Design and Psychometric Analysis of the COVID-19 Prevention, Recognition and Home-Management Self-Efficacy Scale
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Design
2.2. Participants and Sampling
2.3. Data Collection
2.4. Ethical Considerations
2.5. Phase 1: Item Generation and Pilot Study of the COVID-19-SES
2.5.1. Item Generation
2.5.2. Pilot Study Methods
Content Validity
Reliability
2.6. Phase 2: Final Validity, Reliability, and Legibility Analysis of the COVID-19-SES
2.6.1. Validity
Content Validity
Criterion Validity
Construct Validity
2.6.2. Reliability
2.6.3. Legibility
2.6.4. Scoring and Interpretation System
3. Results
3.1. Pilot Study Results
3.2. Participants and Descriptive Data
3.3. Validity
3.4. Reliability
3.5. Legibility
3.6. Scoring and Interpretation System
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. [Google Scholar] [CrossRef] [Green Version]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Day, M. Covid-19: Four fifths of cases are asymptomatic, China figures indicate. BMJ 2020, 369, m1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P.; Murdoch, D.R. Clinical course and mortality risk of severe COVID-19. Lancet 2020, 395, 1014–1015. [Google Scholar] [CrossRef]
- Grasselli, G.; Pesenti, A.; Cecconi, M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA 2020, 323, 1545–1546. [Google Scholar] [CrossRef] [Green Version]
- Livingston, E.; Bucher, K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA 2020, 323, 1335. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Steffens, I. A hundred days into the coronavirus disease (COVID-19) pandemic. Eurosurveillance 2020, 5, 2000550. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Coronavirus Disease (COVID-19) Advice for the Public. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 29 April 2020).
- Soriano-Maldonado, A.; Checa-Olmos, J.C.; Castillo-Garzón, M.J. Loosening restrictions in Spain: Testing, immunization, and idiosyncrasy. BMJ 2020, 369, m1918. [Google Scholar] [CrossRef]
- Leung, K.; Wu, J.T.; Liu, D.; Leung, G.M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment. Lancet 2020, 395, 1382–1393. [Google Scholar] [CrossRef]
- Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Li, M.; Lv, G.; Lu, Z.K. Monitoring transmissibility and mortality of COVID-19 in Europe. Int. J. Infect. Dis. 2020, 95, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.M.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G.; et al. Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand. Imperial College COVID-19 Response Team: London, UK, 2020. Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf (accessed on 29 April 2020).
- Li, R.; Rivers, C.; Tan, Q.; Murray, M.B.; Toner, E.; Lipsitch, M. Estimated demand for US hospital inpatient and intensive care unit beds for patients with COVID-19 based on comparisons with Wuhan and Guangzhou, China. JAMA Netw. Open 2020, 3, e208297. [Google Scholar] [CrossRef]
- Lazzerini, M.; Putoto, G. COVID-19 in Italy: Momentous decisions and many uncertainties. Lancet Glob. Health 2020, 8, e641–e642. [Google Scholar] [CrossRef] [Green Version]
- Legido-Quigley, H.; Mateos-García, J.T.; Campos, V.R.; Gea-Sánchez, M.; Muntaner, C.; McKee, M. The resilience of the Spanish health system against the COVID-19 pandemic. Lancet Public Health 2020, 5, e251–e252. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation (WHO). Home Care for Patients with COVID-19 Presenting with Mild Symptoms and Management of Their Contacts. Available online: https://www.who.int/publications-detail/home-care-for-patients-with-suspected-novel-coronavirus-(ncov)-infection-presenting-with-mild-symptoms-and-management-of-contacts (accessed on 29 April 2020).
- Di Gennaro, F.; Pizzol, D.; Marotta, C.; Antunes, M.; Racalbuto, V.; Veronese, N.; Smith, L. Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. Int. J. Environ. Res. Public Health 2020, 17, 2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, eabb5793. [Google Scholar] [CrossRef]
- Sheeran, P.; Maki, A.; Montanaro, E.; Avishai-Yitshak, A.; Bryan, A.; Klein, W.M.; Miles, E.; Rothman, A.J. The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychol. 2016, 35, 1178–1188. [Google Scholar] [CrossRef]
- Williams, L.; Rasmussen, S.; Kleczkowski, A.; Maharaj, S.; Cairns, N. Protection motivation theory and social distancing behaviour in response to a simulated infectious disease epidemic. Psychol. Health Med. 2015, 20, 832–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandura, A. Self-efficacy beliefs of adolescents. In Adolescence and Education; Pajares, F., Urdan, T., Eds.; Information Age Publishing: Greenwich, UK, 2006; pp. 307–337. [Google Scholar]
- Williams, D.M.; Rhodes, R.E. The confounded self-efficacy construct: Conceptual analysis and recommendations for future research. Health Psychol. Rev. 2016, 10, 113–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bults, M.; Beaujean, D.J.; de Zwart, O.; Kok, G.; van Empelen, P.; van Steenbergen, J.E.; Richardus, J.H.; Voeten, H.A. Perceived risk, anxiety, and behavioural responses of the general public during the early phase of the Influenza A (H1N1) pandemic in the Netherlands: Results of three consecutive online surveys. BMC Public Health 2011, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, J.T.; Griffiths, S.; Au, D.W.; Choi, K.C. Changes in knowledge, perceptions, preventive behaviours and psychological responses in the pre-community outbreak phase of the H1N1 epidemic. Epidemiol. Infect. 2011, 139, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.S.; Wong, C.Y. An outbreak of the severe acute respiratory syndrome: Predictors of health behaviors and effect of community prevention measures in Hong Kong, China. Am. J. Public Health 2003, 93, 1887–1888. [Google Scholar] [CrossRef]
- Lau, J.T.; Griffiths, S.; Choi, K.C.; Lin, C. Prevalence of preventive behaviors and associated factors during early phase of the H1N1 influenza epidemic. Am. J. Infect. Control 2010, 38, 374–380. [Google Scholar] [CrossRef]
- Wong, T.W.; Tam, W.W. Handwashing practice and the use of personal protective equipment among medical students after the SARS epidemic in Hong Kong. Am. J. Infect. Control 2005, 33, 580–586. [Google Scholar] [CrossRef]
- Polit, D.; Beck, C.T. Nursing Research: Generating and Assessing Evidence for Nursing Practice, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2020. [Google Scholar]
- Norman, G.R.; Streiner, D.L. Biostatistics: The Bare Essentials, 3rd ed.; B.C. Decker: Hamilton, ON, Canada, 2014. [Google Scholar]
- Streiner, D.L.; Kottner, J. Recommendations for reporting the results of studies of instrument and scale development and testing. J. Adv. Nurs. 2014, 70, 1970–1979. [Google Scholar] [CrossRef]
- Herrero, R.; Espinoza, M.; Molinari, G.; Etchemendy, E.; Garcia-Palacios, A.; Botella, C.; Baños, R.M. Psychometric properties of the general self efficacy-12 scale in Spanish: General and clinical population samples. Compr. Psychiatry 2014, 55, 1738–1743. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Padilla, J.M.; Cortés-Rodríguez, A.E.; Granero-Molina, J.; Fernández-Sola, C.; Correa-Casado, M.; Fernández-Medina, I.M.; López-Rodríguez, M.M. Design and psychometric evaluation of the ‘clinical communication self-efficacy toolkit’. Int. J. Environ. Res. Public Health 2019, 16, 4534. [Google Scholar] [CrossRef] [Green Version]
- Hessling, R.; Traxel, N.; Schmidt, T. Ceiling effect. In The SAGE Encyclopedia of Social Science Research Methods, 1st ed.; Lewis-Beck, M.S., Bryman, A., Liao, T.F., Eds.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Brestoff, J.R.; Van den Broeck, J. Reporting data quality. In Epidemiology: Principles and Practical Guidelines, 1st ed.; Brestoff, J.R., Van den Broeck, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 557–570. [Google Scholar]
- Epstein, J.; Santo, R.M.; Guillemin, F. A review of guidelines for cross-cultural adaptation of questionnaires could not bring out a consensus. J. Clin. Epidemiol. 2015, 68, 435–441. [Google Scholar] [CrossRef] [PubMed]
- George, D.; Mallery, P. IBM SPSS Statistics 23 Step by Step, 14th ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Coaley, K. An Introduction to Psychological Assessment and Psychometrics, 2nd ed.; SAGE Publications: London, UK, 2014. [Google Scholar]
- Hernández-Padilla, J.M.; Granero-Molina, J.; Márquez-Hernández, V.V.; Suthers, F.; Fernández-Sola, C. Development and psychometric evaluation of the arterial puncture self-efficacy scale. Nurse Educ. Today 2016, 40, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics, 7th ed.; Pearson: Essex, UK, 2019. [Google Scholar]
- Barrio-Cantalejo, I.; Simón-Lorda, P.; Melguizo, M.; Escalona, I.; Marijuán, M.; Hernando, P. Validation of the INFLESZ scale to evaluate readability of texts aimed at the patient. An. Sist. Sanit. Navar. 2008, 31, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Schutte, N.S.; Malouff, J.M. General and Realm-Specific Self-Efficacy: Connections to Life Functioning. Curr. Psychol. 2016, 361–369. [Google Scholar] [CrossRef]
i-CVI 1 | NP-SES’ Alpha if Item Deleted | C-ITC 2 | |
---|---|---|---|
| 1 | 0.906 | 0.316 |
| 1 | 0.904 | 0.394 |
| 0.93 | 0.903 | 0.475 |
| 0.93 | 0.903 | 0.459 |
| 1 | 0.902 | 0.490 |
| 1 | 0.905 | 0.373 |
| 0.93 | 0.899 | 0.657 |
| 0.93 | 0.905 | 0.389 |
| 0.86 | 0.903 | 0.466 |
| 1 | 0.902 | 0.505 |
| 0.86 | 0.901 | 0.537 |
| 0.93 | 0.898 | 0.644 |
| 0.79 | 0.907 | 0.461 |
| 0.93 | 0.896 | 0.703 |
| 0.93 | 0.892 | 0.828 |
| 0.86 | 0.894 | 0.753 |
| 0.79 | 0.898 | 0.653 |
| 1 | 0.894 | 0.798 |
| 0.93 | 0.896 | 0.707 |
Characteristics | Sample (N = 622) |
---|---|
M ± SD | |
Age (years) | 35.80 ± 13.89 |
N (%) | |
Gender | |
Female | 428 (68.8) |
Male | 190 (30.5) |
Highest educational level completed | |
Primary | 70 (11.3) |
Secondary | 167 (26.8) |
Vocational qualification | 195 (31.4) |
University degree | 157 (25.2) |
Masters or PhD | 33 (5.3) |
Occupation | |
Unemployed | 153 (24.6) |
Healthcare professional | 125 (20.1) |
Qualified worker | 222 (35.7) |
Non-qualified worker | 111 (17.8) |
Retired | 11 (1.8) |
Have you experienced COVID-19 symptoms? | |
Yes | 18 (2.9) |
No | 411 (66.1) |
I am not sure | 193 (31.0) |
Respiratory or cardiovascular chronic condition | |
Yes | 79 (12.7) |
No | 543 (87.3) |
Perceived general health | |
Very poor | 1 (0.2) |
Poor | 5 (0.8) |
Normal | 62 (10.0) |
Good | 352 (56.6) |
Very good | 202 (32.5) |
i-CVI | NP-SES’ Alpha if Item Deleted | C-ITC | M ± SD | |
---|---|---|---|---|
| 1 | 0.906 | 0.364 | 88.90 ± 17.15 |
| 1 | 0.905 | 0.448 | 92.30 ± 14.15 |
| 0.93 | 0.905 | 0.425 | 68.30 ± 24.85 |
| 0.93 | 0.906 | 0.397 | 79.70 ± 22.55 |
| 1 | 0.907 | 0.329 | 90.30 ± 17.94 |
| 1 | 0.905 | 0.423 | 94.00 ± 14.12 |
| 0.93 | 0.904 | 0.459 | 79.60 ± 20.99 |
| 0.93 | 0.904 | 0.480 | 84.10 ± 20.49 |
| 0.86 | 0.903 | 0.513 | 84.40 ± 19.66 |
| 1 | 0.904 | 0.477 | 89.20 ± 18.23 |
| 0.86 | 0.896 | 0.744 | 82.20 ± 24.73 |
| 0.93 | 0.897 | 0.701 | 77.90 ± 28.03 |
| 0.79 | 0.908 | 0.464 | 72.10 ± 37.32 |
| 0.93 | 0.897 | 0.718 | 81.10 ± 27.63 |
| 0.93 | 0.895 | 0.778 | 81.70 ± 25.46 |
| 0.86 | 0.897 | 0.719 | 79.90 ± 26.44 |
| 0.79 | 0.900 | 0.626 | 81.50 ± 27.77 |
| 1 | 0.897 | 0.741 | 82.90 ± 23.12 |
| 0.93 | 0.896 | 0.743 | 81.40 ± 24.40 |
FACTOR | |||
---|---|---|---|
1 | 2 | 3 | |
Prevention of COVID-19 contagion and spread | |||
Item 1 | 0.090 | 0.172 | 0.533 |
Item 2 | 0.189 | 0.138 | 0.569 |
Item 3 | 0.185 | 0.164 | 0.518 |
Item 4 | 0.191 | 0.058 | 0.531 |
Item 5 | 0.093 | 0.020 | 0.594 |
Item 6 | 0.208 | 0.180 | 0.451 |
Recognition of COVID-19 symptoms | |||
Item 7 | 0.183 | 0.648 | 0.167 |
Item 8 | 0.133 | 0.891 | 0.143 |
Item 9 | 0.188 | 0.842 | 0.144 |
Item 10 | 0.231 | 0.543 | 0.208 |
Home-management of people with COVID-19 symptoms | |||
Item 11 | 0.803 | 0.160 | 0.193 |
Item 12 | 0.704 | 0.146 | 0.256 |
Item 13 | 0.555 | 0.076 | 0.057 |
Item 14 | 0.803 | 0.157 | 0.136 |
Item 15 | 0.873 | 0.158 | 0.162 |
Item 16 | 0.757 | 0.133 | 0.228 |
Item 17 | 0.622 | 0.171 | 0.222 |
Item 18 | 0.644 | 0.249 | 0.358 |
Item 19 | 0.679 | 0.231 | 0.324 |
% of variance | 26.31 | 13.66 | 12.15 |
% of cumulative variance | 26.31 | 39.97 | 52.12 |
Cronbach’s Alpha | M ± SD | |
---|---|---|
COVID-19-SES | 0.905 | 83.32 ± 13.24 |
Prevention of COVID-19 contagion and spread | 0.726 | 85.58 ± 12.27 |
Recognition of COVID-19 symptoms | 0.852 | 84.31 ± 16.54 |
Home-management of people with COVID-19 symptoms | 0.919 | 80.09 ± 13.24 |
Prevention | Recognition | Home-Management | |
---|---|---|---|
Prevention | - | - | - |
Recognition | 0.389 * | - | - |
Home-management | 0.491 * | 0.444 * | - |
Total COVID-19-SES | 0.721 * | 0.746 * | 0.849 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Padilla, J.M.; Granero-Molina, J.; Ruiz-Fernández, M.D.; Dobarrio-Sanz, I.; López-Rodríguez, M.M.; Fernández-Medina, I.M.; Correa-Casado, M.; Fernández-Sola, C. Design and Psychometric Analysis of the COVID-19 Prevention, Recognition and Home-Management Self-Efficacy Scale. Int. J. Environ. Res. Public Health 2020, 17, 4653. https://doi.org/10.3390/ijerph17134653
Hernández-Padilla JM, Granero-Molina J, Ruiz-Fernández MD, Dobarrio-Sanz I, López-Rodríguez MM, Fernández-Medina IM, Correa-Casado M, Fernández-Sola C. Design and Psychometric Analysis of the COVID-19 Prevention, Recognition and Home-Management Self-Efficacy Scale. International Journal of Environmental Research and Public Health. 2020; 17(13):4653. https://doi.org/10.3390/ijerph17134653
Chicago/Turabian StyleHernández-Padilla, José Manuel, José Granero-Molina, María Dolores Ruiz-Fernández, Iria Dobarrio-Sanz, María Mar López-Rodríguez, Isabel María Fernández-Medina, Matías Correa-Casado, and Cayetano Fernández-Sola. 2020. "Design and Psychometric Analysis of the COVID-19 Prevention, Recognition and Home-Management Self-Efficacy Scale" International Journal of Environmental Research and Public Health 17, no. 13: 4653. https://doi.org/10.3390/ijerph17134653
APA StyleHernández-Padilla, J. M., Granero-Molina, J., Ruiz-Fernández, M. D., Dobarrio-Sanz, I., López-Rodríguez, M. M., Fernández-Medina, I. M., Correa-Casado, M., & Fernández-Sola, C. (2020). Design and Psychometric Analysis of the COVID-19 Prevention, Recognition and Home-Management Self-Efficacy Scale. International Journal of Environmental Research and Public Health, 17(13), 4653. https://doi.org/10.3390/ijerph17134653