Simultaneous Pre-Concentration and HPLC-MS/MS Quantification of Phycotoxins and Cyanotoxins in Inland and Coastal Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Water Samples
2.3. SPE Procedure
2.4. HPLC-HESI-MS/MS Analysis
2.5. Analytical Evaluation of the SPE Procedure Followed by HPLC-HESI-MS/MS
3. Results and Discussion
3.1. SPE Procedure
3.2. HPLC-HESI-MS/MS Analysis
3.3. Analytical Evaluation of the SPE Procedure Followed by HPLC-HESI-MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Walls, J.T.; Wyatt, K.H.; Doll, J.C.; Rubenstein, E.M.; Rober, A.R. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Sci. Total Environ. 2018, 610, 786–795. [Google Scholar] [CrossRef]
- Zohdi, E.; Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 2019, 16, 1789–1806. [Google Scholar] [CrossRef]
- Quilliam, M.A. Chemical methods for domoic acid, the amnesic shellfish poisoning (ASP) toxin. Man. Harmful Mar. Microalgae Monogr. Oceanogr. Methodol. 2003, 11, 247–266. [Google Scholar]
- Chan, I.O.M.; Tsang, V.W.H.; Chu, K.K.; Leung, S.K.; Lam, M.H.W.; Lau, T.-C.; Lam, P.K.S.; Wu, R.S.S. Solid-phase extraction-fluorimetric high performance liquid chromatographic determination of domoic acid in natural seawater mediated by an amorphous titania sorbent. Anal. Chim. Acta 2007, 583, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Mos, L. Domoic acid: A fascinating marine toxin. Environ. Toxicol. Pharmacol. 2001, 9, 79–85. [Google Scholar] [CrossRef]
- Lefebvre, K.; Robertson, A. Domoic acid and human exposure risks: A review. Toxicon 2010, 56, 218–230. [Google Scholar] [CrossRef]
- Wang, Z.; King, K.L.; Ramsdell, J.S.; Doucette, G.J. Determination of domoic acid in seawater and phytoplankton by liquid chromatography–tandem mass spectrometry. Chromatogr. J. A 2007, 1163, 169–176. [Google Scholar] [CrossRef]
- Todd, E.C.D. Domoic Acid and Amnesic Shellfish Poisoning—A Review. J. Food Prot. 1993, 56, 69–83. [Google Scholar] [CrossRef]
- Dounay, A.; Forsyth, C. Okadaic Acid: The Archetypal Serine/Threonine Protein Phosphatase Inhibitor. Curr. Med. Chem. 2012, 9, 1939–1980. [Google Scholar] [CrossRef]
- Twiner, M.; Doucette, G.J.; Pang, Y.; Fang, C.; Forsyth, C.J.; Miles, C.O. Structure–Activity Relationship Studies Using Natural and Synthetic Okadaic Acid/Dinophysistoxin Toxins. Mar. Drugs 2016, 14, 207. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.-L.; Zhao, X.-Y.; Ji, L.-D.; Xu, J. Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 2019, 160, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Valdiglesias, V.; Prego-Faraldo, M.V.; Pásaro, E.; Mendez, J.; Laffon, B. Okadaic Acid: More than a Diarrheic Toxin. Mar. Drugs 2013, 11, 4328–4349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Routledge: London, UK, 1999. [Google Scholar]
- Giménez-Campillo, C.; Pastor-Belda, M.; Campillo, N.; Arroyo-Manzanares, N.; Hernández-Córdoba, M.; Viñas, P. Determination of Cyanotoxins and Phycotoxins in Seawater and Algae-Based Food Supplements Using Ionic Liquids and Liquid Chromatography with Time-Of-Flight Mass Spectrometry. Toxins 2019, 11, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Maucher-Fuquay, J.; Fire, S.E.; Mikulski, C.M.; Haynes, B.; Doucette, G.J.; Ramsdell, J.S. Optimization of solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal. Chim. Acta 2012, 715, 71–79. [Google Scholar] [CrossRef]
- Kaloudis, T.; Zervou, S.-K.; Tsimeli, K.; Triantis, T.M.; Fotiou, T.; Hiskia, A. Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC–MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. J. Hazard. Mater. 2013, 263, 105–115. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, M.; Wang, M.; Tong, P.; Lu, Q.; Zhang, L. Magnetic porous β-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples. J. Chromatogr. A 2017, 1503, 1–11. [Google Scholar] [CrossRef]
- Palagama, D.S.W.; Iii, R.E.W.; Isailovic, D. Improved solid-phase extraction protocol and sensitive quantification of six microcystins in water using an HPLC-orbitrap mass spectrometry system. Anal. Methods 2017, 9, 2021–2030. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, M.; Tong, P.; Lu, Q.; Zhang, L. Ferrite nanospheres-based magnetic solid-phase extraction for determination of domoic acid in seawater samples using high-performance liquid chromatography with tandem mass spectrometry. J. Chromatogr. A 2016, 1443, 54–61. [Google Scholar] [CrossRef]
- Li, Q.; Lian, L.; Wang, X.; Wang, R.; Tian, Y.; Guo, X.; Lou, D. Analysis of microcystins using high-performance liquid chromatography and magnetic solid-phase extraction with silica-coated magnetite with cetylpyridinium chloride. J. Sep. Sci. 2017, 40, 1644–1650. [Google Scholar] [CrossRef]
- Devasurendra, A.M.; Palagama, D.S.W.; Rohanifar, A.; Isailovic, D.; Kirchhoff, J.R.; Anderson, J.L. Solid-phase extraction, quantification, and selective determination of microcystins in water with a gold-polypyrrole nanocomposite sorbent material. J. Chromatogr. A 2018, 1560, 1–9. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Huang, Q.; He, Y.; Zhang, L. Magnetic g-cyclodextrin polymer with compatible cavity promote the magnetic solid-phase extraction of microcystins in water samples. Anal. Chim. Acta 2019, 1054, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, S.; Li, X.; Wang, H.; Ji, X.; Zhang, Z. Determination of microcystins in environmental water samples with ionic liquid magnetic graphene. Ecotoxicol. Environ. Saf. 2019, 176, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Zervou, S.-K.; Christophoridis, C.; Kaloudis, T.; Triantis, T.M.; Hiskia, A. New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J. Hazard. Mater. 2017, 323, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Buiarelli, F.; Di Filippo, P.; Distratis, S.; Giannetti, L.; Manganelli, M.; Neri, B.; Pomata, D.; Stefanelli, M. Liquid Chromatography–Tandem Mass Spectrometry Method for the Screening of Eight Paralytic Shellfish Poisoning Toxins, Domoic Acid, 13-Desmethyl Spirolide C, Palytoxin and Okadaic Acid in Seawater. Chromatographia 2017, 81, 277–288. [Google Scholar] [CrossRef]
- Di Gregorio, F.N.; Bogialli, S.; Ferretti, E.; Lucentini, L. First evidence of MC-HtyR associated to a Plankthothrix rubescens blooming in an Italian lake based on a LC-MS method for routinely analysis of twelve microcystins in freshwaters. Microchem. J. 2017, 130, 329–335. [Google Scholar] [CrossRef]
- Di Pofi, G.; Favero, G.; Di Gregorio, F.N.; Ferretti, E.; Viaggiu, E.; Lucentini, L. Multi-residue Ultra Performance Liquid Chromatography-High resolution mass spectrometric method for the analysis of 21 cyanotoxins in surface water for human consumption. Talanta 2020, 211, 120738. [Google Scholar] [CrossRef]
- Merlo, F.; Speltini, A.; Maraschi, F.; Sturini, M.; Profumo, A. HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica. Arab. J. Chem. 2020, 13, 4673–4680. [Google Scholar] [CrossRef]
- Speltini, A.; Merlo, F.; Maraschi, F.; Sturini, M.; Contini, M.; Calisi, N.; Profumo, A. Thermally condensed humic acids onto silica as SPE for effective enrichment of glucocorticoids from environmental waters followed by HPLC-HESI-MS/MS. J. Chromatogr. A 2018, 1540, 38–46. [Google Scholar] [CrossRef]
- Speltini, A.; Pastore, M.; Merlo, F.; Maraschi, F.; Sturini, M.; Dondi, D.; Profumo, A. Humic Acids Pyrolyzed onto Silica Microparticles for Solid-Phase Extraction of Benzotriazoles and Benzothiazoles from Environmental Waters. Chromatographia 2019, 82, 1275–1283. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Zhang, D.; Luo, L.G.; Liao, Q.; Yuan, L.; Wu, N. Seasonal and spatial variations of microcystins in Poyang Lake, the largest freshwater lake in China. Environ. Sci. Pollut. Res. 2017, 25, 6300–6307. [Google Scholar] [CrossRef]
Mean Recoveries (%) | ||||||
---|---|---|---|---|---|---|
Toxin | Lake Water | River Water | Sea Water | |||
400 ng L−1 | 100 ng L−1 | 400 ng L−1 | 100 ng L−1 | 400 ng L−1 | 100 ng L−1 | |
DA | 82 | 92 | 70 | 86 | 79 | 87 |
MC-RR | 89 | 90 | 71 | 95 | 84 | 101 |
MC-YR | 106 | 114 | 110 | 89 | 97 | 87 |
MC-LR | 112 | 118 | 96 | 87 | 96 | 95 |
MC-LW | 104 | 108 | 71 | 71 | 70 | 86 |
OA | 97 | 113 | 82 | 103 | 94 | 93 |
Toxin | Retention Time (min) | m/z Precursor Ion | m/z and Hypothesized Formula for Product Ion* | Dwell Time (ms) | Fragmentor Voltage (V) | Collision Energy (V) |
---|---|---|---|---|---|---|
DA | 16.4 | 312.1 [M+H]+ | 266.5 [M+H-HCOOH]+ | 100 | 50 | 15 |
161.2 [(COOH)2C4H7NH2]+ | 100 | 50 | 20 | |||
MC-RR | 20.1 | 519.9 [M+2H]2+ | 135.1 [PhCH2CH(OMe)]+ | 50 | 200 | 39 |
104.9 [PhCH2CH2]+ | 50 | 200 | 38 | |||
MC-YR | 24.0 | 1045.2 [M+H]+ | 213.0 [Glu-Mdha+H]+ | 150 | 250 | 62 |
135.1 [PhCH2CH(OMe)]+ | 150 | 250 | 63 | |||
MC-LR | 25.1 | 995.5 [M+H]+ | 213.0 [Glu-Mdha+H]+ | 150 | 200 | 73 |
135.1 [PhCH2CH(OMe)]+ | 150 | 200 | 62 | |||
MC-LW | 34.9 | 1025.4 [M+H]+ | 446.1 [C11H15O-Glu-Mdha-Ala]+ | 150 | 200 | 30 |
375.1 [C11H15O-Glu-Mdha]+ | 150 | 200 | 25 | |||
OA | 37.0 | 827.6 [M+Na]+ | 809.4 [M+H-H2O]+ | 75 | 200 | 50 |
723.6 [M+H-3H2O-CONa]+ | 75 | 200 | 50 |
Toxin | Lake Water | River Water | Sea Water | |||
---|---|---|---|---|---|---|
MDL (ng L−1) | MQL (ng L−1) | MDL (ng L−1) | MQL (ng L−1) | MDL (ng L−1) | MQL (ng L−1) | |
DA | 19 | 58 | 29 | 88 | 14 | 44 |
MC-RR | 3 | 9 | 0.4 | 1 | 2 | 6 |
MC-YR | 4 | 13 | 6 | 17 | 2 | 6 |
MC-LR | 5 | 16 | 2. | 6 | 0.3 | 1 |
MC-LW | 4 | 11 | 17 | 50 | 6 | 20 |
OA | 2 | 5 | 0.8 | 2 | 0.5 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlo, F.; Maraschi, F.; Piparo, D.; Profumo, A.; Speltini, A. Simultaneous Pre-Concentration and HPLC-MS/MS Quantification of Phycotoxins and Cyanotoxins in Inland and Coastal Waters. Int. J. Environ. Res. Public Health 2020, 17, 4782. https://doi.org/10.3390/ijerph17134782
Merlo F, Maraschi F, Piparo D, Profumo A, Speltini A. Simultaneous Pre-Concentration and HPLC-MS/MS Quantification of Phycotoxins and Cyanotoxins in Inland and Coastal Waters. International Journal of Environmental Research and Public Health. 2020; 17(13):4782. https://doi.org/10.3390/ijerph17134782
Chicago/Turabian StyleMerlo, Francesca, Federica Maraschi, Davide Piparo, Antonella Profumo, and Andrea Speltini. 2020. "Simultaneous Pre-Concentration and HPLC-MS/MS Quantification of Phycotoxins and Cyanotoxins in Inland and Coastal Waters" International Journal of Environmental Research and Public Health 17, no. 13: 4782. https://doi.org/10.3390/ijerph17134782
APA StyleMerlo, F., Maraschi, F., Piparo, D., Profumo, A., & Speltini, A. (2020). Simultaneous Pre-Concentration and HPLC-MS/MS Quantification of Phycotoxins and Cyanotoxins in Inland and Coastal Waters. International Journal of Environmental Research and Public Health, 17(13), 4782. https://doi.org/10.3390/ijerph17134782