Upper and Lower Limb Strength and Body Posture in Children with Congenital Hypothyroidism: An Observational Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment of Maximum Upper and Lower Limb Strength
2.4. Stabilometric and Baropodometric Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wassner, A.J. Pediatric Hypothyroidism: Diagnosis and Treatment. Paediatr. Drugs 2017, 19, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Maciel, L.M.; Kimura, E.T.; Nogueira, C.R.; Mazeto, G.M.; Magalhaes, P.K.; Nascimento, M.L.; Nesi-Franca, S.; Vieira, S.E.; Brazilian Society of Endocrinology and Metabolism. Congenital hypothyroidism: Recommendations of the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism. Arq. Bras. Endocrinol. Metabol. 2013, 57, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targovnik, H.M.; Scheps, K.G.; Rivolta, C.M. Defects in protein folding in congenital hypothyroidism. Mol. Cell Endocrinol. 2019, 501, 110638. [Google Scholar] [CrossRef] [PubMed]
- Frezzato, R.C.; Santos, D.C.; Goto, M.M.; Ouro, M.P.; Santos, C.T.; Dutra, V.; Lima, M.C. Fine motor skills and expressive language: A study with children with congenital hypotyreoidism. Codas 2017, 29, e20160064. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, A.; Resende, E.S.; Fernandes, M.L.; da Costa, A.M. Effect of thyroid hormones on cardiovascular and muscle systems and on exercise tolerance: A brief review. Arq. Bras. Cardiol. 2006, 87, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.R.; Bassett, J.H.D. Thyroid diseases and bone health. J. Endocrinol. Investig. 2018, 41, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Wassner, A.J.; Brown, R.S. Congenital hypothyroidism: Recent advances. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 407–412. [Google Scholar] [CrossRef]
- Rapaport, R. Congenital hypothyroidism: An evolving common clinical conundrum. J. Clin. Endocrinol. Metab. 2010, 95, 4223–4225. [Google Scholar] [CrossRef] [Green Version]
- Olney, R.S.; Grosse, S.D.; Vogt, R.F., Jr. Prevalence of congenital hypothyroidism—Current trends and future directions: Workshop summary. Pediatrics 2010, 125 (Suppl. 2), S31–S36. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, A.; Fazzini, C.; Medda, E.; Italian Study Group for Congenital Hypothyroidism. Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm. Res. Paediatr. 2015, 83, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Ford, G.; LaFranchi, S.H. Screening for congenital hypothyroidism: A worldwide view of strategies. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluijs Veer, L.; Kempers, M.J.; Last, B.F.; Vulsma, T.; Grootenhuis, M.A. Quality of life, developmental milestones, and self-esteem of young adults with congenital hypothyroidism diagnosed by neonatal screening. J. Clin. Endocrinol. Metab. 2008, 93, 2654–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, R.M.; Delp, M.D.; Laughlin, M.H. Thyroid status and exercise tolerance. Cardiovascular and metabolic considerations. Sports Med. 1995, 20, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lankhaar, J.A.; de Vries, W.R.; Jansen, J.A.; Zelissen, P.M.; Backx, F.J. Impact of overt and subclinical hypothyroidism on exercise tolerance: A systematic review. Res. Q. Exerc. Sport 2014, 85, 365–389. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Kampmann, C.; Mohr-Kahaly, S. Cardiovascular hemodynamics and exercise tolerance in thyroid disease. Thyroid 2002, 12, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Schlenker, E.H. Effects of hypothyroidism on the respiratory system and control of breathing: Human studies and animal models. Respir. Physiol. Neurobiol. 2012, 181, 123–131. [Google Scholar] [CrossRef]
- Sorensen, J.R.; Winther, K.H.; Bonnema, S.J.; Godballe, C.; Hegedus, L. Respiratory Manifestations of Hypothyroidism: A Systematic Review. Thyroid 2016, 26, 1519–1527. [Google Scholar] [CrossRef] [Green Version]
- Sadek, S.H.; Khalifa, W.A.; Azoz, A.M. Pulmonary consequences of hypothyroidism. Ann. Thorac. Med. 2017, 12, 204–208. [Google Scholar] [CrossRef]
- Khushu, S.; Rana, P.; Sekhri, T.; Sripathy, G.; Tripathi, R.P. Bio-energetic impairment in human calf muscle in thyroid disorders: A 31P MRS study. Magn. Reason. Imaging 2010, 28, 683–689. [Google Scholar] [CrossRef]
- Simonides, W.S.; van Hardeveld, C. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 2008, 18, 205–216. [Google Scholar] [CrossRef]
- Kaminsky, P.; Robin-Lherbier, B.; Brunotte, F.; Escanye, J.M.; Walker, P.; Klein, M.; Robert, J.; Duc, M. Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorus magnetic resonance spectroscopy. J. Clin. Endocrinol. Metab. 1992, 74, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Brusa, J.; Maggio, M.C.; Zangla, D.; Giustino, V.; Thomas, E.; Palma, R.; Messina, G.; Palma, A.; Corsello, G.; Bellafiore, M. Comparison of Postural Features and Muscle Strength between Children with Idiopathic Short Stature and Healthy Peers in Relation to Physical Exercise. Sustainability 2020, 12, 3639. [Google Scholar] [CrossRef]
- Ganley, K.J.; Paterno, M.V.; Miles, C.; Stout, J.; Brawner, L.; Girolami, G.; Warren, M. Health-related fitness in children and adolescents. Pediatr. Phys. Ther. 2011, 23, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Macfaul, R.; Dorner, S.; Brett, E.M.; Grant, D.B. Neurological abnormalities in patients treated for hypothyroidism from early life. Arch. Dis. Child 1978, 53, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Gao, Y.; Wang, J. Effects of vision and cognitive load on anticipatory and compensatory postural control. Hum. Mov. Sci. 2019, 64, 398–408. [Google Scholar] [CrossRef]
- Messina, G.; Giustino, V.; Martines, F.; Rizzo, S.; Pirino, A.; Scoppa, F. Orofacial muscles activity in children with swallowing dysfunction and removable functional appliances. Eur. J. Transl. Myol. 2019, 29, 8267. [Google Scholar] [CrossRef] [Green Version]
- Vitkovic, J.; Le, C.; Lee, S.L.; Clark, R.A. The Contribution of Hearing and Hearing Loss to Balance Control. Audiol. Neurootol. 2016, 21, 195–202. [Google Scholar] [CrossRef]
- Battaglia, G.; Bellafiore, M.; Bianco, A.; Paoli, A.; Palma, A. Effects of a dynamic balance training protocol on podalic support in older women. Pilot Study. Aging Clin. Exp. Res. 2010, 22, 406–411. [Google Scholar] [CrossRef]
- Bellafiore, M.; Battaglia, G.; Bianco, A.; Paoli, A.; Farina, F.; Palma, A. Improved postural control after dynamic balance training in older overweight women. Aging Clin. Exp. Res. 2011, 23, 378–385. [Google Scholar] [CrossRef]
- Wind, A.E.; Takken, T.; Helders, P.J.; Engelbert, R.H. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur. J. Pediatr. 2010, 169, 281–287. [Google Scholar] [CrossRef]
- Abidin, N.Z.; Adam, M.B. Prediction of vertical jump height from anthropometric factors in male and female martial arts athletes. Malays. J. Med. Sci. 2013, 20, 39–45. [Google Scholar] [PubMed]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sports Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Velez, R.; Correa-Bautista, J.E.; Lobelo, F.; Cadore, E.L.; Alonso-Martinez, A.M.; Izquierdo, M. Vertical Jump and Leg Power Normative Data for Colombian Schoolchildren Aged 9–17.9 Years: The FUPRECOL Study. J. Strength Cond. Res. 2017, 31, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Scoppa, F.; Gallamini, M.; Belloni, G.; Messina, G. Clinical Stabilometry Standardization: Feet Position in the Static Stabilometric Assessment of Postural Stability. Acta Med. Mediterr. 2017, 33, 707–713. [Google Scholar] [CrossRef]
- Bassett, J.H.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivkees, S.A.; Bode, H.H.; Crawford, J.D. Long-term growth in juvenile acquired hypothyroidism: The failure to achieve normal adult stature. N. Engl. J. Med. 1988, 318, 599–602. [Google Scholar] [CrossRef]
- Huffmeier, U.; Tietze, H.U.; Rauch, A. Severe skeletal dysplasia caused by undiagnosed hypothyroidism. Eur. J. Med. Genet. 2007, 50, 209–215. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Leung, A.A.C. Evaluation and management of the child with hypothyroidism. World J. Pediatr. 2019, 15, 124–134. [Google Scholar] [CrossRef]
- Albert, B.B.; Heather, N.; Derraik, J.G.; Cutfield, W.S.; Wouldes, T.; Tregurtha, S.; Mathai, S.; Webster, D.; Jefferies, C.; Gunn, A.J.; et al. Neurodevelopmental and body composition outcomes in children with congenital hypothyroidism treated with high-dose initial replacement and close monitoring. J. Clin. Endocrinol. Metab. 2013, 98, 3663–3670. [Google Scholar] [CrossRef] [Green Version]
- Oerbeck, B.; Sundet, K.; Kase, B.F.; Heyerdahl, S. Congenital hypothyroidism: Influence of disease severity and L-thyroxine treatment on intellectual, motor, and school-associated outcomes in young adults. Pediatrics 2003, 112, 923–930. [Google Scholar] [CrossRef]
- Selva, K.A.; Harper, A.; Downs, A.; Blasco, P.A.; Lafranchi, S.H. Neurodevelopmental outcomes in congenital hypothyroidism: Comparison of initial T4 dose and time to reach target T4 and TSH. J. Pediatr. 2005, 147, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Salerno, M.; Militerni, R.; Bravaccio, C.; Micillo, M.; Capalbo, D.; Di, M.S.; Tenore, A. Effect of different starting doses of levothyroxine on growth and intellectual outcome at four years of age in congenital hypothyroidism. Thyroid 2002, 12, 45–52. [Google Scholar] [CrossRef]
- Bongers-Schokking, J.J.; Koot, H.M.; Wiersma, D.; Verkerk, P.H.; de Muinck Keizer-Schrama, S.M. Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism. J. Pediatr. 2000, 136, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Kempers, M.J.; van der Sluijs Veer, L.; Nijhuis-van der Sanden, M.W.; Kooistra, L.; Wiedijk, B.M.; Faber, I.; Last, B.F.; de Vijlder, J.J.; Grootenhuis, M.A.; Vulsma, T. Intellectual and motor development of young adults with congenital hypothyroidism diagnosed by neonatal screening. J. Clin. Endocrinol. Metab. 2006, 91, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, H.M.; Selles, R.W.; Zuidam, J.M.; Willemsen, S.P.; Stam, H.J.; Hovius, S.E. Growth diagrams for grip strength in children. Clin. Orthop. Relat. Res. 2010, 468, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.C.C.; Shimano, A.C.; Mazzer, N.; Barbieri, C.H.; Elui, V.M.C.; Fonseca, M.C.R. Grip and pinch strength in healthy children and adolescents. Acta Ortop. Bras. 2011, 19, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Hauri-Hohl, A.; Dusoczky, N.; Dimitropoulos, A.; Leuchter, R.H.; Molinari, L.; Caflisch, J.; Jenni, O.G.; Latal, B. Impaired neuromotor outcome in school-age children with congenital hypothyroidism receiving early high-dose substitution treatment. Pediatr. Res. 2011, 70, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Kooistra, L.; Laane, C.; Vulsma, T.; Schellekens, J.M.; van der Meere, J.J.; Kalverboer, A.F. Motor and cognitive development in children with congenital hypothyroidism: A long-term evaluation of the effects of neonatal treatment. J. Pediatr. 1994, 124, 903–909. [Google Scholar] [CrossRef]
- Mainenti, M.R.; Vigario, P.S.; Teixeira, P.F.; Maia, M.D.; Oliveira, F.P.; Vaisman, M. Effect of levothyroxine replacement on exercise performance in subclinical hypothyroidism. J. Endocrinol. Investig. 2009, 32, 470–473. [Google Scholar] [CrossRef]
- Argov, Z.; Renshaw, P.F.; Boden, B.; Winokur, A.; Bank, W.J. Effects of thyroid hormones on skeletal muscle bioenergetics. In vivo phosphorus-31 magnetic resonance spectroscopy study of humans and rats. J. Clin. Investig. 1988, 81, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, I. Thyroid Disease and Muscle Dysfunction; Butterworth-Heinemann: Oxford, UK, 1974; p. 190. [Google Scholar]
- Mohammadi Sefat, S.; Shabani, R.; Nazari, M. The effect of concurrent aerobic-resistance training on thyroid hormones, blood glucose hemostasis, and blood lipid indices in overweight girls with hypothyroidism. Horm. Mol. Biol. Clin. Investig. 2019, 40. [Google Scholar] [CrossRef] [PubMed]
- Kempers, M.J.; Vulsma, T.; Wiedijk, B.M.; de Vijlder, J.J.; van Eck-Smit, B.L.; Verberne, H.J. The effect of life-long thyroxine treatment and physical activity on bone mineral density in young adult women with congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 2006, 19, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
Participants | Age (Years) | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|---|
CHG | 10.52 ± 3.03 | 131.53 ± 15.22 * | 31.37 ± 10.8 * | 17.71 ± 3.54 |
CG | 10 ± 1.5 | 142 ± 11.95 | 39 ± 10.36 | 19.09 ± 3.27 |
Variable | CHG | CG | p-Value |
---|---|---|---|
R-MIHS (kg) | 10.78 ± 5.29 § | 13.75 ± 4.65 * | 0.074 |
L-MIHS (kg) | 9.54 ± 4.56 § | 12.07 ± 3.99 * | 0.077 |
ELLS (cm) | 16.26 ± 6.51 | 16.68 ± 5.64 | 0.83 |
Parameter | CHG | CG | p-Value |
---|---|---|---|
SPL (mm) | 846.84 ± 70.06 | 254.32 ± 81.94 | 0.01 |
ES (mm2) | 532.8 ± 174.3 | 317.5 ± 331.7 | 0.016 |
Speed (mm/s) | 18.97 ± 4.2 | 17.87 ± 6.38 | 0.55 |
∆X (mm) | 21.25 ± 20.28 | 17.83 ± 10.93 | 0.89 |
∆Y (mm) | 15.32 ± 12.06 | 20.14 ± 10.09 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brusa, J.; Maggio, M.C.; Giustino, V.; Thomas, E.; Zangla, D.; Iovane, A.; Palma, A.; Corsello, G.; Messina, G.; Bellafiore, M. Upper and Lower Limb Strength and Body Posture in Children with Congenital Hypothyroidism: An Observational Case-Control Study. Int. J. Environ. Res. Public Health 2020, 17, 4830. https://doi.org/10.3390/ijerph17134830
Brusa J, Maggio MC, Giustino V, Thomas E, Zangla D, Iovane A, Palma A, Corsello G, Messina G, Bellafiore M. Upper and Lower Limb Strength and Body Posture in Children with Congenital Hypothyroidism: An Observational Case-Control Study. International Journal of Environmental Research and Public Health. 2020; 17(13):4830. https://doi.org/10.3390/ijerph17134830
Chicago/Turabian StyleBrusa, Jessica, Maria Cristina Maggio, Valerio Giustino, Ewan Thomas, Daniele Zangla, Angelo Iovane, Antonio Palma, Giovanni Corsello, Giuseppe Messina, and Marianna Bellafiore. 2020. "Upper and Lower Limb Strength and Body Posture in Children with Congenital Hypothyroidism: An Observational Case-Control Study" International Journal of Environmental Research and Public Health 17, no. 13: 4830. https://doi.org/10.3390/ijerph17134830
APA StyleBrusa, J., Maggio, M. C., Giustino, V., Thomas, E., Zangla, D., Iovane, A., Palma, A., Corsello, G., Messina, G., & Bellafiore, M. (2020). Upper and Lower Limb Strength and Body Posture in Children with Congenital Hypothyroidism: An Observational Case-Control Study. International Journal of Environmental Research and Public Health, 17(13), 4830. https://doi.org/10.3390/ijerph17134830