The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Subjects
2.3. Procedures
2.3.1. Familiarization Session and the 1-RM Strength Test
2.3.2. Experimental Sessions
2.3.3. External Compression
2.3.4. Statistical Analysis
3. Results
4. Discussion
Practical Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Slysz, J.; Stultz, J.; Burr, J.F. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J. Sci. Med. Sport 2016, 19, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with Blood Flow Restriction: An Updated Evidence-Based Approach for Enhanced Muscular Development. Sports Med. 2015, 45, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Krzysztofik, M.; Gepfert, M.; Poprzecki, S.; Gołaś, A.; Maszczyk, A. Technical and Training Related Aspects of Resistance Training Using Blood Flow Restriction in Competitive Sport — A Review. J. Hum. Kinet. 2018, 65, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise Position Stand: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Sherk, V.D.; Thiebaud, R.S.; Abe, T.; Bemben, D.A.; Bemben, M.G. Effects of cuff width on arterial occlusion: Implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 2012, 112, 2903–2912. [Google Scholar] [CrossRef]
- Jessee, M.B.; Buckner, S.L.; Dankel, S.J.; Counts, B.R.; Abe, T.; Loenneke, J.P. The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med. 2016, 46, 913–921. [Google Scholar] [CrossRef]
- McEwen, J.A.; Owens, J.G.; Jeyasurya, J. Why is it Crucial to Use Personalized Occlusion Pressures in Blood Flow Restriction (BFR) Rehabilitation? J. Med. Biol. Eng. 2019, 39, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Incognito, A.V.; Burr, J.F.; Millar, P.J. The Effects of Ischemic Preconditioning on Human Exercise Performance. Sports Med. 2016, 46, 531–544. [Google Scholar] [CrossRef]
- Marocolo, I.C.; da Mota, G.R.; Londe, A.M.; Patterson, S.D.; Barbosa Neto, O.; Marocolo, M. Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ 2017, 5, e4118. [Google Scholar] [CrossRef] [Green Version]
- Marocolo, M.; Billaut, F.; da Mota, G.R. Ischemic Preconditioning and Exercise Performance: An Ergogenic Aid for Whom? Front. Physiol. 2018, 9, 1874. [Google Scholar] [CrossRef] [Green Version]
- Marocolo, M.; Simim, M.A.M.; Bernardino, A.; Monteiro, I.R.; Patterson, S.D.; da Mota, G.R. Ischemic preconditioning and exercise performance: Shedding light through smallest worthwhile change. Eur. J. Appl. Physiol. 2019, 119, 2123–2149. [Google Scholar] [CrossRef] [PubMed]
- Marocolo, M.; Willardson, J.M.; Marocolo, I.C.; da Mota, G.R.; Simão, R.; Maior, A.S. Ischemic Preconditioning and Placebo Intervention Improves Resistance Exercise Performance. J. Strength Cond. Res. 2016, 30, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- da Mota, G.R.; Marocolo, M. The Effects of Ischemic Preconditioning on Human Exercise Performance: A Counterpoint. Sports Med. 2016, 46, 1575–1576. [Google Scholar] [CrossRef]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Bogdanis, G.C.; Lockie, R.G. Short-term blood flow restriction increases power output and bar velocity during the bench press. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Amani-Shalamzari, S.; Rajabi, S.; Rajabi, H.; Gahreman, D.E.; Paton, C.; Bayati, M.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Front. Physiol. 2019, 10, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application MyFitnessPal: Relative validity of a smartphone dietary record. Nutr. Diet. 2018, 75, 219–225. [Google Scholar] [CrossRef]
- Larkin, K.A.; Macneil, R.G.; Dirain, M.; Sandesara, B.; Manini, T.M.; Buford, T.W. Blood Flow Restriction Enhances Post–Resistance Exercise Angiogenic Gene Expression. Med. Sci. Sports Exerc. 2012, 44, 2077–2083. [Google Scholar] [CrossRef] [Green Version]
- Manini, T.M.; Vincent, K.R.; Leeuwenburgh, C.L.; Lees, H.A.; Kavazis, A.N.; Borst, S.E.; Clark, B.C. Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol. Oxf. Engl. 2011, 201, 255–263. [Google Scholar] [CrossRef]
- Takarada, Y.; Takazawa, H.; Sato, Y.; Takebayashi, S.; Tanaka, Y.; Ishii, N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. Bethesda Md 1985 2000, 88, 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Takarada, Y.; Takazawa, H.; Ishii, N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med. Sci. Sports Exerc. 2000, 32, 2035–2039. [Google Scholar] [CrossRef] [Green Version]
- Sumide, T.; Sakuraba, K.; Sawaki, K.; Ohmura, H.; Tamura, Y. Effect of resistance exercise training combined with relatively low vascular occlusion. J. Sci. Med. Sport 2009, 12, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Madarame, H.; Neya, M.; Ochi, E.; Nakazato, K.; Sato, Y.; Ishii, N. Cross-transfer effects of resistance training with blood flow restriction. Med. Sci. Sports Exerc. 2008, 40, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Abe, T.; Drummond, M.J.; Cadenas, J.G.; Dreyer, H.C.; Sato, Y.; Volpi, E.; Rasmussen, B.B. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J. Appl. Physiol. Bethesda Md 1985 2007, 103, 903–910. [Google Scholar] [CrossRef]
- Abe, T.; Yasuda, T.; Midorikawa, T.; Sato, Y.; Kearns, C.F.; Inoue, K.; Koizumi, K.; Ishii, N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. Int. J. KAATSU Train. Res. 2005, 1, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Kearns, C.F.; Sato, Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol. Bethesda Md 1985 2006, 100, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Brandner, C.R.; Clarkson, M.J.; Kidgell, D.J.; Warmington, S.A. Muscular Adaptations to Whole Body Blood Flow Restriction Training and Detraining. Front. Physiol. 2019, 10, 1099. [Google Scholar] [CrossRef]
- Lixandrão, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.C.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Rawska, M.; Gepfert, M.; Mostowik, A.; Krzysztofik, M.; Wojdała, G.; Lulińska, A.; Wilk, M. Does blood flow restriction influence the maximal number of repetitions performed during the bench press? A pilot study. Balt. J. Health Phys. Act. 2019, 11. [Google Scholar] [CrossRef]
- Wernbom, M.; Augustsson, J.; Thomeé, R. Effects of Vascular Occlusion on Muscular Endurance in Dynamic Knee Extension Exercise at Different Submaximal Loads. J. Strength Cond. Res. 2006, 20, 372. [Google Scholar] [CrossRef]
- Wernbom, M.; Järrebring, R.; Andreasson, M.A.; Augustsson, J. Acute Effects of Blood Flow Restriction on Muscle Activity and Endurance During Fatiguing Dynamic Knee Extensions at Low Load. J. Strength Cond. Res. 2009, 23, 2389–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Lockie, R.G.; Zajac, A. The acute effects of external compression with blood flow restriction on maximal strength and strength-endurance performance of the upper limbs. Front. Physiol. 2020. [Google Scholar] [CrossRef]
- Harman, E.; Frykman, P. The effects of knee wraps on weightlifting per- formance and injury. J. Strength Cond. Res. 1990, 12, 30–35. [Google Scholar]
- Gullett, J.C.; Tillman, M.D.; Gutierrez, G.M.; Chow, J.W. A Biomechanical Comparison of Back and Front Squats in Healthy Trained Individuals. J. Strength Cond. Res. 2009, 23, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M. The Back Squat: A Proposed Assessment of Functional Deficits and Technical Factors That Limit Performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Petr, M.; Krzysztofik, M.; Zajac, A.; Stastny, P. Endocrine response to high intensity barbell squats performed with constant movement tempo and variable training volume. Neuro Endocrinol. Lett. 2018, 39, 342–348. [Google Scholar] [PubMed]
- Wilk, M.; Michalczyk, M.; Gołaś, A.; Krzysztofik, M.; Maszczyk, A.; Zając, A. Endocrine responses following exhaustive strength exercise with and without the use of protein and protein-carbohydrate supplements. Biol. Sport 2018, 35, 399–405. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, D.-Y. Effect of different speeds and ground environment of squat exercises on lower limb muscle activation and balance ability. Technol. Health Care 2018, 26, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Shimano, T.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Hatfield, D.L.; Silvestre, R.; Vingren, J.L.; Fragala, M.S.; Maresh, C.M.; Fleck, S.J.; et al. Relationship Between the Number of Repetitions and Selected Percentages of One Repetition Maximum in Free Weight Exercises in Trained and Untrained Men. J. Strength Cond. Res. 2006, 20, 819. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Gepfert, M.; Krzysztofik, M.; Mostowik, A.; Filip, A.; Hajduk, G.; Zajac, A. Impact of Duration of Eccentric Movement in the One-Repetition Maximum Test Result in the Bench Press among Women. J. Sports Sci. Med. 2020, 19, 317–322. [Google Scholar]
- Wilk, M.; Golas, A.; Zmijewski, P.; Krzysztofik, M.; Filip, A.; Coso, J.D.; Tufano, J.J. The Effects of the Movement Tempo on the One-Repetition Maximum Bench Press Results. J. Hum. Kinet. 2020, 72, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pallarés, J.; Pérez, C.; Morán-Navarro, R.; González-Badillo, J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; López-Lastra, S.; Maté-Muñoz, J.L. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 2015, 14, 128–136. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Crenshaw, A.G.; Hargens, A.R.; Gershuni, D.H.; Rydevik, B. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop. Scand. 1988, 59, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Loenneke, J.P.; Abe, T.; Wilson, J.M.; Ugrinowitsch, C.; Bemben, M.G. Blood flow restriction: How does it work? Front. Physiol. 2012, 3, 392. [Google Scholar] [CrossRef] [Green Version]
- Rossow, L.M.; Fahs, C.A.; Loenneke, J.P.; Thiebaud, R.S.; Sherk, V.D.; Abe, T.; Bemben, M.G. Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin. Physiol. Funct. Imaging 2012, 32, 331–337. [Google Scholar] [CrossRef]
- Godawa, T.M.; Credeur, D.P.; Welsch, M.A. Influence of Compressive Gear on Powerlifting Performance: Role of Blood Flow Restriction Training. J. Strength Cond. Res. 2012, 26, 1274–1280. [Google Scholar] [CrossRef]
- Lake, J.P.; Carden, P.J.C.; Shorter, K.A. Wearing Knee Wraps Affects Mechanical Output and Performance Characteristics of Back Squat Exercise. J. Strength Cond. Res. 2012, 26, 2844–2849. [Google Scholar] [CrossRef]
- Sochart, D.H.; Hardinge, K. The relationship of foot and ankle movements to venous return in the lower limb. J. Bone Joint Surg. Br. 1999, 81-B, 700–704. [Google Scholar] [CrossRef]
- Pérez-Soriano, P.; García-Roig, Á.; Sanchis-Sanchis, R.; Aparicio, I. Influence of compression sportswear on recovery and performance: A systematic review. J. Ind. Text. 2019, 48, 1505–1524. [Google Scholar] [CrossRef]
- Karabulut, M.; Mccarron, J.; Abe, T.; Sato, Y.; Bemben, M. The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps. J. Sports Sci. 2011, 29, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, S.; Hammarström, D.; Strand, T.A.; Zacharoff, E.; Whist, J.E.; Rauk, I.; Nygaard, H.; Vegge, G.; Hanestadhaugen, M.; Wernbom, M.; et al. Blood flow-restricted strength training displays high functional and biological efficacy in women: A within-subject comparison with high-load strength training. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 309, R767–R779. [Google Scholar] [CrossRef] [PubMed]
- Kacin, A.; Strazar, K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity: Ischemic training and muscle endurance. Scand. J. Med. Sci. Sports 2011, 21, e231–e241. [Google Scholar] [CrossRef]
Condition | CONT vs. EC-100 | CONT vs. EC-150 | EC-100 vs. EC-150 |
---|---|---|---|
Peak Power Output [W] | 0.97 | 0.03 * | 0.04 * |
Peak Bar Velocity [m/s] | 0.97 | 0.02 * | 0.03 * |
Mean Power Output [W] | 0.94 | 0.04 * | 0.02 * |
Mean Bar Velocity [m/s] | 0.94 | 0.03 * | 0.01 * |
Squat | CONT (95% CI) | EC-100 (95% CI) | EC-150 (95% CI) | EFFECE SIZE | ||
---|---|---|---|---|---|---|
CONT vs. EC-100 | CONT vs. EC-150 | CONT vs. EC-150 | ||||
Peak Power Output (W) | ||||||
Set 1 | 2080 ± 443 (1763 to 2397) | 2060 ± 336 (1819 to 2300) | 2170 ± 412 (1875 to 2465) | 0.05 | 0.21 | 0.29 |
Set 2 | 2134 ± 428 (1828 to 2441) | 2129 ± 309 (1908 to 2350) | 2249 ± 545 (1859 to 2638) | 0.01 | 0.23 | 0.27 |
Set 3 | 1971 ± 411 (1677 to 2265) | 2038 ± 359 (1781 to 2294) | 2252 ± 484 (1906 to 2598) | 0.17 | 0.63 | 0.50 |
Peak Bar Velocity (m/s) | ||||||
Set 1 | 1.49 ± 0.16 (1.38 to 1.60) | 1.48 ± 0.14 (1.38 to 1.58) | 1.56 ± 0.08 (1.50 to 1.62) | 0.07 | 0.55 | 0.70 |
Set 2 | 1.52 ± 0.14 (1.42 to 1.62) | 1.53 ± 0.11 (1.45 to 1.60) | 1.56 ± 0.10 (1.49 to 1.64) | 0.08 | 0.33 | 0.29 |
Set 3 | 1.45 ± 0.15 (1.35 to 1.56) | 1.48 ± 0.13 (1.38 to 1.57) | 1.57 ± 0.12 (1.48 to 1.66) | 0.21 | 0.88 | 0.65 |
Mean Power Output (W) | ||||||
Set 1 | 811 ± 248 (634 to 989) | 785 ± 193 (646 to 923) | 865 ± 266 (674 to 1055) | 0.12 | 0.21 | 0.34 |
Set 2 | 816 ± 248 (638 to 993) | 808 ± 196 (668 to 948) | 879 ± 275 (682 to 1076) | 0.04 | 0.24 | 0.30 |
Set 3 | 794 ± 221 (636 to 952) | 805 ± 219 (648 to 961) | 867 ± 233 (700 to 1034) | 0.05 | 0.32 | 0.27 |
Mean Bar Velocity (m/s) | ||||||
Set 1 | 0.77 ± 0.12 (0.69 to 0.86) | 0.75 ± 0.07 (0.70 to 0.80) | 0.82 ± 0.09 (0.75 to 0.88) | 0.20 | 0.47 | 0.87 |
Set 2 | 0.77 ± 0.10 (0.70 to 0.85) | 0.77 ± 0.05 (0.73 to 0.81) | 0.83 ± 0.10 (0.76 to 0.90) | 0 | 0.60 | 0.76 |
Set 3 | 0.76 ± 0.10 (0.68 to 0.83) | 0.77 ± 0.11 (0.69 to 0.84) | 0.82 ± 0.08 (0.77 to 0.88) | 0.10 | 0.66 | 0.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gepfert, M.; Krzysztofik, M.; Kostrzewa, M.; Jarosz, J.; Trybulski, R.; Zajac, A.; Wilk, M. The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. Int. J. Environ. Res. Public Health 2020, 17, 4674. https://doi.org/10.3390/ijerph17134674
Gepfert M, Krzysztofik M, Kostrzewa M, Jarosz J, Trybulski R, Zajac A, Wilk M. The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. International Journal of Environmental Research and Public Health. 2020; 17(13):4674. https://doi.org/10.3390/ijerph17134674
Chicago/Turabian StyleGepfert, Mariola, Michal Krzysztofik, Maciej Kostrzewa, Jakub Jarosz, Robert Trybulski, Adam Zajac, and Michal Wilk. 2020. "The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes" International Journal of Environmental Research and Public Health 17, no. 13: 4674. https://doi.org/10.3390/ijerph17134674
APA StyleGepfert, M., Krzysztofik, M., Kostrzewa, M., Jarosz, J., Trybulski, R., Zajac, A., & Wilk, M. (2020). The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. International Journal of Environmental Research and Public Health, 17(13), 4674. https://doi.org/10.3390/ijerph17134674