Mind over Matter: Testing the Efficacy of an Online Randomized Controlled Trial to Reduce Distraction from Smartphone Use
Abstract
:1. Introduction
1.1. Distraction and Its Relation to Other Psychological Constructs in the Smartphone Literature
1.2. Smartphone Mental Health Apps (MHapps) and Online Randomized Controlled Trials
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Materials
2.4. The Intervention
2.5. Data Analysis
2.5.1. Sample Size Estimation
2.5.2. Data Cleaning, Assumption Testing and Descriptive Analysis
2.5.3. Randomization and Risk of Bias
2.5.4. Analysis of Intervention Effects and Testing of Hypothesized Mechanisms
3. Results
3.1. Baseline Equivalence Evaluation
3.2. Intervention Efficacy Evaluation
3.3. Intervention Effects Based on Distraction Severity
3.4. Mediation Analyses
4. Discussion
Limitations, Implications, and Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashinoff, B.K.; Abu-Akel, A. Hyperfocus: The forgotten frontier of attention. Psychol. Res. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchley, P.; Lane, S. Cognition in the attention economy. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2014; pp. 133–177. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128002834000046 (accessed on 11 June 2019).
- Falkinger, J. Attention economies. J. Econ. Theory 2007, 133, 266–294. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.R.; Son, S.-M.; Kim, K.K. Information and communication technology overload and social networking service fatigue: A stress perspective. Comput. Hum. Behav. 2016, 55, 51–61. [Google Scholar] [CrossRef]
- Throuvala, M.A.; Griffiths, M.D.; Rennoldson, M.; Kuss, D.J. A ‘control model’ of social media engagement in adolescence: A grounded theory analysis. Int. J. Environ. Res. Public Health 2019, 16, 4696. [Google Scholar] [CrossRef] [Green Version]
- Rosen, C. The Myth of Multitasking; Center for the Study of Technology and Society: Washington, DC, USA, 2008; pp. 105–110. Available online: https://www.jstor.org/stable/43152412 (accessed on 5 April 2020).
- Statista. Number of Smartphone Users Worldwide from 2016 to 2021. 2020. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 20 March 2020).
- Busch, P.A.; McCarthy, S. Antecedents and consequences of problematic smartphone use: A systematic literature review of an emerging research area. Comput. Hum. Behav. 2020, 106414. [Google Scholar] [CrossRef]
- Kuss, D.; Harkin, L.; Kanjo, E.; Billieux, J. Problematic smartphone use: Investigating contemporary experiences using a convergent design. Int. J. Environ. Res. Public Health 2018, 15, 142. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Wegmann, E.; Sariyska, R.; Demetrovics, Z.; Brand, M. How to overcome taxonomical problems in the study of Internet use disorders and what to do with “smartphone addiction”? J. Behav. Addict. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Beuckels, E.; Kazakova, S.; Cauberghe, V.; Hudders, L.; De Pelsmacker, P. Freedom makes you lose control: Executive control deficits for heavy versus light media multitaskers and the implications for advertising effectiveness. Eur. J. Mark. 2019, 53, 848–870. [Google Scholar] [CrossRef]
- Fitz, N.; Kushlev, K.; Jagannathan, R.; Lewis, T.; Paliwal, D.; Ariely, D. Batching smartphone notifications can improve well-being. Comput. Hum. Behav. 2019, 101, 84–94. [Google Scholar] [CrossRef]
- Marsh, E.J.; Rajaram, S. The digital expansion of the mind: Implications of Internet usage for memory and cognition. J. Appl. Res. Mem. Cogn. 2019, 8, 1–14. [Google Scholar] [CrossRef]
- Ward, A.F.; Duke, K.; Gneezy, A.; Bos, M.W. Brain drain: The mere presence of one’s own smartphone reduces available cognitive capacity. J. Assoc. Consum. Res. 2017, 2, 140–154. [Google Scholar] [CrossRef] [Green Version]
- Thornton, B.; Faires, A.; Robbins, M.; Rollins, E. The mere presence of a cell phone may be distracting: Implications for attention and task performance. Soc. Psychol. 2014, 45, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Hartanto, A.; Yang, H. Is the smartphone a smart choice? The effect of smartphone separation on executive functions. Comput. Hum. Behav. 2016, 64, 329–336. [Google Scholar] [CrossRef]
- Wilmer, H.H.; Sherman, L.E.; Chein, J.M. Smartphones and cognition: A review of research exploring the links between mobile technology habits and cognitive functioning. Front. Psychol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Canale, N.; Vieno, A.; Doro, M.; Rosa Mineo, E.; Marino, C.; Billieux, J. Emotion-related impulsivity moderates the cognitive interference effect of smartphone availability on working memory. Sci. Rep. 2019, 9, 18519. [Google Scholar] [CrossRef]
- Hadar, A.; Hadas, I.; Lazarovits, A.; Alyagon, U.; Eliraz, D.; Zangen, A. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse. PLoS ONE 2017, 12, e0180094. [Google Scholar] [CrossRef] [PubMed]
- Duke, É.; Montag, C. Smartphone addiction, daily interruptions and self-reported productivity. Addict. Behav. Rep. 2017, 6, 90–95. [Google Scholar] [CrossRef]
- Barr, N.; Pennycook, G.; Stolz, J.A.; Fugelsang, J.A. The brain in your pocket: Evidence that smartphones are used to supplant thinking. Comput. Hum. Behav. 2015, 48, 473–480. [Google Scholar] [CrossRef]
- Kim, I.; Kim, R.; Kim, H.; Kim, D.; Han, K.; Lee, P.H.; Mark, D.; Lee, U. Understanding smartphone usage in college classrooms: A long-term measurement study. Comput. Educ. 2019, 141, 103611. [Google Scholar] [CrossRef]
- Rostain, A.L. Book review of the “The Distracted Mind: Ancient Brains in a High-Tech World”. J. Am. Acad. Child. Adolesc. Psychiatry 2019, 58, 829–831. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0890856719304125 (accessed on 3 August 2019). [CrossRef]
- Mendoza, J.S.; Pody, B.C.; Lee, S.; Kim, M.; McDonough, I.M. The effect of cellphones on attention and learning: The influences of time, distraction, and nomophobia. Comput. Hum. Behav. 2018, 86, 52–60. [Google Scholar] [CrossRef]
- Uncapher, M.R.K.; Thieu, M.; Wagner, A.D. Media multitasking and memory: Differences in working memory and long-term memory. Psychon Bull. Rev. 2016, 23, 483–490. [Google Scholar] [CrossRef]
- McRae, K.; Hughes, B.; Chopra, S.; Gabrieli, J.D.E.; Gross, J.J.; Ochsner, K.N. The neural bases of distraction and reappraisal. J. Cogn. Neurosci. 2010, 22, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Nolen-Hoeksema, S.; Wisco, B.E.; Lyubomirsky, S. Rethinking rumination. Perspect. Psychol. Sci. 2008, 3, 400–424. [Google Scholar] [CrossRef] [PubMed]
- Sheppes, G.; Scheibe, S.; Suri, G.; Gross, J.J. Emotion-regulation choice. Psychol. Sci. 2011, 22, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Moyal, N. Cognitive strategies to regulate emotions—current evidence and future directions. Front. Psychol. 2014, 4, 1019. [Google Scholar] [CrossRef]
- Gross, J.J. The emerging field of emotion regulation: An integrative review. Rev. Gen. Psychol. 1998. [Google Scholar] [CrossRef]
- Gazzaley, A.; Rosen, L.D. The Distracted Mind: Ancient Brains in a High-Tech. World; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Rosen, L.D.; Lim, A.F.; Carrier, L.M.; Cheever, N.A. An empirical examination of the educational Impact of text message-induced task switching in the classroom: Educational implications and strategies to enhance learning. Rev. Psicol. Educ. 2011, 17, 163–177. [Google Scholar]
- Stothart, C.; Mitchum, A.; Yehnert, C. The attentional cost of receiving a cell phone notification. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Peña-Sarrionandia, A.; Mikolajczak, M.; Gross, J.J. Integrating emotion regulation and emotional intelligence traditions: A meta-analysis. Front. Psychol. 2015, 6, 160. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.S. Distraction-conflict theory: Progress and problems. Adv Exp. Soc. Psychol. 1986, 19, 1–40. [Google Scholar]
- Baron, R.S.; Moore, D.; Sanders, G.S. Distraction as a source of drive in social facilitation research. J. Pers. Soc. Psychol. 1978, 36, 816–824. [Google Scholar] [CrossRef]
- Montagni, I.; Guichard, E.; Kurth, T. Association of screen time with self-perceived attention problems and hyperactivity levels in French students: A cross-sectional study. BMJ Open 2016, 6, e009089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, S.E.; van der Schuur, W.A.; Lemmens, J.S.; Te Poel, F. The relationship between media multitasking and attention problems in adolescents: Results of two longitudinal studies: Media multitasking and attention problems. Hum. Commun. Res. 2017. [Google Scholar] [CrossRef]
- Kuznekoff, J.H.; Titsworth, S. The impact of mobile phone usage on student learning. Commun. Educ. 2013, 62, 233–252. [Google Scholar] [CrossRef]
- Giunchiglia, F.; Zeni, M.; Gobbi, E.; Bignotti, E.; Bison, I. Mobile social media usage and academic performance. Comput. Hum. Behav. 2018, 82, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Felisoni, D.D.; Godoi, A.S. Cell phone usage and academic performance: An experiment. Comput. Educ. 2018, 117, 175–187. [Google Scholar] [CrossRef]
- Csibi, S.; Griffiths, M.D.; Demetrovics, Z.; Szabo, A. Analysis of problematic smartphone use across different age groups within the ‘components model of addiction’. Int. J. Ment. Health Addict. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, O.; Kuss, D.J.; Romo, L.; Morvan, Y.; Kern, L.; Graziani, P.; Rousseau, A.; Rumpf, H.-J.; Bischof, A.; Gässler, A. Self-reported dependence on mobile phones in young adults: A European cross-cultural empirical survey. J. Behav. Addict. 2017, 6, 168–177. [Google Scholar] [CrossRef]
- Kuss, D.J. Mobile technology and social media: The “extensions of man” in the 21st century. Hum. Dev. 2017, 60, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Kates, A.W.; Wu, H.; Coryn, C.L.S. The effects of mobile phone use on academic performance: A meta-analysis. Comput. Educ. 2018, 127, 107–112. [Google Scholar] [CrossRef]
- Reinecke, L.; Klimmt, C.; Meier, A.; Reich, S.; Hefner, D.; Knop-Huelss, K.; Rieger, D.; Vorderer, P. Permanently online and permanently connected: Development and validation of the Online Vigilance Scale. PLoS ONE 2018, 13, e0205384. [Google Scholar] [CrossRef] [PubMed]
- Oulasvirta, A.; Rattenbury, T.; Ma, L.; Raita, E. Habits make smartphone use more pervasive. Pers. Ubiquitous Comput. 2012, 16, 105–114. [Google Scholar] [CrossRef]
- Van Deursen, A.J.A.M.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A.M. Modeling habitual and addictive smartphone behavior. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Johannes, N.; Meier, A.; Reinecke, L.; Ehlert, S.; Setiawan, D.N.; Walasek, N.; Dienlin, T.; Buijzen, M.; Veling, H. The relationship between online vigilance and affective well-being in everyday life: Combining smartphone logging with experience sampling. PsyArXiv 2019. Available online: https://osf.io/t3wc2 (accessed on 4 January 2020).
- Billieux, J.; Van der Linden, M.; d’Acremont, M.; Ceschi, G.; Zermatten, A. Does impulsivity relate to perceived dependence on and actual use of the mobile phone? Appl. Cogn. Psychol 2007, 21, 527–537. [Google Scholar] [CrossRef]
- Wegmann, E.; Müller, S.M.; Turel, O.; Brand, M. Interactions of impulsivity, general executive functions, and specific inhibitory control explain symptoms of social-networks-use disorder: An experimental study. Sci. Rep. 2020, 10, 3866. [Google Scholar] [CrossRef] [Green Version]
- Wu, E.X.W.; Liaw, G.J.; Goh, R.Z.; Chia, T.T.Y.; Chee, A.M.J.; Obana, T.; Rosenberg, M.D.; Yeo, B.T.; Asplund, C.L. Overlapping attentional networks yield divergent behavioral predictions across tasks: Neuromarkers for diffuse and focused attention? NeuroImage 2020, 20, 116535. [Google Scholar] [CrossRef]
- Gupta, N.; Irwin, J.D. In-class distractions: The role of Facebook and the primary learning task. Comput. Hum. Behav. 2016, 55, 1165–1178. [Google Scholar] [CrossRef]
- Unsworth, N.; McMillan, B.D. Attentional disengagements in educational contexts: A diary investigation of everyday mind-wandering and distraction. Cogn. Res. Princ. Implic. 2017, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Buglass, S.L.; Binder, J.F.; Betts, L.R.; Underwood, J.D.M. Motivators of online vulnerability: The impact of social network site use and FOMO. Comput. Hum. Behav. 2017, 66, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Cheever, N.A.; Rosen, L.D.; Carrier, L.M.; Chavez, A. Out of sight is not out of mind: The impact of restricting wireless mobile device use on anxiety levels among low, moderate and high users. Comput. Hum. Behav. 2014, 37, 290–297. [Google Scholar] [CrossRef]
- Clayton, R.B.; Leshner, G.; Almond, A. The extended iSelf: The impact of iPhone separation on cognition, emotion, and physiology. J. Comput. Mediat. Commun. 2015, 20, 119–135. [Google Scholar] [CrossRef]
- Eide, T.A.; Aarestad, S.H.; Andreassen, C.S.; Bilder, R.M.; Pallesen, S. Smartphone restriction and its effect on subjective withdrawal related scores. Front. Psychol 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhai, J.D.; Levine, J.C.; Dvorak, R.D.; Hall, B.J. Fear of missing out, need for touch, anxiety and depression are related to problematic smartphone use. Comput. Hum. Behav. 2016, 63, 509–516. [Google Scholar] [CrossRef]
- Elhai, J.D.; Yang, H.; Montag, C. Fear of missing out (FOMO): Overview, theoretical underpinnings, and literature review on relations with severity of negative affectivity and problematic technology use. Braz. J. Psychiatr. 2020. [Google Scholar] [CrossRef]
- Franchina, V.; Vanden Abeele, M.; van Rooij, A.; Lo Coco, G.; De Marez, L. Fear of missing out as a predictor of problematic social media use and phubbing behavior among Flemish adolescents. Int. J. Environ. Res. Public Health 2018, 15, 2319. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Altavilla, D.; Ronconi, A.; Aceto, P. Fear of missing out (FOMO) is associated with activation of the right middle temporal gyrus during inclusion social cue. Comput. Hum. Behav. 2016, 61, 516–521. [Google Scholar] [CrossRef]
- O’Connell, C. How FOMO (Fear of Missing Out), the smartphone, and social media may be affecting university students in the Middle East. N. Am. J. Psychol. 2020, 22, 83–102. [Google Scholar]
- Browne, B.; Aruguete, M.S.; McCutcheon, L.E.; Medina, A.M. Social and emotional correlates of the fear of missing out. N. Am. J. Psychol 2018, 20, 341–354. [Google Scholar]
- Vahedi, Z.; Saiphoo, A. The association between smartphone use, stress, and anxiety: A meta-analytic review. Stress Health 2018, 34, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Zhitomirsky-Geffet, M.; Blau, M. Cross-generational analysis of predictive factors of addictive behavior in smartphone usage. Comput. Hum. Behav. 2016, 64, 682–693. [Google Scholar] [CrossRef]
- Marino, C.; Gini, G.; Angelini, F.; Vieno, A.; Spada, M.M. Social norms and e-motions in problematic social media use among adolescents. Addict. Behav. Rep. 2020, 11, 100250. [Google Scholar] [CrossRef] [PubMed]
- Balıkçı, K.; Aydın, O.; Sönmez, İ.; Kalo, B.; Ünal-Aydın, P. The relationship between dysfunctional metacognitive beliefs and problematic social networking sites use. Scand. J. Psychol. 2020. [Google Scholar] [CrossRef]
- Kneidinger-Müller, B. When the smartphone goes offline: A factorial survey of smartphone users’ experiences of mobile unavailability. Comput. Hum. Behav. 2019, 98, 1–10. [Google Scholar] [CrossRef]
- Rozgonjuk, D.; Elhai, J.D.; Täht, K.; Vassil, K.; Levine, J.C.; Asmundson, G.J.G. Non-social smartphone use mediates the relationship between intolerance of uncertainty and problematic smartphone use: Evidence from a repeated-measures study. Comput. Hum. Behav. 2019, 96, 56–62. [Google Scholar] [CrossRef]
- Rasmussen, E.E.; Punyanunt-Carter, N.; LaFreniere, J.R.; Norman, M.S.; Kimball, T.G. The serially mediated relationship between emerging adults’ social media use and mental well-being. Comput. Hum. Behav. 2020, 10, 206–213. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Lopez-Fernandez, O.; Throuvala, M.A.; Pontes, H.; Kuss, D.J. Excessive and Problematic Use of Social Media in Adolescence: A Brief Overview. Report Submitted to the UK Parliament Science and Technology Committee (Impact of Social Media and Screen-Use on Young People’s Health Inquiry). 2018. Available online: http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/science-and-technology-committee/social-media-and-mental-health/written/81105.pdf (accessed on 30 May 2018).
- Griffiths, M.D.; Kuss, D.J.; Billieux, J.; Pontes, H.M. The evolution of Internet addiction: A global perspective. Addict. Behav. 2016, 53, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Griffiths, M.D.; Binder, J.F. Internet addiction in students: Prevalence and risk factors. Comput. Hum. Behav. 2013, 29, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Kelly, Y.; Zilanawala, A.; Booker, C.; Sacker, A. Social media use and adolescent mental health: Findings from the UK Millennium cohort study. EClinicalMedicine 2019, 6, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.A. Are smartphones really that bad? Improving the psychological measurement of technology-related behaviors. Comput. Hum. Behav. 2019, 97, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Bentley, F.; Tollmar, K. The power of mobile notifications to increase wellbeing logging behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems-CHI ’13; ACM Press: Paris, France, 2013; p. 1095. [Google Scholar]
- Johannes, N.; Veling, H.; Dora, J.; Meier, A.; Reinecke, L.; Buijzen, M. Mind-wandering and mindfulness as mediators of the relation between online vigilance and well-being. Cyberpsychol. Behav. Soc. Netw. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kabat-Zinn, J. Mindfulness-based interventions in context: Past, present, and future. Clin. Psychol. Sci. Pract. 2003, 10, 144–156. [Google Scholar] [CrossRef]
- Kasson, E.M.; Wilson, A.N. Preliminary evidence on the efficacy of mindfulness combined with traditional classroom management strategies. Behav. Anal. Pract. 2017, 10, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Begun, A.L.; Murray, M.M. Mindfulness practices in addictive behavior prevention, treatment, and recovery. In The Routledge Handbook of Social Work and Addictive Behaviors; Routledge: Melbourne, Australia, 2020. [Google Scholar]
- Broderick, P.C.; Jennings, P.A. Mindfulness for adolescents: A promising approach to supporting emotion regulation and preventing risky behavior. New Dir. Youth Dev. 2012, 2012, 111–126. [Google Scholar] [CrossRef]
- Hölzel, B.K.; Lazar, S.W.; Gard, T.; Schuman-Olivier, Z.; Vago, D.R.; Ott, U. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect. Psychol. Sci. 2011, 6, 537–559. [Google Scholar] [CrossRef] [PubMed]
- Auer, M.M.; Griffiths, M.D. The use of personalized behavioral feedback for online gamblers: An empirical study. Front. Psychol. 2015, 6, 1406. [Google Scholar] [CrossRef] [Green Version]
- Bennike, I.H.; Wieghorst, A.; Kirk, U. Online-based mindfulness training reduces behavioral markers of mind wandering. J. Cogn. Enhanc. 2017, 1, 172–181. [Google Scholar] [CrossRef]
- Bonello, M.; Griffiths, M.D. Behavioural tracking, responsible gambling tools and online voluntary self-exclusion: Implications for problem gamblers. Casino Gambl. Int. 2019, 38, 41–45. [Google Scholar]
- Cavanagh, K.; Strauss, C.; Cicconi, F.; Griffiths, N.; Wyper, A.; Jones, F. A randomised controlled trial of a brief online mindfulness-based intervention. Behav. Res. Ther. 2013, 51, 573–578. [Google Scholar] [CrossRef]
- Gainsbury, S.M. Review of self-exclusion from gambling venues as an intervention for problem gambling. J. Gambl. Stud. 2014, 30, 229–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glück, T.M.; Maercker, A. A randomized controlled pilot study of a brief web-based mindfulness training. BMC Psychiatr. 2011, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ophir, E.; Nass, C.; Wagner, A.D. Cognitive control in media multitaskers. Proc. Natl. Acad. Sci. USA 2009, 106, 15583–15587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakosh, L.S.; Tobias Mortlock, J.M.; Querstret, D.; Morison, L. Audio-guided mindfulness training in schools and its effect on academic attainment: Contributing to theory and practice. Learn. Instr. 2018, 58, 34–41. [Google Scholar] [CrossRef]
- Kauer, S.D.; Reid, S.C.; Crooke, A.H.D.; Khor, A.; Hearps, S.J.C.; Jorm, A.F.; Sanci, L.; Patton, G. Self-monitoring using mobile phones in the early stages of adolescent depression: Randomized controlled trial. J. Med. Internet Res. 2012, 14, e67. [Google Scholar] [CrossRef]
- Hill, C.L.M.; Updegraff, J.A. Mindfulness and its relationship to emotional regulation. Emotion 2012, 12, 81–90. [Google Scholar] [CrossRef]
- Gibb, B.E.; McGeary, J.E.; Beevers, C.G. Attentional biases to emotional stimuli: Key components of the RDoC constructs of sustained threat and loss. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Heng, S.; Song, G.; Fung, D.S.; Smith, H.E. Co-designing a mobile gamified attention bias modification intervention for substance use disorders: Participatory research study. JMIR MHealth UHealth 2019, 7, e15871. [Google Scholar] [CrossRef] [Green Version]
- Bakker, D.; Kazantzis, N.; Rickwood, D.; Rickard, N. Mental health smartphone apps: Review and evidence-based recommendations for future developments. JMIR Ment. Health 2016, 3, e7. [Google Scholar] [CrossRef] [Green Version]
- Király, O.; Potenza, M.N.; Stein, D.J.; King, D.L.; Hodgins, D.C.; Saunders, J.B.; Griffiths, M.D.; Gjoneska, B.; Billieux, J.; Brand, M.; et al. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatr. 2020, 100, 152180. [Google Scholar] [CrossRef]
- Gupta, T.; Mittal, V.A. Advances in clinical staging, early intervention, and the prevention of psychosis. F1000Research 2019, 8, 2027. [Google Scholar] [CrossRef] [PubMed]
- Linardon, J.; Cuijpers, P.; Carlbring, P.; Messer, M.; Fuller-Tyszkiewicz, M. The efficacy of app-supported smartphone interventions for mental health problems: A meta-analysis of randomized controlled trials. World Psychiatr. 2019, 18, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, D.; Kazantzis, N.; Rickwood, D.; Rickard, N. A randomized controlled trial of three smartphone apps for enhancing public mental health. Behav. Res. Ther. 2018, 109, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Bakker, D.; Rickard, N. Engagement in mobile phone app for self-monitoring of emotional wellbeing predicts changes in mental health: MoodPrism. J. Affect. Disord. 2018, 227, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Howells, A.; Ivtzan, I.; Eiroa-Orosa, F.J. Putting the ‘app’ in happiness: A randomised controlled trial of a smartphone-based mindfulness intervention to enhance wellbeing. J. Happiness Stud. 2016, 17, 163–185. [Google Scholar] [CrossRef] [Green Version]
- Kummervold, P.; Chronaki, C.; Lausen, B.; Prokosch, H.-U.; Rasmussen, J.; Santana, S.; Staniszewski, A.; Wangberg, S. eHealth tends in Europe 2005-2007: A population-based survey. J. Med. Internet Res. 2008, 10, e42. [Google Scholar] [CrossRef]
- Howarth, A.; Smith, J.G.; Perkins-Porras, L.; Ussher, M. Effects of brief mindfulness-based interventions on health-related outcomes: A systematic review. Mindfulness 2019, 10, 1957–1968. [Google Scholar] [CrossRef] [Green Version]
- Melia, R.; Francis, K.; Hickey, E.; Bogue, J.; Duggan, J.; O’Sullivan, M.; Young, K. Mobile health technology interventions for suicide prevention: Systematic review. JMIR MHealth UHealth 2020, 8, e12516. [Google Scholar] [CrossRef]
- Neary, M.; Schueller, S.M. State of the field of mental health apps. Cogn. Behav. Pract. 2018, 25, 531–537. [Google Scholar] [CrossRef]
- Plaza, I.; Demarzo, M.M.P.; Herrera-Mercadal, P.; García-Campayo, J. Mindfulness-based mobile applications: Literature review and analysis of current features. JMIR Mhealth Uhealth 2013, 1, e24. [Google Scholar] [CrossRef] [Green Version]
- Torous, J.; Powell, A.C. Current research and trends in the use of smartphone applications for mood disorders. Internet Interv. 2015, 2, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, C.; Kouzoupi, N.; Hall, C.L. Technology matters: The human touch in a digital age – a blended approach in mental healthcare delivery with children and young people. Child. Adolesc. Ment. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Gainsbury, S.; Blaszczynski, A. A systematic review of Internet-based therapy for the treatment of addictions. Clin. Psychol. Rev. 2011, 31, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Borkovec, T.D.; Roemer, L. Perceived functions of worry among generalized anxiety disorder subjects: Distraction from more emotionally distressing topics? J. Behav. Ther. Exp. Psychiatr. 1995, 26, 25–30. [Google Scholar] [CrossRef]
- Cho, S.; Lee, E. Distraction by smartphone use during clinical practice and opinions about smartphone restriction policies: A cross-sectional descriptive study of nursing students. Nurse Educ. Today 2016, 40, 128–133. [Google Scholar] [CrossRef]
- Dolcos, F.; Iordan, A.D.; Kragel, J.; Stokes, J.; Campbell, R.; McCarthy, G.; Cabeza, R. Neural correlates of opposing effects of emotional distraction on working memory and episodic memory: An event-related fMRI investigation. Front. Psychol. 2013, 4, 180–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aagaard, J. Media multitasking, attention, and distraction: A critical discussion. Phenomenol. Cogn. Sci. 2015, 14, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Calado, F.; Alexandre, J.; Griffiths, M.D. Gambling among adolescents and emerging adults: A cross-cultural study between Portuguese and English youth. Int. J. Ment. Health Addict. 2018. [Google Scholar] [CrossRef] [Green Version]
- Canale, N.; Vieno, A.; Griffiths, M.D. The extent and distribution of gambling-related harms and the prevention paradox in a British population survey. J. Behav. Addict. 2016, 5, 204–212. [Google Scholar] [CrossRef]
- Patton, G.C.; Sawyer, S.M.; Santelli, J.S.; Ross, D.A.; Afifi, R.; Allen, N.B.; Arora, M.; Azzopardi, P.; Baldwin, W.; Bonell, C.; et al. Our future: A Lancet commission on adolescent health and wellbeing. Lancet 2016, 387, 2423–2478. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.; Rees, P.; Wildridge, B.; Kalk, N.J.; Carter, B. Prevalence of problematic smartphone usage and associated mental health outcomes amongst children and young people: A systematic review, meta-analysis and GRADE of the evidence. BMC Psychiatr. 2019, 19, 356. [Google Scholar]
- Spijkerman, M.P.J.; Pots, W.T.M.; Bohlmeijer, E.T. Effectiveness of online mindfulness-based interventions in improving mental health: A review and meta-analysis of randomised controlled trials. Clin. Psychol. Rev. 2016, 45, 102–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartwright, N. Are RCTs the gold standard? BioSocieties 2007, 2, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.M. Getting off the “gold standard”: Randomized controlled trials and education research. J. Grad. Med. Educ. 2011, 3, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21. [Google Scholar] [CrossRef]
- Ruggeri, M.; Lasalvia, A.; Bonetto, C. A new generation of pragmatic trials of psychosocial interventions is needed. Epidemiol. Psychiatr. Sci. 2013, 22, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, M.K.; Elbourne, D.R.; Altman, D.G. CONSORT statement: Extension to cluster randomised trials. BMJ 2004, 328, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Schell, B.; Gillen, G. Willard and Spackman’s Cccupational Therapy, 13th ed.; Lippincott Williams & Wilkins: Philadephia, PA, USA, 2018; 2828p. [Google Scholar]
- Oussedik, E.; Foy, C.G.; Masicampo, E.J.; Kammrath, L.K.; Anderson, R.E.; Feldman, S.R. Accountability: A missing construct in models of adherence behavior and in clinical practice. Patient Prefer. Adherence 2017, 11, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Lanier, J.; Noyes, E.; Biederman, J. Mind wandering (internal distractibility) in ADHD: A literature review. J. Atten. Disord. 2019. [Google Scholar] [CrossRef]
- Franklin, M.S.; Mrazek, M.D.; Anderson, C.L.; Johnston, C.; Smallwood, J.; Kingstone, A.; Schooler, J. Tracking distraction: The relationship between mind-wandering, meta-awareness, and ADHD symptomatology. J. Atten. Disord. 2017, 21, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis Process. 1991, 50, 248–287. [Google Scholar] [CrossRef]
- Tseng, V.W.-S.; Lee, M.L.; Denoue, L.; Avrahami, D. Overcoming distractions during transitions from break to work using a conversational website-blocking system. In Proceedings of the CHI 2019—2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Evans, C.; King, D.L.; Delfabbro, P.H. Effect of brief gaming abstinence on withdrawal in adolescent at-risk daily gamers: A randomized controlled study. Comput. Hum. Behav. 2018, 88, 70–77. [Google Scholar] [CrossRef]
- King, D.L.; Kaptsis, D.; Delfabbro, P.H.; Gradisar, M. Effectiveness of brief abstinence for modifying problematic Internet gaming cognitions and behaviors. J. Clin. Psychol. 2017, 73, 1573–1585. [Google Scholar] [CrossRef]
- Turel, O. Short abstinence from online social networking sites reduces perceived stress, especially in excessive users. Psychiatr. Res. 2018, 270, 947–953. [Google Scholar] [CrossRef]
- Caldeira, C.; Chen, Y.; Chan, L.; Pham, V.; Chen, Y.; Zheng, K. Mobile apps for mood tracking: An analysis of features and user reviews. AMIA Annu. Symp. Proc. 2017, 2017, 495–504. [Google Scholar]
- Bakker, D.; Kazantzis, N.; Rickwood, D.; Rickard, N. Development and pilot evaluation of smartphone-delivered cognitive behavior therapy strategies for mood- and anxiety-related problems: MoodMission. Cogn. Behav. Pract. 2018, 25, 496–514. [Google Scholar] [CrossRef]
- Haug, S.; Meyer, C.; Dymalski, A.; Lippke, S.; John, U. Efficacy of a text messaging (SMS) based smoking cessation intervention for adolescents and young adults: Study protocol of a cluster randomised controlled trial. BMC Public Health. 2012, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Throuvala, M.A.; Pontes, H.; Griffiths, M.D.; Rennoldson, M.; Kuss, D.J. Development and validation of the Smartphone Distraction Scale (SDS): A cognitive and emotion regulation construct. Manuscr. Submitt. Publ. 2020. [Google Scholar]
- Brown, K.W.; Ryan, R.M. The benefits of being present: Mindfulness and its role in psychological well-being. J. Pers. Soc. Psychol. 2003, 84, 822–848. [Google Scholar] [CrossRef] [Green Version]
- Black, D.S.; Sussman, S.; Johnson, C.A.; Milam, J. Psychometric assessment of the Mindful Attention Awareness Scale (MAAS) among Chinese adolescents. Assessment 2012, 19, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-H. Review of the psychometric evidence of the Perceived Stress Scale. Asian Nurs. Res. 2012, 6, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donker, T.; van Straten, A.; Marks, I.; Cuijpers, P. Quick and easy self-rating of Generalized Anxiety Disorder: Validity of the Dutch web-based GAD-7, GAD-2 and GAD-SI. Psychiatr. Res. 2011, 188, 58–64. [Google Scholar] [CrossRef]
- Sousa, T.V.; Viveiros, V.; Chai, M.V.; Vicente, F.L.; Jesus, G.; Carnot, M.J.; Gordo, A.C.; Ferreira, P. Reliability and validity of the Portuguese version of the Generalized Anxiety Disorder (GAD-7) scale. Health Qual. Life Outcomes 2015, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Gardner, B.; Abraham, C.; Lally, P.; de Bruijn, G.-J. Towards parsimony in habit measurement: Testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Marchant, G.; Chevance, G.; Boiché, J. Intention and automaticity toward physical and sedentary screen-based leisure activities in adolescents: A profile perspective. J. Sport Health Sci. 2018, 7, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, R.; Jerusalem, M. Generalized Self-Efficacy scale. In Measures in Health Psychology: A User’s Portfolio. Causal and Control Beliefs; NFER-NELSON: Windsor, UK, 1995; pp. 35–37. [Google Scholar]
- Schwarzer, R.; Mueller, J.; Greenglass, E. Assessment of perceived general self-efficacy on the Internet: Data collection in cyberspace. Anxiety Stress Coping Int. J. 1999, 12, 145–161. [Google Scholar] [CrossRef]
- De las Cuevas, C.; Peñate, W. Validation of the General Self-Efficacy Scale in psychiatric outpatient care. Psicothema 2015, 27, 410–415. [Google Scholar]
- Morean, M.E.; DeMartini, K.S.; Leeman, R.F.; Pearlson, G.D.; Anticevic, A.; Krishnan-Sarin, S.; Krystal, J.H.; O’Malley, S. Psychometrically improved, abbreviated versions of three classic measures of impulsivity and self-control. Psychol. Assess. 2014, 26, 1003–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathias, C.W.; Stanford, M.S.; Liang, Y.; Goros, M.; Charles, N.E.; Sheftall, A.H.; Mullen, J.; Hill-Kapturczak, N.; Acheson, A.; Olvera, R.L.; et al. A test of the psychometric characteristics of the BIS-Brief among three groups of youth. Psychol. Assess. 2018, 30, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, L.; Sharp, C.; Stanford, M.S.; Tharp, A.T. New tricks for an old measure: The development of the Barratt Impulsiveness Scale–Brief (BIS-Brief). Psychol. Assess. 2013, 25, 216–226. [Google Scholar] [CrossRef]
- Davies, J.J.; Hemingway, T.J. Guitar hero or zero?: Fantasy, self-esteem, and deficient self-regulation in rhythm-based music video games. J. Media Psychol. 2014, 26, 189–201. [Google Scholar] [CrossRef]
- LaRose, R.; Lin, C.A.; Eastin, M.S. Unregulated Internet usage: Addiction, habit, or deficient self-regulation? Media Psychol. 2009, 5, 225–253. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Broström, A.; Nilsen, P.; Griffiths, M.D.; Pakpour, A.H. Psychometric validation of the Persian Bergen Social Media Addiction Scale using classic test theory and Rasch models. J. Behav. Addict. 2017, 6, 620–629. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Pontes, H.M.; Andreassen, C.S.; Griffiths, M.D. Portuguese validation of the Bergen Facebook Addiction Scale: An empirical study. Int. J. Ment. Health Addict. 2016, 14, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.D. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Andreassen, C.S.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar] [CrossRef]
- Yam, C.-W.; Pakpour, A.H.; Griffiths, M.D.; Yau, W.-Y.; Lo, C.-L.M.; Ng, J.M.T.; Lin, C.-Y.; Leung, H. Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong University students. Psychiatr. Q. 2019, 90, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Przybylski, A.K.; Murayama, K.; DeHaan, C.R.; Gladwell, V. Motivational, emotional, and behavioral correlates of fear of missing out. Comput. Hum. Behav. 2013, 29, 1841–1848. [Google Scholar] [CrossRef]
- Can, G.; Satici, S.A. Adaptation of fear of missing out scale (FoMOs): Turkish version validity and reliability study. Psicol. Reflex E Crítica 2019, 32, 3. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.A. #FoMO: Establishing Validity of the Fear of Missing Out Scale with an Adolescent Population 2016. Available online: https://aura.alfred.edu/handle/10829/7399 (accessed on 30 May 2020).
- Yildirim, C.; Correia, A.-P. Exploring the dimensions of nomophobia: Development and validation of a self-reported questionnaire. Comput. Hum. Behav. 2015, 49, 130–137. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Mendoza, J.S.; McDonough, I.M. Addicted to cellphones: Exploring the psychometric properties between the nomophobia questionnaire and obsessiveness in college students. Heliyon 2018, 4, e00895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tams, S.; Legoux, R.; Leger, P.-M. Smartphone withdrawal creates stress: A moderated mediation model of nomophobia, social threat, and phone withdrawal context. Comput. Hum. Behav. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Rothwell, J.C.; Julious, S.A.; Cooper, C.L. A study of target effect sizes in randomised controlled trials. Trials 2018, 19, 544. [Google Scholar] [CrossRef] [Green Version]
- Bhide, A.; Shah, P.S.; Acharya, G. A simplified guide to randomized controlled trials. Acta Obstet. Gynecol. Scand. 2018, 97, 380–387. [Google Scholar] [CrossRef]
- Grimm, L.G.; Yarnold, P.R. Reading and Understanding Multivariate Statistics; Reading and Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995; 373p. [Google Scholar]
- Gupta, S.K. Intention-to-treat concept: A review. Perspect. Clin. Res. 2011, 2, 109–112. [Google Scholar] [CrossRef]
- Montori, V.M.; Guyatt, G.H. Intention-to-treat principle. CMAJ Can. Med. Assoc. J. 2001, 165, 1339–1341. [Google Scholar]
- Altman, D.G.; Doré, C.J. Randomisation and baseline comparisons in clinical trials. Lancet 1990, 335, 149–153. [Google Scholar] [CrossRef]
- Anderson, S.R.; Auquier, A.; Hauck, W.W.; Oakes, D.; Vandaele, W.; Weisberg, H.I. Statistical Methods for Comparative Studies: Techniques for Bias Reduction; John Wiley & Sons: Hoboken, NJ, USA, 2009; 310p. [Google Scholar]
- Olejnik, S.F.; Algina, J. Parametric ANCOVA and the rank transform ANCOVA when the data are conditionally non-normal and heteroscedastic. J. Educ. Stat. 1984, 9, 129–149. [Google Scholar] [CrossRef]
- Keppel, G.; Wickens, T.D. Design and Analysis: A Researcher’s Handbook, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Pierce, C.A.; Block, R.A.; Aguinis, H. Cautionary note on reporting eta-squared values from multifactor ANOVA designs. Educ. Psychol. Meas 2004, 64, 916–924. [Google Scholar] [CrossRef]
- Olejnik, S.; Algina, J. Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemp. Educ. Psychol 2000, 25, 241–286. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F.; Montoya, A.K.; Rockwood, N.J. The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australas Mark. J. AMJ 2017, 25, 76–81. [Google Scholar] [CrossRef]
- Hayes, A.F.; Rockwood, N.J. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation. Behav. Res. Ther. 2017, 98, 39–57. [Google Scholar] [CrossRef]
- Hayes, A.F.; Preacher, K.J. Statistical mediation analysis with a multicategorical independent variable. Br. J. Math. Stat. Psychol. 2014, 67, 451–470. [Google Scholar] [CrossRef]
- Hayes, A.F. PROCESS: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modelling; White Paper; 2012. Available online: http://www.afhayes.com/public/process2012.pdf (accessed on 12 June 2018).
- Gámez-Guadix, M.; Calvete, E. Assessing the relationship between mindful awareness and problematic internet use among adolescents. Mindfulness 2016, 7, 1281–1288. [Google Scholar] [CrossRef]
- Mrazek, M.D.; Franklin, M.S.; Phillips, D.T.; Baird, B.; Schooler, J.W. Mindfulness training improves working memory capacity and GRE performance while reducing mind wandering. Psychol. Sci 2013, 24, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Calvete, E.; Gámez-Guadix, M.; Cortazar, N. Mindfulness facets and problematic Internet use: A six-month longitudinal study. Addict. Behav 2017, 72, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Edwardson, C.L.; Wilmot, E.G.; Yates, T.; Gorely, T.; Bodicoat, D.H.; Ashra, N.; Khunti, K.; Nimmo, M.A.; Davies, M. A randomised controlled trial to reduce sedentary time in young adults at risk of Type 2 Diabetes Mellitus: Project STAND (sedentary time and diabetes). PLoS ONE 2015, 10, e0143398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazdin, A.E. Reactive self-monitoring: The effects of response desirability, goal setting, and feedback. J. Consult. Clin. Psychol 1974, 42, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; Velicer, W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. AJHP 1997, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; DiClemente, C.C.; Norcross, J.C. In search of how people change. Applications to addictive behaviors. Am. Psychol. 1992, 47, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Squires, L.R.; Hollett, K.B.; Hesson, J.; Harris, N. Psychological distress, emotion dysregulation, and coping behaviour: A theoretical perspective of problematic smartphone use. Advance online publication. Int. J. Ment. Health Addict. 2020. [Google Scholar] [CrossRef]
- Ostendorf, S.; Wegmann, E.; Brand, M. Problematic social networks use in German children and adolescents—The interaction of need to belong, online self-regulative competences, and age. Int. J. Environ. Res. Public Health 2020, 17, 2518. [Google Scholar] [CrossRef] [Green Version]
- Liese, B.S.; Kim, H.S.; Hodgins, D.C. Insecure attachment and addiction: Testing the mediating role of emotion dysregulation in four potentially addictive behaviors. Addict. Behav. 2020, 106432. [Google Scholar] [CrossRef]
- Kuehner, C.; Huffziger, S.; Liebsch, K. Rumination, distraction and mindful self-focus: Effects on mood, dysfunctional attitudes and cortisol stress response. Psychol. Med. 2009, 39, 219–228. [Google Scholar] [CrossRef]
- Colder Carras, M.; Kalbarczyk, A.; Wells, K.; Banks, J.; Kowert, R.; Gillespie, C.; Latkin, C. Connection, meaning, and distraction: A qualitative study of video game play and mental health recovery in veterans treated for mental and/or behavioral health problems. Soc. Sci. Med. 2018, 216, 124–132. [Google Scholar] [CrossRef]
- Huffziger, S.; Reinhard, I.; Kuehner, C. A longitudinal study of rumination and distraction in formerly depressed inpatients and community controls. J. Abnorm. Psychol. 2009, 118, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Denkova, E.; Wong, G.; Dolcos, S.; Sung, K.; Wang, L.; Coupland, N.; Dolcos, F. The impact of anxiety-inducing distraction on cognitive performance: A combined brain imaging and personality investigation. PLoS ONE 2010, 5, e14150. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.; Zald, D.H.; Olatunji, B.O. Attentional control in OCD and GAD: Specificity and associations with core cognitive symptoms. Behav. Res. Ther. 2011, 49, 756–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrazek, M.D.; Smallwood, J.; Schooler, J.W. Mindfulness and mind-wandering: Finding convergence through opposing constructs. Emotion 2012, 12, 442–448. [Google Scholar] [CrossRef]
- Johannes, N.; Veling, H.; Verwijmeren, T.; Buijzen, M. Hard to resist? The effect of smartphone visibility and notifications on response inhibition. J. Media Psychol. Theor Methods Appl. 2019, 31, 214–225. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Szabo, A. Is excessive online usage a function of medium or activity? Empirical Pilot Study. J. Behav. Addict. 2014, 3, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Panagiotidi, M.; Overton, P. Attention deficit hyperactivity symptoms predict problematic mobile phone use. Curr. Psychol. 2020. [Google Scholar] [CrossRef]
- Schmitgen, M.M.; Horvath, J.; Mundinger, C.; Wolf, N.D.; Sambataro, F.; Hirjak, D.; Kubera, K.; Koenig, J.; Christian Wolf, R. Neural correlates of cue reactivity in individuals with smartphone addiction. Addict. Behav. 2020, 108, 106422. [Google Scholar] [CrossRef]
- Kempf, C.A.; Ehrhard, K.A.; Stoner, S.C. Evaluation of obsessive-compulsive symptoms in relation to smartphone use. Ment. Health Clin. 2020, 10, 44–48. [Google Scholar] [CrossRef]
- Wegmann, E.; Brand, M. Cognitive correlates in gaming disorder and social networks use disorder: A comparison. Curr. Addict. Rep. 2020. [Google Scholar] [CrossRef]
- Pancani, L.; Preti, E.; Riva, P. The psychology of smartphone: The development of the Smartphone Impact Scale (SIS). Assessment 2019. [Google Scholar] [CrossRef]
- Johannes, N.; Dora, J.; Rusz, D. Social smartphone apps do not capture attention despite their perceived high reward value. Collabra Psychol. 2019, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Levine, L.E.; Waite, B.M.; Bowman, L.L. Use of instant messaging predicts self-report but not performance measures of inattention, impulsiveness, and distractibility. Cyberpsychology Behav. Soc. Netw 2013, 16, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.; Stevens, G.; Finkenauer, C.; Eijnden, R. Attention deficit hyperactivity disorder-symptoms, social media use intensity, and social media use problems in adolescents: Investigating directionality. Child. Dev. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushlev, K.; Proulx, J.; Dunn, E.W. ‘Silence Your Phones’: Smartphone notifications increase inattention and hyperactivity symptoms. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems-CHI ’16; ACM Press: Santa Clara, CA, USA, 2016; pp. 1011–1020. Available online: http://dl.acm.org/citation.cfm?doi:d=2858036.2858359 (accessed on 17 July 2019).
- Rozgonjuk, D.; Elhai, J.D.; Ryan, T.; Scott, G.G. Fear of missing out is associated with disrupted activities from receiving smartphone notifications and surface learning in college students. Comput. Educ. 2019, 140, 103590. [Google Scholar] [CrossRef]
- Richards, D.; Farrand, P.; Christensen, H.; Griffiths, K.; Kavanagh, D.; Klein, B.; Lau, Μ.A.; Proudfoot, J. Oxford Guide to Low Intensity CBT Interventions, 1st ed.; Bennett-Levy, J., Ed.; Oxford University Press: Oxford, UK, 2010; 628p. [Google Scholar]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Melville, K.M.; Casey, L.; Kavanagh, D.J. Dropout from Internet-based treatment for psychological disorders. Br. J. Clin. Psychol. 2009, 49, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Dumville, J.C.; Torgerson, D.J.; Hewitt, C.E. Reporting attrition in randomised controlled trials. BMJ 2006, 332, 969–971. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, T.A.; Noma, H.; Caldwell, D.M.; Honyashiki, M.; Shinohara, K.; Imai, H.; Chen, P.; Hunot, V.; Churchill, R. Waiting list may be a nocebo condition in psychotherapy trials: A contribution from network meta-analysis. Acta Psychiatr. Scand. 2014, 130, 181–192. [Google Scholar] [CrossRef]
- Christensen, H.; Griffiths, K.M.; Farrer, L. Adherence in Internet interventions for anxiety and depression: Systematic review. J. Med. Internet Res. 2009, 11, e13. [Google Scholar] [CrossRef]
- Andrews, S.; Ellis, D.A.; Shaw, H.; Piwek, L. Beyond self-report: Tools to compare estimated and real-world smartphone use. Pietschnig, J.; editor. PLoS ONE 2015, 10, e0139004. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Lin, Y.-C.; Lee, Y.-H.; Lin, P.-H.; Lin, S.-H.; Chang, L.-R.; Tseng, H.-W.; Yen, L.-Y.; Yang, C.C.H.; Kuo, T.B.J. Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App). J. Psychiatr. Res. 2015, 65, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.E.; Petersen, C.B.; Blond, K.; Rangul, V.; Hardy, L.L. The descriptive epidemiology of sedentary behaviour. In Sedentary Behaviour Epidemiology; Springer Series on Epidemiology and Public Health; Leitzmann, M.F., Jochem, C., Schmid, D., Eds.; Springer International: New York, NY, USA, 2018; pp. 73–106. [Google Scholar]
- Davis, K.; Charmaraman, L.; Weinstein, E. Introduction to Special Issue: Adolescent and Emerging Adult Development in an Age of Social Media. J. Adolesc. Res. 2019. [Google Scholar] [CrossRef]
- Baumeister, H.; Montag, C. Digital phenotyping and mobile sensing: Rapidly evolving interdisciplinary research endeavor. In Digital Phenotyping and Mobile Sensing: New Developments in Psychoinformatics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Garrison, K.A.; Potenza, M.N. Neuroimaging and biomarkers in addiction treatment. Curr. Psychiatr. Rep. 2014, 16, 513. [Google Scholar] [CrossRef]
- Suckling, J.; Nestor, L.J. The neurobiology of addiction: The perspective from magnetic resonance imaging present and future. Addict. Abingdon Engl. 2017, 112, 360–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andone, I.; Błaszkiewicz, K.; Eibes, M.; Trendafilov, B.; Montag, C.; Markowetz, A. How age and gender affect smartphone usage. In Proceedings of the 2016 ACM International JoInt. Conference on Pervasive and Ubiquitous Computing; ACM: Heidelberg, Germany, 2016; pp. 9–12. [Google Scholar] [CrossRef]
- Feng, Q.; Zheng, Y.; Zhang, X.; Song, Y.; Luo, Y.-J.; Li, Y.; Talhelm, T. Gender differences in visual reflexive attention shifting: Evidence from an ERP study. Brain Res. 2011, 1401, 59–65. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Cheng, T. Who is better adapted in learning online within the personal learning environment? Relating gender differences in cognitive attention networks to digital distraction. Comput. Educ. 2018, 128, 312–329. [Google Scholar] [CrossRef]
- Albright, K.; Gechter, K.; Kempe, A. Importance of mixed methods in pragmatic trials and dissemination and implementation research. Acad. Pediatr. 2013, 13, 400–407. [Google Scholar] [CrossRef]
- Alegría, M.; NeMoyer, A.; Falgas, I.; Wang, Y.; Alvarez, K. Social determinants of mental health: Where we are and where we need to go. Curr. Psychiatr. Rep. 2018, 20, 95. [Google Scholar] [CrossRef]
- Macintyre, A.; Ferris, D.; Gonçalves, B.; Quinn, N. What has economics got to do with it? The impact of socioeconomic factors on mental health and the case for collective action. Palgrave Commun. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Risko, E.F. Examining the implications of Internet usage for memory and cognition: Prospects and promise. J. Appl. Res. Mem. Cogn 2019, 8, 36–39. [Google Scholar] [CrossRef]
- Russell, D.M. Commentary on the paper: “The digital expansion of the mind: Implications of Internet usage for memory and cognition”. J. Appl. Res. Mem. Cogn. 2019, 8, 33–35. [Google Scholar] [CrossRef]
- Garland, E.L.; Farb, N.A.; Goldin, P.R.; Fredrickson, B.L. Mindfulness broadens awareness and builds eudaimonic meaning: A process model of mindful positive emotion regulation. Psychol. Inq. 2015, 26, 293–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegmann, E.; Oberst, U.; Stodt, B.; Brand, M. Online-specific fear of missing out and Internet-use expectancies contribute to symptoms of Internet-communication disorder. Addict. Behav. Rep. 2017, 5, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Boehm, J.K.; Vie, L.L.; Kubzansky, L.D. The promise of well-being interventions for improving health risk behaviors. Curr. Cardiovasc. Risk Rep. 2012, 6, 511–519. [Google Scholar] [CrossRef]
- Trudel-Fitzgerald, C.; Millstein, R.A.; von Hippel, C.; Howe, C.J.; Tomasso, L.P.; Wagner, G.R.; VanderWeele, T. Psychological well-being as part of the public health debate? Insight into dimensions, interventions, and policy. BMC Public Health 2019, 19, 1712. [Google Scholar] [CrossRef]
- Stellefson, M.; Hanik, B.; Chaney, B.; Chaney, D.; Tennant, B.; Chavarria, E.A. eHealth literacy among college students: A systematicreview with implications for eHealth education. J. Med. Internet Res. 2011, 13, e102. [Google Scholar] [CrossRef]
- Van der Heide, I.; Snoeijs, S.; Boerma, W.G.W.; Schellevis, F.G.; Rijken, M.P. How to Strengthen Patient- Centredness in Caring for People with Multimorbidity in Europe? Policy Brief 22 ICARE4EU Consortium. 2017; p. 32. Available online: https://www.ncbi.nlm.nih.gov/books/NBK464537/pdf/Bookshelf_NBK464537.pdf (accessed on 26 April 2020).
- Chen, L.; Nath, R.; Tang, Z. Understanding the determinants of digital distraction: An automatic thinking behavior perspective. Comput. Hum. Behav. 2020, 104, 106195. [Google Scholar] [CrossRef]
Intervention Components | Smartphone App Used | Evidence-Based Benefits | Psychological Evidence for Benefits |
---|---|---|---|
Mindfulness | |||
Brief mindfulness sessions | Headspace app |
| [128] [80] [82,83] [129] |
Self-monitoring and Self-exclusion | |||
Social media and smartphone use Abstinence option | Anti-Social app |
| [130] [131] [77] [132] [133] [134] [101] |
Mood-tracking | |||
Pacifica app |
| [93] [135] [136] |
Intervention (n = 72) | Control (n = 71) | Chi Square/ t-Tests | |||||
---|---|---|---|---|---|---|---|
Socio/demographics | n | % | n | % | - | - | |
Gender (female) | 60 | 83.33 | 62 | 87.32 | 1.83, ns a | ||
Education (under graduates %) | 67 | 93.05 | 65 | 91.54 | 1.03, ns | ||
Relationship status (% not in relation) | 40 | 55.55 | 38 | 53.52 | 1.35, ns | ||
Ethnicity (White %) | 49 | 68.05 | 42 | 59.15 | 1.63, ns | ||
M (SD) | M (SD) | t Tests | Cronbach’s α T1 | Cronbach’s α T2 | |||
Age | 20.69 (3.27) | 20.82 (3.70) | −0.20, ns | - | - | ||
Smart hours/day | 4.55 (2.28) | 5.23 (1.89) | −0.28, ns | - | - | ||
SM hours/day | 2.17 (1.430 | 2.47 (1.28) | −1.36, ns | - | - | ||
Smart. distraction | 59.52 (7.69) | 57.55 (8.08) | −0.70, ns | 0.90 | 0.88 | ||
Self-awareness | 74.71(8.20) | 75.00 (9.38) | −0.20, ns | 0.87 | 0.86 | ||
Mindful Attention | 3.28 (0.52) | 3.40 (0.56) | −1.32, ns | 0.92 | 0.93 | ||
Stress | 24.44 (4.72) | 28.78 (6.05) | −0.33, ns | 0.86 | 0.83 | ||
Anxiety | 15.93 (5.94) | 16.63 (4.94) | −0.77, ns | 0.93 | 0.90 | ||
Online vigilance | 2.43 (0.48) | 2.38 (0.52) | 0.63, ns | 0.89 | 0.87 | ||
Efficacy | 28.04 (4.35) | 28.96 (4.55) | −2.51, ns | 0.90 | 0.88 | ||
FoMO | 3.48 (1.36) | 3.54 (1.34) | −0.32, ns | 0.89 | 0.90 | ||
NoMO | 77.17 (22.40) | 86.32 (23.68) | −0.49., ns | 0.89 | 0.88 | ||
Def. self-regulation | 14.15 (5.32) | 15.35 (5.39) | −1.50, ns | 0.89 | 0.87 | ||
Impulsivity | 14.74 (3.39) | 16.27 (3.52) | −0.264, ns | 0.85 | 0.86 | ||
Prob. SM use | 17.15 (4.95) | 17.18 (5.42) | −0.035, ns | 0.91 | 0.89 | ||
Automaticity | 5.14 (1.33) | 5.11 (1.20) | −0.88, ns | 0.87 | 0.89 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Distraction | 1 | |||||||||||||
2. Stress | 0.199 ** | 1 | ||||||||||||
3. Pr. SM use | 0.631 ** | 0.173 ** | 1 | |||||||||||
4. Mind.Att. | −0.523 ** | −0.145 * | −0.455 ** | 1 | ||||||||||
5. Self-Aware | −0.340 ** | 0.057 | −0.318 ** | −0.209 ** | 1 | |||||||||
6. Anxiety | 0.460 ** | 0.380 ** | 0.435 ** | 0.450 ** | 0.242 ** | 1 | ||||||||
7. Onl. Vigil. | 0.507 ** | 0.280 ** | 0.620 ** | 0.380 ** | 0.223 ** | 0.283 ** | 1 | |||||||
8. Efficacy | −0.107 | −0.343 ** | −0.149 * | −0.101 | 0.148 * | −0.399 ** | −0.056 | 1 | ||||||
9. Automat | 0.575 ** | 0.286 ** | 0.466 * | 0.324 ** | 0.194 ** | 0.304 ** | 0.348 ** | −0.179 ** | 1 | |||||
10. Impuls. | 0.455 ** | 0.006 | −0.053 | −0.037 | −0.522 | −0.026 | 0.035 | 0.086 | 0.037 | 1 | ||||
11. Def. Self-reg. | 0.333 ** | 0.048 | 0.017 | 0.048 | −0.068 | 0.007 | 0.074 | 0.025 | 0.049 | 0.859 ** | 1 | |||
12. Smart/day | 0.314 ** | −0.280 | 0.013 | −0.128 | −0.025 | −0.161 | 0.082 | 0.021 | −0.145 | −0.008 | −0.004 | 1 | ||
13. SM/day | 0.116 | 0.004 | −0.025 | −0.008 | −0.109 | 0.024 | −0.035 | −0.111 | 0.061 | 0.154 | 0.168 * | 0.423 ** | 1 | |
14. FoMO | 0.281 ** | 0.323 ** | 0.382 ** | 0.103 | 0.310 ** | 0.369 ** | −0.032 | −0.164 ** | 0.235 ** | 0.026 | 0.035 | 0.183 ** | 0.180 ** | 1 |
15. NoMO | 0.513 ** | 0.375 ** | 0.421 ** | 0.007 | 0.142 * | 0.312 ** | 0.136 * | −0.209 ** | 0.392 ** | −0.084 | −0.084 | 0.189 ** | 0.096 | 0.341 ** |
Measure | Experimental (n = 72) | Control (n = 71) | Effect | Effect Size | Cohen’s d | ||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | ηp2 | d | |
M(SD) | M(SD) | M(SD) | M(SD) | ||||
Smart.Distraction | 58.06 (7.69) | 39.70 (17.67) | 59.72 (8.08) | 58.78 (17.47) | 46.59 *** | 0.25 | 1.11 |
Self-awareness | 74.71 (8.20) | 83.30 (9.89) | 75.00 (9.38) | 76.25 (10.25) | 18.19 *** | 0.12 | 0.69 |
Mind.Attention | 3.28 (0.52) | 3.97 (0.69) | 3.40 (0.56) | 3.37 (0.76) | 16.24 *** | 0.22 | 0.82 |
Stress | 24.44 (4.72) | 24.10 (4.63) | 28.78 (6.05) | 27.94 (5.24) | 23.11 *** | 0.14 | 0.77 |
Anxiety | 15.93 (5.94) | 14.75 (4.43) | 16.63 (4.95) | 17.44 (4.42) | 12.42 *** | 0.08 | 0.60 |
Vigilance | 2.43 (0.49) | 1.98 (0.63) | 2.38 (0.52) | 2.39 (0.52) | 18.66 *** | 0.12 | 0.70 |
Self-efficacy | 28.04 (4.36) | 32.32 (5.08) | 28.96 (4.55) | 29.99 (5.05) | 9.40 *** | 0.06 | 0.46 |
FoMO | 3.48 (1.36) | 2.86 (1.16) | 3.54 (1.34) | 3.32 (1.22) | 5.49 *** | 0.04 | 0.39 |
NoMO | 77.17 (2.40) | 78.03 (2.72) | 86.32 (23.6) | 79.50 (2.74) | 7.71 | - | - |
Def. self-reg. | 17.16 (6.70) | 14.00 (5.32) | 17.61 (6.91) | 15.32 (5.39) | 6.60 *** | 0.04 | 0.25 |
Impulsivity | 17.32 (3.79) | 14.74 (3.41) | 17.65 (3.92) | 16.27 (3.51) | 15.91 *** | 0.10 | 0.44 |
Probl. SM use | 17.15 (4.95) | 15.12 (4.40) | 17.18 (5.42) | 17.24 (5.11) | 6.96 *** | 0.05 | 0.44 |
Automaticity | 5.14 (1.33) | 4.77 (1.30) | 5.11 (1.20) | 4.98 (1.59) | 0.78 | - | - |
SM. use/day | 2.92 (1.75) | 2.17 (1.44) | 2.89 (1.52) | 2.47 (1.28) | 3.70 | - | - |
Smart. use/day | 4.51 (2.28) | 3.51 (1.88) | 4.45 (1.89) | 4.11 (1.68) | 4.43 *** | 0.03 | 0.34 |
Predictor | Outcome | Mediator | ab (B) | a | b | c | c′ |
---|---|---|---|---|---|---|---|
Intervention | Smart.Distract. | Mindful Att. | −0.79 [−3.10, −1.59] | −0.67 [−0.84, −0.51] | 1.16 [−2.25, 4.58] | 20.75 [16.35, 25.16] | 21.55 [16.62,26.48] |
Intervention | Smart.Distract. | Self-aware | −2.02 [−3.97, −0.35] | −6.78 [−9.15, −4.40] | 0.30 [0.07, 0.52] | 20.91 [16.59, 25.22] | 22.93 [18.38, 27.48] |
Smart. distract. | Probl. SM use | On.vigilance | 0.02 [0.01, 0.03] | 0.01 [0.010, 0.015] | 1.66 [0.78, 2.54] | 0.11 [0.08, 0.13] | 0.089 [0.06, 0.12] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Throuvala, M.A.; Griffiths, M.D.; Rennoldson, M.; Kuss, D.J. Mind over Matter: Testing the Efficacy of an Online Randomized Controlled Trial to Reduce Distraction from Smartphone Use. Int. J. Environ. Res. Public Health 2020, 17, 4842. https://doi.org/10.3390/ijerph17134842
Throuvala MA, Griffiths MD, Rennoldson M, Kuss DJ. Mind over Matter: Testing the Efficacy of an Online Randomized Controlled Trial to Reduce Distraction from Smartphone Use. International Journal of Environmental Research and Public Health. 2020; 17(13):4842. https://doi.org/10.3390/ijerph17134842
Chicago/Turabian StyleThrouvala, Melina A., Mark D. Griffiths, Mike Rennoldson, and Daria J. Kuss. 2020. "Mind over Matter: Testing the Efficacy of an Online Randomized Controlled Trial to Reduce Distraction from Smartphone Use" International Journal of Environmental Research and Public Health 17, no. 13: 4842. https://doi.org/10.3390/ijerph17134842
APA StyleThrouvala, M. A., Griffiths, M. D., Rennoldson, M., & Kuss, D. J. (2020). Mind over Matter: Testing the Efficacy of an Online Randomized Controlled Trial to Reduce Distraction from Smartphone Use. International Journal of Environmental Research and Public Health, 17(13), 4842. https://doi.org/10.3390/ijerph17134842