Monitoring, Mapping, and Modeling Spatial–Temporal Patterns of PM2.5 for Improved Understanding of Air Pollution Dynamics Using Portable Sensing Technologies
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Mobile Air Monitoring Surveys
3.1.1. Device
3.1.2. Survey Routes
3.1.3. Data Aggregation
3.2. Development of Explanatory Variables
3.2.1. Meteorological Variables
- (1)
- Temperature affects chemical reactions and atmospheric turbulence that determine the formation and diffusion of particles [35,36]. Some studies indicate that higher temperature promotes the photochemical reaction between PM2.5-forming precursors and thus elevates particle mass [36]. Other studies reveal that when the temperature rises, thermally induced air convection becomes frequent, which leads to the diffusion and dilution of particulate matter [37,38].
- (2)
- Humidity is closely related to the pollutant level. PM2.5 concentrations tend to increase while humidity is low. Once the humidity reaches a high value, particles will absorb moisture and condense, which leads to dry deposition of the particles to the ground and thus results in a lower concentration of PM2.5 in the air [39]. Here, we used the dew point as a measure of atmospheric moisture. A higher dew point indicates more moisture in the air.
- (3)
- Wind speed, direction, and gust are crucial indicators of atmospheric activity. They greatly affect air pollutant transport and dispersion [40]. Wind speed affects the pollutant concentration [41], and wind direction determines where the pollutant blows from and disperses to [42,43]. Wind gust is the rapid fluctuations in the wind speed with a variation of 10 knots or more between peaks and lulls, and it indicates the maximum instantaneous wind speed. Many previous research methods use long-term average wind speed and direction to estimate the pollution concentrations [44,45]. However, wind can fluctuate rapidly over the short term and its influence on the pollutant dispersion and deposition processes is in a timely manner. Thus, the dependencies between wind and PM2.5 concentrations are multidirectional and time-sensitive [46]. In this study, we designed a wind wedge system to account for the real-time changes of wind, which will be elaborated in Section 3.3.
3.2.2. Proximity to Emission Sources
3.2.3. Urban Morphology: Airborne Image-Derived Horizontal Landscape Pattern
3.2.4. LiDAR-Derived 3D Representation of the Built Environment and Trees
3.3. Wind Wedge-Based Explanatory Variable Calculation
3.4. Panel Data Analysis
4. Results and Discussion
4.1. Diurnal and Daily Variation of PM2.5 Concentration
4.2. Spatial Characterization of Intra-Urban PM2.5 Gradient
4.3. Determinants of PM2.5 Spatio-Temporal Variation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gotschi, T.; Heinrich, J.; Sunyer, J.; Künzli, N. Long-Term Effects of Ambient Air Pollution on Lung Function. Epidemiology 2008, 19, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Health Effects Institute. State of Global Air 2018; HEI: Boston, MA, USA, 2018. [Google Scholar]
- Huang, J.; Pan, X.; Guo, X.; Li, G. Impacts of air pollution wave on years of life lost: A crucial way to communicate the health risks of air pollution to the public. Environ. Int. 2018, 113, 42–49. [Google Scholar] [CrossRef]
- UN DESA. World Urbanization Prospects: The 2014 Revision; United Nations Department of Economics and Social Affairs, Population Division: New York, NY, USA, 2015. [Google Scholar]
- World Health Organization. Global Urban Ambient Air Pollution Database (Update 2016); WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Dionisio, K.L.; Rooney, M.S.; Arku, R.E.; Friedman, A.B.; Hughes, A.F.; Vallarino, J.; Agyei-Mensah, S.; Spengler, J.D.; Ezzati, M. Within-Neighborhood Patterns and Sources of Particle Pollution: Mobile Monitoring and Geographic Information System Analysis in Four Communities in Accra, Ghana. Environ. Health Perspect. 2010, 118, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, E.D.S.; Kinney, P.L. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: New evidence from Nairobi, Kenya. Environ. Res. Lett. 2007, 2, 045028. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.; Zipperer, W.C.; Costanza, R. Urban Ecological Systems: Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Von Klot, S.; Heier, M.; Trentinaglia, I.; Hörmann, A.; Wichmann, H.E.; Lowel, H. Exposure to Traffic and the Onset of Myocardial Infarction. N. Engl. J. Med. 2004, 351, 1721–1730. [Google Scholar] [CrossRef] [Green Version]
- Apte, J.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C.; Arain, M.A. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2004, 15, 185–204. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuijsen, M. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environ. Health 2016, 15, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padhi, B.K.; Padhy, P.K. Assessment of Intra-urban Variability in Outdoor Air Quality and its Health Risks. Inhal. Toxicol. 2008, 20, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009, 43, 37–50. [Google Scholar] [CrossRef]
- Saksena, S.; Singh, P.; Prasad, R.K.; Prasad, R.; Malhotra, P.; Joshi, V.; Patil, R. Exposure of infants to outdoor and indoor air pollution in low-income urban areas—A case study of Delhi. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, A.J.; Smith-Doiron, M.; Xu, X.; Gilbert, N.L.; Brook, J.R. Intra-urban variability of air pollution in Windsor, Ontario—Measurement and modeling for human exposure assessment. Environ. Res. 2008, 106, 7–16. [Google Scholar] [CrossRef]
- Dimakopoulou, K.; Gryparis, A.; Katsouyanni, K. Using spatio-temporal land use regression models to address spatial variation in air pollution concentrations in time series studies. Air Qual. Atmos. Health 2017, 10, 1139–1149. [Google Scholar] [CrossRef]
- Williams, R.; Kilaru, V.; Conner, T.; Clements, A.; Colon, M.; Breen, M.; Bash, J.; Duvall, R.; Szykman, J.; Landis, M.; et al. New Paradigm for Air Pollution Monitoring: Emerging Sensor Technologies 2014–2018 Progress Report; ACE Webinar: Research Triangle Park, NC, USA, 2018. [Google Scholar]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef]
- Tang, R.; Blangiardo, M.; Gulliver, J. Using Building Heights and Street Configuration to Enhance Intraurban PM10, NOX, and NO2Land Use Regression Models. Environ. Sci. Technol. 2013, 47, 11643–11650. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Chen, Z.; Zeng, G.; Hu, C.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Li, Z.; et al. The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO 2 and PM 10 concentrations. Atmos. Environ. 2015, 103, 18–24. [Google Scholar] [CrossRef]
- Naughton, O.; Donnelly, A.; Nolan, P.; Pilla, F.; Misstear, B.; Broderick, B. A land use regression model for explaining spatial variation in air pollution levels using a wind sector based approach. Sci. Total. Environ. 2018, 630, 1324–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghassoun, Y.; Löwner, M.-O. Land use regression models for total particle number concentrations using 2D, 3D and semantic parameters. Atmos. Environ. 2017, 166, 362–373. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Population and Housing Unit Estimates Tables. Available online: https://www.census.gov/programs-surveys/popest/data/tables.html (accessed on 7 July 2020).
- UNT. 2018 Fact Book. Available online: https://institutionalresearch.unt.edu/fact-book/enrollment (accessed on 7 July 2020).
- North Texas Daily. Available online: https://www.ntdaily.com/texas-cuts-to-air-quality-planning-risk-increasing-pollution-in-denton/ (accessed on 7 July 2020).
- Sales, J. Determining the Suitability of Functional Landscapes and Wildlife Corridors Utilizing Conservation GIS Methods in Denton County, Texas. Master’s Thesis, University of North Texas, Denton, TX, USA, 2007. [Google Scholar]
- An, R.; Yu, H. Impact of ambient fine particulate matter air pollution on health behaviors: A longitudinal study of university students in Beijing, China. Public Health 2018, 159, 107–115. [Google Scholar] [CrossRef]
- Rajper, S.A.; Ullah, S.; Wang, J. Exposure to air pollution and self-reported effects on Chinese students: A case study of 13 megacities. PLoS ONE 2018, 13, e0194364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hien, P.D.; Bac, V.T.; Tham, H.C.; Nhan, D.D.; Vinh, L.D. Influence of meteorological conditions on PM2.5 and PM2.5–10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos. Environ. 2002, 36, 3473–3484. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, W.; Lei, Y.; Zhao, Y.; Cheng, S.; Ren, Z.; Huang, Q. Impact of Meteorological Conditions on PM2.5 Pollution in China during Winter. Atmosphere 2018, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Gong, S.; Yu, Y.; Yu, L.; Wu, L.; Mao, H.; Song, C.; Zhao, S.; Liu, H.; Li, X.; et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef]
- Hernandez, G.; Berry, T.A.; Wallis, S.; Poyner, D. Temperature and humidity effects on particulate matter concentrations in a sub-tropical climate during winter. In Proceedings of the International Conference of the Environment, Chemistry and Biology (ICECB 2017), Queensland, Australia, 20–22 November 2017; Juan, L., Ed.; IRCSIT Press: Singapore, 2017. [Google Scholar]
- Zhang, C.; Ni, Z.; Ni, L. Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Phys. A Stat. Mech. Its Appl. 2015, 438, 114–123. [Google Scholar] [CrossRef]
- Barmpadimos, I.; Hueglin, C.; Keller, J.; Henne, S.; Prevot, A.S.H. Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys. Discuss. 2011, 11, 1813–1835. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Zhang, G.; Kong, F.; Chen, D.; Azorin-Molina, C.; Guijarro, J. Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. Atmos. Res. 2019, 215, 1–11. [Google Scholar] [CrossRef]
- Xie, J.; Liao, Z.; Fang, X.; Xu, X.; Wang, Y.; Zhang, Y.; Liu, J.; Fan, S.; Wang, B. The characteristics of hourly wind field and its impacts on air quality in the Pearl River Delta region during 2013–2017. Atmos. Res. 2019, 227, 112–124. [Google Scholar] [CrossRef]
- Yassin, M.F. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction. Environ. Sci. Pollut. Res. 2012, 20, 3975–3988. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. The influence of wind speed on new particle formation events in an urban environment. Atmos. Res. 2019, 215, 37–41. [Google Scholar] [CrossRef]
- Arain, M.A.; Blair, R.; Finkelstein, N.; Brook, J.; Sahsuvaroglu, T.; Beckerman, B.; Zhang, L.; Jerrett, M. The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos. Environ. 2007, 41, 3453–3464. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ. Res. 2017, 157, 17–29. [Google Scholar] [CrossRef]
- Lowicki, D. Landscape pattern as an indicator of urban air pollution of particulate matter in Poland. Ecol. Indic. 2019, 97, 17–24. [Google Scholar] [CrossRef]
- NOAA. Available online: https://www.ncdc.noaa.gov/isd/data-access (accessed on 7 July 2020).
- Askariyeh, M.H.; Zietsman, J.; Autenrieth, R. Traffic contribution to PM2.5 increment in the near-road environment. Atmos. Environ. 2019, 224, 117113. [Google Scholar] [CrossRef]
- Karner, A.; Eisinger, D.S.; Niemeier, D.A. Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef]
- Dewinter, J.L.; Brown, S.G.; Seagram, A.F.; Landsberg, K.; Eisinger, D.S. A national-scale review of air pollutant concentrations measured in the U.S. near-road monitoring network during 2014 and 2015. Atmos. Environ. 2018, 183, 94–105. [Google Scholar] [CrossRef]
- Keuken, M.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E.; Röckmann, T.; Dusek, U. Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmos. Environ. 2013, 71, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third earth resources technology satellite-1 symposium, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Wu, J.; Xie, W.; Li, W.; Li, J. Effects of Urban Landscape Pattern on PM2.5 Pollution—A Beijing Case Study. PLoS ONE 2015, 10, e0142449. [Google Scholar] [CrossRef] [Green Version]
- Zupancic, T.; Westmacott, C.; Bulthuis, M. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-Narrative Systematic Review; David Suzuki Foundation: Vancouver, BC, Canada, 2015. [Google Scholar]
- Weng, Q.; Yang, S. Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environ. Monit. Assess. 2006, 117, 463–489. [Google Scholar] [CrossRef]
- Schlegel, M. 4.5 National Weather Services. In Thermodynamical and Dynamical Structures of the Global Atmosphere; Springer: Berlin/Heidelberg, Germany, 1987; pp. 470–476. [Google Scholar] [CrossRef]
- Ahn, S.C.; Schmidt, P. Efficient estimation of models for dynamic panel data. J. Econ. 1995, 68, 5–27. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Econom. J. Econom. Soc. 1978, 46, 1251. [Google Scholar] [CrossRef] [Green Version]
- Greene, W.H. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1990; p. 07458. [Google Scholar]
- Wang, Y.; Chen, J.; Wang, Q.; Qin, Q.; Ye, J.; Han, Y.; Li, L.; Zhen, W.; Zhi, Q.; Zhang, Y.; et al. Increased secondary aerosol contribution and possible processing on polluted winter days in China. Environ. Int. 2019, 127, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Lin, R. Spatial-temporal heterogeneity of air pollution: The relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. Part D Transp. Environ. 2019, 76, 305–322. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Pakbin, P.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles. Environ. Pollut. 2014, 187, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimbrough, S.; Baldauf, R.W.; Hagler, G.; Shores, R.C.; Mitchell, W.; Whitaker, D.A.; Croghan, C.W.; Vallero, D.A.; Kimbrough, S. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality. Air Qual. Atmos. Health 2012, 6, 295–305. [Google Scholar] [CrossRef]
- Chaloulakou, A.; Kassomenos, P.; Spyrellis, N.; Demokritou, P.; Koutrakis, P. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos. Environ. 2003, 37, 649–660. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Park, T.W.; Deng, Y. Quantifying the relationship between extreme air pollution events and extreme weather events. Atmos. Res. 2017, 188, 64–79. [Google Scholar] [CrossRef]
- Zhang, Y. Dynamic effect analysis of meteorological conditions on air pollution: A case study from Beijing. Sci. Total. Environ. 2019, 684, 178–185. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Aw, J.; Kleeman, M.J. Evaluating the first-order effect of intraannual temperature variability on urban air pollution. J. Geophys. Res. Space Phys. 2003, 108, 4365. [Google Scholar] [CrossRef]
- Hand, J.L.; Schichtel, B.A.; Pitchford, M.; Malm, W.C.; Frank, N.H. Seasonal composition of remote and urban fine particulate matter in the United States. J. Geophys. Res. Space Phys. 2012, 117, D05209. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Cheng, F.-Y. Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmos. Environ. 2016, 144, 397–408. [Google Scholar] [CrossRef]
- Kittelson, D.B. Engines and nanoparticles. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Shields, L.G.; Suess, D.T.; Prather, K.A.; Prather, K. Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment. Atmos. Environ. 2007, 41, 3841–3852. [Google Scholar] [CrossRef]
- Sofowote, U.; Healy, R.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.-H.; Wang, J.; Hilker, N.; Evans, G.; et al. Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon. Atmos. Environ. 2018, 173, 277–288. [Google Scholar] [CrossRef]
- Chen, C.; Huang, C.; Jing, Q.; Wang, H.; Pan, H.; Li, L.; Zhao, J.; Dai, Y.; Huang, H.; Schipper, L. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai. Atmos. Environ. 2007, 41, 5334–5344. [Google Scholar] [CrossRef]
- Chan, L.; Kwok, W.; Lee, S.-C.; Chan, C. Spatial variation of mass concentration of roadside suspended particulate matter in metropolitan Hong Kong. Atmos. Environ. 2001, 35, 3167–3176. [Google Scholar] [CrossRef]
- Jeanjean, A.P.; Buccolieri, R.; Eddy, J.; Monks, P.; Leigh, R.J. Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London. Urban For. Urban Green. 2017, 22, 41–53. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Wang, Z. The Residence time of pollutants emitted within the urban canopy influenced by street canyon geometry and emission conditions. In Proceedings of the 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 13 January 2020. [Google Scholar]
- Chen, X.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote. Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Gramsch, E.; Caceres, D.; Oyola, P.; Reyes, F.; Vasquez, Y.; Rubio, M.; Sánchez, G. Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmos. Environ. 2014, 98, 290–298. [Google Scholar] [CrossRef]
- Rindy, J.E.; Ponette-González, A.G.; Barrett, T.E.; Sheesley, R.J.; Weathers, K.C. Urban Trees Are Sinks for Soot: Elemental Carbon Accumulation by Two Widespread Oak Species. Environ. Sci. Technol. 2019, 53, 10092–10101. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, K.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- De Carvalho, R.M.; Szlafsztein, C.F. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environ. Pollut. 2019, 245, 844–852. [Google Scholar] [CrossRef]
- Van Ryswyk, K.; Prince, N.; Ahmed, M.; Brisson, E.; Miller, J.D.; Villeneuve, P.J. Does urban vegetation reduce temperature and air pollution concentrations? Findings from an environmental monitoring study of the Central Experimental Farm in Ottawa, Canada. Atmos. Environ. 2019, 218, 116886. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Gozzi, F.; Della Ventura, G.; Marcelli, A. Mobile monitoring of particulate matter: State of art and perspectives. Atmos. Pollut. Res. 2016, 7, 228–234. [Google Scholar] [CrossRef]
- Van Poppel, M.; Peters, J.; Bleux, N. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environ. Pollut. 2013, 183, 224–233. [Google Scholar] [CrossRef] [PubMed]
Variables | Acronym | Unit | Data Range |
---|---|---|---|
Meteorological Condition | |||
Wind direction | WDIR | degrees (°) | 163.3 ± 101.9 |
Wind speed | WSP | kilometer per hour | 15.6 ± 10.1 |
Wind gust | GST | kilometer per hour | 6.4 ± 16.6 |
Temperature | T | Celsius degree (°C) | 9.2 ± −9.6 |
Dew point | H | Celsius degree (°C) | 3.8 ± −8.5 |
Proximity to Emission Sources | |||
Distance to major roads | Dismajor | meter | 664.8 ± 269.2 |
Distance to minor roads | Disminor | meter | 8.1 ± 22.1 |
Distance to bus stops | Disbus | meter | 67.2 ± 55.2 |
Urban Morphology | |||
Wind Wedge | |||
Vegetation footprint | VegFpwedge | square meter | 1,190,152.0 ± 753,784.7 |
Building footprint | BuildFpwedge | square meter | 447,183.3 ± 264,025.7 |
Vegetation height | VegHtwedge | meter | 0.9 ± 0.4 |
Building height | BuildHtwedge | meter | 0.5 ± 0.4 |
Circular Buffer | |||
Vegetation footprint | VegFpbuffer | square meter | 14,845,468.9 ± 10,916,456.3 |
Building footprint | BuildFpbuffer | square meter | 5,880,245.9 ± 3,449,631.6 |
Vegetation height | VegHtbuffer | meter | 0.9 ± 0.2 |
Building height | BuildHtbuffer | meter | 0.6 ± 0.4 |
Variables | Coefficient Estimate | Standard Error | p Value |
---|---|---|---|
Meteorology | |||
Wind direction | 1.25 | 0.54 | * |
Wind speed | 12.90 | 1.54 | *** |
Wind gust | −17.47 | 0.96 | *** |
Temperature | 4.79 | 0.68 | *** |
Dew point | 6.25 | 0.69 | *** |
Proximity to Emission Sources | |||
Distance to major roads | −0.17 | 0.29 | *** |
Distance to minor roads | 3.08 | 0.34 | |
Distance to bus stops | 0.03 | 0.29 | |
Urban Morphology | |||
Wind wedge | |||
Vegetation footprint | −6.64 | 0.80 | *** |
Building footprint | 1.21 | 0.61 | * |
Vegetation height | 6.29 | 0.52 | *** |
Building height | 11.38 | 0.93 | *** |
Circular buffer | |||
Vegetation footprint | 90.58 | 6.27 | * |
Building footprint | 94.87 | 6.21 | * |
Vegetation height | −1.86 | 0.79 | * |
Building height | 1.61 | 1.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hart, R.; Liang, L.; Dong, P. Monitoring, Mapping, and Modeling Spatial–Temporal Patterns of PM2.5 for Improved Understanding of Air Pollution Dynamics Using Portable Sensing Technologies. Int. J. Environ. Res. Public Health 2020, 17, 4914. https://doi.org/10.3390/ijerph17144914
Hart R, Liang L, Dong P. Monitoring, Mapping, and Modeling Spatial–Temporal Patterns of PM2.5 for Improved Understanding of Air Pollution Dynamics Using Portable Sensing Technologies. International Journal of Environmental Research and Public Health. 2020; 17(14):4914. https://doi.org/10.3390/ijerph17144914
Chicago/Turabian StyleHart, Ronan, Lu Liang, and Pinliang Dong. 2020. "Monitoring, Mapping, and Modeling Spatial–Temporal Patterns of PM2.5 for Improved Understanding of Air Pollution Dynamics Using Portable Sensing Technologies" International Journal of Environmental Research and Public Health 17, no. 14: 4914. https://doi.org/10.3390/ijerph17144914
APA StyleHart, R., Liang, L., & Dong, P. (2020). Monitoring, Mapping, and Modeling Spatial–Temporal Patterns of PM2.5 for Improved Understanding of Air Pollution Dynamics Using Portable Sensing Technologies. International Journal of Environmental Research and Public Health, 17(14), 4914. https://doi.org/10.3390/ijerph17144914