Context of a Dengue Control Program in Tartagal (Salta Province, Argentina). PLoS Negl. Trop. Dis. 2016, 10, e0004621. [Google Scholar] [CrossRef]
- Espinosa, M.; Alvarez Di Fino, E.M.; Abril, M.; Lanfri, M.; Victoria Periago, M.; Marcelo Scavuzzo, C. Operational satellite-based temporal modelling of Aedes population in Argentina. Geospat. Health 2018, 13, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilia Estallo, E.; Benitez, E.M.; Alberto Lanfri, M.; Marcelo Scavuzzo, C.; Almiron, W.R. MODIS Environmental Data to Assess Chikungunya, Dengue, and Zika Diseases Through Aedes (Stegomia) aegypti Oviposition Activity Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5461–5466. [Google Scholar] [CrossRef]
- Fareed, N.; Ghaffar, A.; Malik, T.S. Spatio-Temporal Extension and Spatial Analyses of Dengue from Rawalpindi, Islamabad and Swat during 2010–2014. Climate 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.H.; Atif, S.; Rasheed, S.B.; Zaidi, F.; Hussain, E. Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan. Trop. Med. Int. Health 2016, 21, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, D.O.; Troyo, A.; Beier, J.C. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environ. Res. Lett. 2009, 4, 014011. [Google Scholar] [CrossRef]
- Fuller, D.O.; Troyo, A.; Calderón-Arguedas, O.; Beier, J.C. Dengue vector (Aedes aegypti) larval habitats in an urban environment of Costa Rica analysed with ASTER and QuickBird imagery. Int. J. Remote Sens. 2010, 31, 3–11. [Google Scholar] [CrossRef]
- Garcia, F.B.; Liagas, L.A. An examination of the spatial factors of dengue cases in Quezon City, Philippines: A Geographic Information System (GLS)-based approach, 2005–2008. Acta Med. Philipp. 2011, 45, 53–62. [Google Scholar]
- German, A.; Espinosa, M.O.; Abril, M.; Scavuzzo, C.M. Exploring satellite based temporal forecast modelling of Aedes aegypti oviposition from an operational perspective. Remote Sens. Appl. Soc. Environ. 2018, 11, 231–240. [Google Scholar] [CrossRef]
- Hira, F.S.; Asad, A.; Farrah, Z.; Basit, R.S.; Mehreen, F.; Muhammad, K. Patterns of occurrence of dengue and chikungunya, and spatial distribution of mosquito vector Aedes albopictus in Swabi district, Pakistan. Trop. Med. Int. Health 2018, 23, 1002–1013. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Tam, T.Y.T.; Chern, Y.R.; Lung, S.C.; Chen, N.T.; Wu, C.D. Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness. Int. J. Environ. Res. Public Health 2018, 15, 1869. [Google Scholar] [CrossRef] [Green Version]
- Husnina, Z.; Clements, A.C.A.; Wangdi, K. Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: A spatiotemporal analysis. Trop. Med. Int. Health 2019, 24, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Kesetyaningsih, T.W.; Andarini, S.; Sudarto, S.; Pramoedyo, H. Determination of Environmental Factors Affecting Dengue Incidence in Sleman District, Yogyakarta, Indonesia. Afr. J. Infect. Dis. 2018, 12, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Khalid, B.; Ghaffar, A. Dengue transmission based on urban environmental gradients in different cities of Pakistan. Int. J. Biometeorol. 2014, 59, 267–283. [Google Scholar] [CrossRef]
- Khalid, B.; Ghaffar, A. Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. Int. J. Biometeorol. 2015, 59, 1721–1746. [Google Scholar] [CrossRef] [PubMed]
- Khormi, H.M.; Kumar, L. Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Sci. Total Environ. 2011, 409, 4713–4719. [Google Scholar] [CrossRef] [PubMed]
- Koyadun, S.; Butraporn, P.; Kittayapong, P. Ecologic and Sociodemographic Risk Determinants for Dengue Transmission in Urban Areas in Thailand. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barrera, R.; Lana, R.M.; da Costa Gomes, M.F.; de Lima, T.F.M.; Honório, N.A.; Codeço, C.T. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis. PLoS Negl. Trop. Dis. 2017, 11, e0006070. [Google Scholar] [CrossRef]
- Landau, K.I.; van Leeuwen, W.J. Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona. J. Vector Ecol. 2012, 37, 407–418. [Google Scholar] [CrossRef]
- Lee, J.M.; Wasserman, R.J.; Gan, J.Y.; Wilson, R.F.; Rahman, S.; Yek, S.H. Human Activities Attract Harmful Mosquitoes in a Tropical Urban Landscape. EcoHealth 2019, 17, 52–63. [Google Scholar] [CrossRef]
- Li, S.; Tao, H.; Xu, Y. Abiotic determinants to the spatial dynamics of dengue fever in Guangzhou. Asia Pac. J. Public Health 2013, 25, 239–247. [Google Scholar] [CrossRef]
- Cheah, W.L.; Chang, M.S.; Wang, Y.C. Spatial, environmental and entomological risk factors analysis on a rural dengue outbreak in Lundu District in Sarawak, Malaysia. Trop. Biomed. 2006, 23, 85–96. [Google Scholar] [PubMed]
- Lippi, C.A.; Stewart-Ibarra, A.M.; Loor, M.; Zambrano, J.E.D.; Lopez, N.A.E.; Blackburn, J.K.; Ryan, S.J. Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control. PLoS Negl. Trop. Dis. 2019, 13, e0007322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, E.; Barrera, R.; Seto, K.C.; Diuk-Wasser, M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. Ecohealth 2011, 8, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, E.; Bajwa, W.; Shaman, J. Local environmental and meteorological conditions influencing the invasive mosquito Ae. albopictus and arbovirus transmission risk in New York City. PLoS Negl. Trop. Dis. 2017, 11, e0005828. [Google Scholar] [CrossRef] [Green Version]
- Little, E.; Biehler, D.; Leisnham, P.T.; Jordan, R.; Wilson, S.; LaDeau, S.L. Socio-Ecological Mechanisms Supporting High Densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J. Med. Entomol. 2017, 54, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Sun, J.; Liu, X.; Li, R.; Wang, Y.; Lu, L.; Wu, H.; Gao, Y.; Xu, L.; Liu, Q. Spatiotemporal patterns and determinants of dengue at county level in China from 2005–2017. Int. J. Infect. Dis. 2018, 77, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Fuentes, S.; Hayden, M.H.; Welsh-Rodriguez, C.; Ochoa-Martinez, C.; Tapia-Santos, B.; Kobylinski, K.C.; Uejio, C.K.; Zielinski-Gutierrez, E.; Monache, L.D.; Monaghan, A.J.; et al. The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico. Am. J. Trop. Med. Hyg. 2012, 87, 902–909. [Google Scholar] [CrossRef] [Green Version]
- Mahabir, R.S.; Severson, D.W.; Chadee, D.D. Impact of road networks on the distribution of dengue fever cases in Trinidad, West Indies. Acta Trop. 2012, 123, 178–183. [Google Scholar] [CrossRef]
- Mahmood, S.; Irshad, A.; Nasir, J.M.; Sharif, F.; Farooqi, S.H. Spatiotemporal analysis of dengue outbreaks in Samanabad town, Lahore metropolitan area, using geospatial techniques. Environ. Monit. Assess. 2019, 191, 55. [Google Scholar] [CrossRef]
- Mala, S.; Jat, M.K. Implications of meteorological and physiographical parameters on dengue fever occurrences in Delhi. Sci. Total Environ. 2019, 650, 2267–2283. [Google Scholar] [CrossRef]
- Martínez-Bello, D.; López-Quílez, A.; Prieto, A.T. Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch. Environ. Res. Risk Assess. 2017, 32, 1587–1601. [Google Scholar] [CrossRef]
- Martínez-Bello, D.A.; López-Quílez, A.; Torres Prieto, A. Relative risk estimation of dengue disease at small spatial scale. Int. J. Health Geogr. 2017, 16, 31. [Google Scholar] [CrossRef]
- McClure, K.M.; Lawrence, C.; Kilpatrick, A.M. Land Use and Larval Habitat Increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) Abundance in Lowland Hawaii. J. Med. Entomol. 2018, 55, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed]
- Murdock, C.C.; Evans, M.V.; McClanahan, T.D.; Miazgowicz, K.L.; Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 2017, 11, e0005640. [Google Scholar] [CrossRef] [Green Version]
- Nakhapakorn, K.; Tripathi, N. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int. J. Health Geogr. 2005, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Nejati, J.; Bueno-Mari, R.; Collantes, F.; Hanafi-Bojd, A.A.; Vatandoost, H.; Charrahy, Z.; Tabatabaei, S.M.; Yaghoobi-Ershadi, M.R.; Hasanzehi, A.; Shirzadi, M.R.; et al. Potential Risk Areas of Aedes albopictus in South-Eastern Iran: A Vector of Dengue Fever, Zika, and Chikungunya. Front. Microbiol. 2017, 8, 1660. [Google Scholar] [CrossRef] [Green Version]
- Nitatpattana, N.; Singhasivanon, P.; Kiyoshi, H.; Andrianasolo, H.; Yoksan, S.; Gonzalez, J.P.; Barbazan, P. Potential association of dengue hemorrhagic fever incidence and remote senses land surface temperature, Thailand, 1998. Southeast Asian J. Trop. Med. Public Health 2007, 38, 427–433. [Google Scholar]
- Ogashawara, I.; Li, L.; Moreno-Madriñán, M.J. Spatial-Temporal Assessment of Environmental Factors Related to Dengue Outbreaks in São Paulo, Brazil. GeoHealth 2019, 3, 202–217. [Google Scholar] [CrossRef]
- Pineda-cortel, M.R.B.; Clemente, B.M.; Pham Thi Thanh, N. Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data. Asian Pac. J. Trop. Med. 2019, 12, 60–66. [Google Scholar] [CrossRef]
- Qu, Y.; Shi, X.; Wang, Y.; Li, R.; Lu, L.; Liu, Q. Effects of socio-economic and environmental factors on the spatial heterogeneity of dengue fever investigated at a fine scale. Geospat. Health 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, E.M.A.; Tabinda, A.B.; Vehra, S. The distribution of Aedes aegypti (diptera, culicidae) in eight selected parks of Lahore, using oviposition traps during rainy season. J. Pak. Med Assoc. 2017, 67, 1493–1497. [Google Scholar]
- Abdul Rahm, S.; Rahim, A.; Mallongi, A. Forecasting of Dengue Disease Incident Risks Using Non-stationary Spatial of Geostatistics Model in Bone Regency Indonesia. J. Entomol. 2016, 14, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wu, W.; Li, T.; Yang, Z. Urban villages as transfer stations for dengue fever epidemic: A case study in the Guangzhou, China. PLoS Negl. Trop. Dis. 2019, 13, e0007350. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, A.C.; Baker, P.; Clements, A.C. National spatial and temporal patterns of notified dengue cases, Colombia 2007–2010. Trop. Med. Int. Health 2014, 19, 863–871. [Google Scholar] [CrossRef]
- Richards, S.L.; Apperson, C.S.; Ghosh, S.K.; Cheshire, H.M.; Zeichner, B.C. Spatial Analysis of Aedes albopictus (Diptera: Culicidae) Oviposition in Suburban Neighborhoods of a Piedmont Community in North Carolina. J. Med Entomol. 2006, 43, 976–989. [Google Scholar] [CrossRef]
- Rogers, D.J.; Suk, J.E.; Semenza, J.C. Using global maps to predict the risk of dengue in Europe. Acta Trop. 2014, 129, 1–14. [Google Scholar] [CrossRef]
- Freitas, M.G.R.; Tsouris, P.; Reis, I.C.; Magalhães, M.d.A.F.M.; Nascimento, T.F.S.; Honório, N.A. Dengue and Land Cover Heterogeneity in Rio De Janeiro. Oecologia Aust. 2010, 14, 641–667. [Google Scholar] [CrossRef] [Green Version]
- Rotela, C.; Fouque, F.; Lamfri, M.; Sabatier, P.; Introini, V.; Zaidenberg, M.; Scavuzzo, C. Space–time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, Northern Argentina. Acta Trop. 2007, 103, 1–13. [Google Scholar] [CrossRef]
- Saravanabavan, V.; Balaji, D.; Preethi, S. Identification of dengue risk zone: A geo-medical study on Madurai city. GeoJournal 2018, 84, 1073–1087. [Google Scholar] [CrossRef]
- Sarfraz, M.S.; Tripathi, N.K.; Tipdecho, T.; Thongbu, T.; Kerdthong, P.; Souris, M. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health 2012, 12, 853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarfraz, M.S.; Tripathi, N.K.; Kitamoto, A. Near real-time characterisation of urban environments: A holistic approach for monitoring dengue fever risk areas. Int. J. Digit. Earth 2013, 7, 916–934. [Google Scholar] [CrossRef]
- Sarfraz, M.S.; Tripathi, N.K.; Faruque, F.S.; Bajwa, U.I.; Kitamoto, A.; Souris, M. Mapping urban and peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process based on climatic and physical parameters. Geospat. Health 2014, 8, S685–S697. [Google Scholar] [CrossRef] [PubMed]
- Scavuzzo, J.M.; Trucco, F.; Espinosa, M.; Tauro, C.B.; Abril, M.; Scavuzzo, C.M.; Frery, A.C. Modeling Dengue vector population using remotely sensed data and machine learning. Acta Trop. 2018, 185, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafie, A. Evaluation of the Spatial Risk Factors for High Incidence of Dengue Fever and Dengue Hemorrhagic Fever Using GIS Application. Sains Malays. 2011, 40, 937–943. [Google Scholar]
- Sheela, A.M.; Sarun, S.; Justus, J.; Vineetha, P.; Sheeja, R.V. Assessment of changes of vector borne diseases with wetland characteristics using multivariate analysis. Environ. Geochem. Health 2014, 37, 391–410. [Google Scholar] [CrossRef]
- Sheela, A.M.; Ghermandi, A.; Vineetha, P.; Sheeja, R.V.; Justus, J.; Ajayakrishna, K. Assessment of relation of land use characteristics with vector-borne diseases in tropical areas. Land Use Policy 2017, 63, 369–380. [Google Scholar] [CrossRef]
- Stanforth, A.; Moreno-Madrinan, M.J.; Ashby, J. Exploratory Analysis of Dengue Fever Niche Variables within the Rio Magdalena Watershed. Remote Sens. 2016, 8, 770. [Google Scholar] [CrossRef] [Green Version]
- Tariq, B.; Zaidi, A.Z. Geostatistical modeling of dengue disease in Lahore, Pakistan. SN Appl. Sci. 2019, 1, 459. [Google Scholar] [CrossRef] [Green Version]
- Teurlai, M.; Menkès, C.E.; Cavarero, V.; Degallier, N.; Descloux, E.; Grangeon, J.-P.; Guillaumot, L.; Libourel, T.; Lucio, P.S.; Mathieu-Daudé, F.; et al. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia. PLoS Negl. Trop. Dis. 2015, 9, e0004211. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Huang, S.; Zhou, S.; Bi, P.; Yang, Z.; Li, X.; Chen, L.; Cazelles, B.; Yang, J.; Luo, L.; et al. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China. Environ. Res. 2016, 150, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiong, V.; Abd-Jamil, J.; Mohamed Zan, H.A.; Abu-Bakar, R.S.; Ew, C.L.; Jafar, F.L.; Nellis, S.; Fauzi, R.; AbuBakar, S. Evaluation of land cover and prevalence of dengue in Malaysia. Trop. Biomed. 2015, 32, 587–597. [Google Scholar]
- Tipayamongkholgul, M.; Lisakulruk, S. Socio-geographical factors in vulnerability to dengue in Thai villages: A spatial regression analysis. Geospat. Health 2011, 5, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Troyo, A.; Fuller, D.O.; Calderon-Arguedas, O.; Solano, M.E.; Beier, J.C. Urban structure and dengue fever in Puntarenas, Costa Rica. Singap. J. Trop. Geogr. 2009, 30, 265–282. [Google Scholar] [CrossRef]
- Tsuda, Y.; Suwonkerd, W.; Chawprom, S.; Prajakwong, S.; Takagi, M. Different Spatial Distribution of Aedes aegypti and Aedes albopictus along an Urban–Rural Gradient and the Relating Environmental Factors Examined in Three Villages in Northern Thailand. J. Am. Mosq. Control Assoc. 2006, 22, 222–228. [Google Scholar] [CrossRef]
- Van Benthem, B.H.; Vanwambeke, S.O.; Khantikul, N.; Burghoorn-Maas, C.; Panart, K.; Oskam, L.; Lambin, E.F.; Somboon, P. Spatial patterns of and risk factors for seropositivity for dengue infection. Am. J. Trop. Med. Hyg. 2005, 72, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Vanwambeke, S.; van Benthem, B.; Khantikul, N.; Burghoorn-Maas, C.; Panart, K.; Oskam, L.; Lambin, E.; Somboon, P. Multi-level analyses of spatial and temporal determinants for dengue infection. Int. J. Health Geogr. 2006, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Vezzani, D.; Rubio, A.; Velázquez, S.M.; Schweigmann, N.; Wiegand, T. Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Trop. 2005, 95, 123–131. [Google Scholar] [CrossRef]
- Wiese, D.; Escalante, A.A.; Murphy, H.; Henry, K.A.; Gutierrez-Velez, V.H. Integrating environmental and neighborhood factors in MaxEnt modeling to predict species distributions: A case study of Aedes albopictus in southeastern Pennsylvania. PLoS ONE 2019, 14, e0223821. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Sun, J.; Liu, X.; Ren, D.; Liu, Q.; Xiao, X.; Lu, L. Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014. Int. J. Infect. Dis. 2018, 75, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Ren, H.Y.; Shi, R.H.; Lu, L. Spatiotemporal characteristics and primary influencing factors of typical dengue fever epidemics in China. Infect. Dis. Poverty 2019, 8, 24. [Google Scholar] [CrossRef] [PubMed]
Priority Levels | Pre-Set Terms (KEYi) Included for Text Scoring | Interval of Weights |
---|---|---|
High | dengue, environment, landscape, land cover, land use, vegetation, tree, water, built, road, residential, commercial, industrial, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), elevation | [7,10] |
Medium | remote sensing, satellite, earth observation | [4,7] |
Low | temperature, precipitation | [1,4] |
No. | Semi-Supervised Text Classification Processes | Number of Records |
---|---|---|
1 | Board searches | 13,893 |
2 | Removal of duplicates | 7696 |
3 | Text scoring | 2034 |
4 | Bidirectional long short-term memory (BiLSTM) active learning | 131 |
5 | Inclusion | 101 |
Cycles | BiLSTM | Active Learning | Rest Records | |
---|---|---|---|---|
Relevant | Unlabeled | |||
Before | -- | -- | -- | 2034 |
1st | 599 | 88 | 511 | 1435 |
2nd | 323 | 39 | 284 | 1112 |
3rd | 72 | 3 | 69 | 1036 |
4th | 42 | 1 | 41 | 994 |
5th | 20 | 0 | 20 | 974 |
Total | 1056 | 131 | 925 | 0 |
Sensors/Products | Variables | Spatial Resolution | Temporal Resolution | Launched/End of Mission | |
---|---|---|---|---|---|
MODIS | MOD11C3 | LST | 5.5 km | Monthly | 2000-02-01 to Present |
MOD13C2 | NDVI, VFC | 5.5 km | Monthly | 2000-02-01 to Present | |
MYD11C3 | nLST, dLST | 5.5 km | Monthly | 2002-07-01 to Present | |
MYD11A1 | LST | 1 km | Daily | 2002-07-04 to Present | |
MOD11A2 | LST, nLST, dLST | 1 km | 8 days | 2000-02-18 to Present | |
MOD13A3 | NDVI, VFC | 1 km | Monthly | 2000-02-01 to Present | |
MOD13C1 | NDVI, EVI | 500 m | 16 days | 2000-02-18 to Present | |
MCD12Q1 | LC | 500 m | Yearly | 2001-01-01 to 2018-12-31 | |
MxD09A1 | NDVI | 250 m | 8 days | ||
MOD09Q1 | NDWI | 250 m | 8 days | 2000-02-24 to Present | |
MOD13Q1 | NDVI, EVI, LC | 250 m | 16 days | 2000-02-18 to Present | |
MYD09GQ | EVI | 250 m | Daily | 2002-07-04 to Present | |
AVHRR/2 | LST | 1.1 km | Daily | 1981-06 to 1986-06 | |
SRTM SIR-C | SRTM DEM | Elevation, aspect, slope, drainage, flow accumulation and steam feature | 30 m/90 m | - | Released in 2000 |
ASTER | GDEM | Elevation, drainage | 30 m | - | Released in 2009 (v1) |
Released in 2011 (v2) | |||||
Released in 2019 (v3) | |||||
Landsat 4 TM | LU/LC | 30 m | 16 days | 1982-07 to 1993-12 | |
Landsat 5 TM | LU/LC, TCB, TCW, TCG, LST, NDVI | 30 m | 16 days | 1984-03 to 2013-06 | |
Landsat 7 ETM+ | LU/LC, NDVI, LST, B, G, R, NIR, SWIR1, SWIR2, thermal band | 30 m | 16 days | 1999-04 to Present | |
Landsat 8 OLI | LU/LC, NDVI, NDWI, NDBI, LST | 30 m | 16 days | 2013-02 to Present | |
IRS-P6 | LC | 24 m | 5 days | 2003-10 to 2013-09 | |
SPOT 4 | LU/LC | 20 m | 2–3 days | 1998-03 to 2013-06 | |
Sentinel-2 | LC | 10 m | 10 days | 2015-06 to Present (2A) | |
2017-03 to Present (2B) | |||||
GaoFen-1 | LC, NDWI | 16 m | ≤ 4 days | 2013-04 to Present | |
SPOT 5 | LU/LC, NDVI, NDWI | 2.5 m, 5 m/10 m | 2–3 days | 2002-05 to 2015-03 | |
ALOS AVNIR-2 | LU/LC | 10 m | 14 days | 1996-08 to 2011-05 | |
ZY-3 | LU/LC | 2.1 m/5.8 m | 5 days | 2012-01 to Present | |
IKONOS | LU | 4 m | Approximately 3 days | 1999-09 to 2015-03 | |
Quickbird | LU/LC | 2.4 m/0.6 m | 1–3.5 days | 2001-10 to 2015-01 | |
Worldview-2 | LC | 0.5 m/1.8 m | 1.1 days | 2009-10 to Present |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Gurgel, H.; Dessay, N.; Hu, L.; Xu, L.; Gong, P. Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation. Int. J. Environ. Res. Public Health 2020, 17, 4509. https://doi.org/10.3390/ijerph17124509
Li Z, Gurgel H, Dessay N, Hu L, Xu L, Gong P. Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation. International Journal of Environmental Research and Public Health. 2020; 17(12):4509. https://doi.org/10.3390/ijerph17124509
Chicago/Turabian StyleLi, Zhichao, Helen Gurgel, Nadine Dessay, Luojia Hu, Lei Xu, and Peng Gong. 2020. "Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation" International Journal of Environmental Research and Public Health 17, no. 12: 4509. https://doi.org/10.3390/ijerph17124509
APA StyleLi, Z., Gurgel, H., Dessay, N., Hu, L., Xu, L., & Gong, P. (2020). Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation. International Journal of Environmental Research and Public Health, 17(12), 4509. https://doi.org/10.3390/ijerph17124509