Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Sites
2.2. Measurement Method
2.3. Statistical Analysis
3. Results & Discussion
3.1. Differences in PM Concentration between Wall Types
3.2. Differences in Noise and Temperature Conditions between Wall Types
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Site Number | Site Location | Picture |
---|---|---|
1 | Ashfield | |
2 | Tamarama | |
3 | Mosman | |
4 | Lane Cove | |
5 | Woollahra | |
6 | Gordon | |
7 | The Rocks, Site 1 | |
8 | The Rocks, Site 2 | |
9 | Summer Hill | |
10 | Camperdown | |
11 | Ultimo | |
12 | Crows Nest |
References
- How Much Energy Does NYC Waste? State of the Planet. Available online: https://blogs.ei.columbia.edu/2015/09/28/how-much-energy-does-nyc-waste/ (accessed on 16 September 2019).
- Galea, S.; Freudenberg, N.; Vlahov, D. Cities and population health. Soc. Sci. Med. 2005, 60, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawron’ski, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Kowarik, I.; Säumel, I. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 2014, 186, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Air Quality Deteriorating in Many of the World’s Cities World Health Organization. Available online: https://www.who.int/mediacentre/news/releases/2014/air-quality/en/ (accessed on 16 September 2019).
- Simunich, J. Background. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Dzierzanowski, K.; Popek, R.; Gawron’ska, H.; Sæbø, A.; Gawron’ska, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Song, Y.; Maher, B.A.; Li, F.; Wang, X.; Sun, X.; Zhang, H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar] [CrossRef]
- Wang, L.; Gong, H.; Liao, W.; Wang, Z. Accumulation of particles on the surface of leaves during leaf expansion. Sci. Total Environ. 2015, 532, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Uttara, S.; Bhuvandas, N.; Aggarwal, V. Impacts of urbanization on environment. Int. J. Res. Eng. Appl. Sci. 2012, 2, 1637–1645. [Google Scholar]
- McAlexander, T.P.; Gershon, R.R.M.; Neitzel, R.L. Street-level noise in an urban setting: Assessment and contribution to personal exposure. J. Environ. Health 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Scheuermann, R. Introduction, green building envelopes. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Jofeh, C.; Li, J. Retrofitting with Green Envelopes. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Ghazalli, A.J.; Brack, C.; Bai, X.; Said, I. Alterations in use of space, air quality, temperature, and humidity by the presence of vertical greenery system in a building corridor. Urban For. Urban Green. 2018, 32, 177–184. [Google Scholar] [CrossRef]
- Sternberg, T.; Viles, H.; Cathersides, A.; Edwards, M. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sci. Total Environ. 2010, 409, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Marchi, M.; Pulselli, R.M.; Marchettini, N.; Pulselli, F.M.; Bastianoni, S. Carbon dioxide sequestration model of a vertical greenery system. Ecol. Model. 2015, 306, 46–56. [Google Scholar] [CrossRef]
- Charoenkit, S.; Yiemwattana, S. Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review. Build. Environ. 2016, 105, 82–94. [Google Scholar] [CrossRef]
- Hasan, M.M.; Karim, A.; Brown, R.J.; Perkins, M.; Joyce, D. Estimation of energy saving of commercial building by living wall and green facade in sub-tropical climate of Australia. In Proceedings of the 7th International Green Energy Conference & the 1st DNL Conference on Clean Energy, Dalian, China, 28–30 May 2012. [Google Scholar]
- Mazzali, U.; Peron, F.; Romagnoni, P.; Pulselli, R.M.; Bastianoni, S. Experimental investigation on the energy performance of Living Walls in a temperate climate. Build. Environ. 2013, 64, 57–66. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Cuce, E. Thermal regulation impact of green walls: An experimental and numerical investigation. Appl. Energy 2017, 194, 247–254. [Google Scholar] [CrossRef]
- Vox, G.; Blanco, I.; Fuina, S.; Campiotti, C.A.; Mugnozza, G.S.; Schettini, E. Evaluation of wall surface temperatures in green facades. Proc. Inst. Civ. Eng. Eng. Sustain. 2017, 170, 334–344. [Google Scholar] [CrossRef]
- Azkorra, Z.; Pérez, G.; Coma, J.; Cabeza, L.F.; Bures, S.; Alvaro, J.E.; Erkoreka, A.; Urrestarazu, M. Evaluation of green walls as a passive acoustic insulation system. Appl. Acoust. 2015, 89, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.H.; Staskawicz, B.J. Removal of atmospheric particles by leaves and twigs of urban trees: Some preliminary observations and assessment of research needs. Environ. Manag. 1977, 1, 317–330. [Google Scholar] [CrossRef]
- Beckett, K.P. Arboriculture: Particle Pollution Removal by Urban Trees; University of Sussex at Brighton: Brighton, UK, 1998. [Google Scholar]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Litschike, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation—A review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Irga, P.J.; Burchett, M.D.; Torpy, F.R. Does urban forestry have a quantitative effect on ambient air quality in and urban environment? Atmos. Environ. 2015, 120, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Al-Dabbous, A.N.; Kumar, P. The influence of roadside vegetation barriers on airborne nanoparticle and pedestrians exposure under varying wind condition. Atmos. Environ. 2014, 90, 113–124. [Google Scholar] [CrossRef] [Green Version]
- García-Gómez, H.; Aguillaume, L.; Izquieta-Rojano, S.; Valiño, F.; Àvila, A.; Elustondo, D.; Santamaría, J.M.; Alastuey, A.; Calvete-Sogo, H.; González-Fernández, I.; et al. Atmospheric pollutants in peri-urban forests of Quercus ilex: Evidence of pollution abatement and threats for vegetation. Environ. Sci. Pollut. Res. 2016, 23, 6400–6413. [Google Scholar] [CrossRef] [Green Version]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Chang. Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Ottelé, M.; van Bohemen, H.D.; Fraaij, A.L.A. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 2010, 36, 154–162. [Google Scholar] [CrossRef]
- Stevović, S.; Markovic, J. Urban Air Pollutants and Their Impact on Biota. In Plant Responses to Air Pollution; Kulshrestha, U., Saxena, P., Eds.; Springer: Singapore, 2016. [Google Scholar]
- Pugh, T.A.M.; Mackenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.V.; Ghosh, S. On the air cleansing efficiency of an extended greenwall: A CFD analysis of mechanistic details of transport processes. J. Theor. Biol. 2014, 361, 101–110. [Google Scholar] [CrossRef] [PubMed]
- The Health Effects of Environmental Noise. Available online: https://www1.health.gov.au/internet/main/publishing.nsf/Content/A12B57E41EC9F326CA257BF0001F9E7D/$File/Environmental-health-Risk-Assessment.pdf (accessed on 16 September 2019).
- Brown, A.; Bullen, R. Road traffic noise exposure in Australian capital cities. Acoust. Aust. 2003, 31, 11–16. [Google Scholar]
- Marquez, L.; Smith, N.; Eugenio, E. Urban Freight in Australia: Societal Costs and Action Plans. Australas. J. Reg. Stud. 2005, 11, 125–139. [Google Scholar]
- Traffic Noise Reduction in Europe. Available online: http://www.transportenvironment.org/sites/te/files/media/2008-02_traffic_noise_ce_delft_report.pdf (accessed on 16 September 2019).
- How Loud Is It? Available online: http://nymag.com/nymetro/urban/features/noise/9456/ (accessed on 16 September 2019).
- Wurm, J. Solar leaf a bioreactive façade. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Embleton, T. Sound propagation in homogeneous deciduous and evergreen woods. J. Acoust. Soc. Am. 1963, 35, 1119–1125. [Google Scholar] [CrossRef]
- Martens, M.; Michelsen, A. Absorption of acoustic energy by plant-leaves. J. Acoust. Soc. Am. 1981, 69, 303–306. [Google Scholar] [CrossRef]
- Tang, S.; Ong, P.; Woon, H. Monte-Carlo simulation of sound-propagation through leafy foliage using experimentally obtained leaf resonance parameters. J. Acoust. Soc. Am. 1986, 80, 1740–1744. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D.; Verheyen, K. Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vib. 2012, 331, 2404–2425. [Google Scholar] [CrossRef] [Green Version]
- Huisman, W.; Attenborough, K. Reverberation and attenuation in a pine forest. J. Acoust. Soc. Am. 1991, 90, 2664–2677. [Google Scholar] [CrossRef]
- Martens, M. Foliage as a low-pass filter: Experiments with model forests in an anechoic chamber. J. Acoust. Soc. Am. 1980, 67, 66–72. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Konarska, J.; Uddling, J.; Holmer, B.; Lutz, M.; Lindberg, F.; Pleijel, H.; Thorsson, S. Transpiration of urban trees and its cooling effect in a high latitude city. Int. J. Biometeorol. 2016, 60, 159–172. [Google Scholar] [CrossRef]
- Wong, N.H.; Kwang Tan, A.Y.; Chen, Y. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- Pauli, M. Key Findings. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Nishihara, T.; Miyaji, T.; Nasu, M.; Takubo, Y.; Kondo, M. Fungal flora in rainwater. Biomed. Environ. Sci. 1989, 2, 376–384. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. Available online: http://arXiv:1406.5823 (accessed on 10 September 2019).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Estimated Marginal Means, aka Least-Squares Means, R Package Version 1.3.4. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 16 September 2019).
- An {R} Companion to Applied Regression, Second Edition. Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 16 September 2019).
- Paull, N.J.; Krix, D.; Irga, P.J.; Torpy, F.R. Airborne particulate matter accumulation on common green wall plants. Int. J. Phytoremediation 2019. [Google Scholar] [CrossRef]
- Ottelé, M. The Green Building Envelope: Vertical Greening. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2011. Available online: http://resolver.tudelft.nl/uuid:1e38e393-ca5c-45af-a4fe-31496195b88d (accessed on 16 September 2019).
- Setälä, H.; Viippola, V.; Rantalainen, A.L.; Pennanen, A.; Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions? Environ. Pollut. 2013, 183, 104–112. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F.; Hao, S. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement. J. Environ. Manag. 2016, 182, 595–605. [Google Scholar] [CrossRef]
- Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Max Zhang, K. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927. [Google Scholar] [CrossRef]
- Gallagher, J.; Baldauf, R.; Fuller, C.H.; Kumar, P.; Gill, L.W.; McNabola, A. Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmos. Environ. 2015, 120, 61–70. [Google Scholar] [CrossRef]
- Sanjuan, C.; Bull, M. Green envelopes provide an opportunity to improve air quality in selected areas. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Witlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabashi, S.; Bodina, A.; Hoehn, R. Modelled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Whitlow, T.H.; Pataki, D.A.; Alberti, M.; Pincetl, S.; Setala, H.; Cadenasso, M.; Felson, A.; McComas, K. Response to authors’ reply regarding “Modeled PM2.5 removal by trees in ten US cities and associated health effects” by Nowak et al. (2013). Environ. Pollut. 2014, 191, 258–259. [Google Scholar] [CrossRef]
- Whitlow, T.H.; Pataki, D.A.; Alberti, M.; Pincetl, S.; Setala, H.; Cadenasso, M.; Felson, A.; McComas, K. Comments on Modelled PM2.5 removal by trees in ten U.S. cities and associated health effects by Nowak et al., (2013). Environ. Pollut. 2014, 191, 256. [Google Scholar] [CrossRef] [PubMed]
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure—A case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Torpy, F.R.; Zavattaro, M.; Irga, P.J. Green wall technology for the phytoremediation of indoor air: A system for the reduction of high CO2 concentration. Air Qual. Atmos. Health 2016, 10, 575–585. [Google Scholar] [CrossRef]
- Irga, P.J.; Paull, N.J.; Abdo, P.; Torpy, F.R. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build. Environ. 2017, 115, 281–290. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Abdo, P.; Torpy, F.R. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Irga, P.J.; Pettit, T.; Irga, R.F.; Paull, N.J.; Douglas, A.N.J.; Torpy, F.R. Does plant species selection in functional active green walls influence VOC phytoremediation efficiency? Environ. Sci. Pollut. Res. 2019, 26, 12851–12858. [Google Scholar] [CrossRef] [Green Version]
- Soreanu, G.; Dixon, M.; Darlington, A. Botanical biofiltration of indoor gaseous pollutants—A mini-review. Chem. Eng. J. 2013, 229, 585–594. [Google Scholar] [CrossRef]
- Llewellyn, D.; Dixon, M. Can Plants Really Improve Indoor Air Quality? In Comprehensive Biotechnology, 2nd ed.; Murray, M.Y., Ed.; Academic Press: Burlington, NJ, USA, 2011; pp. 331–338. [Google Scholar]
- Veillette, M.; Viens, P.; Ramirez, A.A.; Brzezinski, R.; Heitz, M. Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chem. Eng. J. 2011, 171, 1114–1123. [Google Scholar] [CrossRef]
- Franco, A.; Fernández-Cañero, R.; Pérez-Urrestarazu, L.; Valera, D.L. Wind tunnel analysis of artificial substrates used in active living walls for indoor environment conditioning in Mediterranean buildings. Build. Environ. 2012, 51, 370–378. [Google Scholar] [CrossRef]
- Kim, K.H.; Ho, D.X.; Brown, R.J.C.; Oh, J.M.; Park, C.G.; Ryu, I.C. Some insights into the relationship between urban air pollution and noise levels. Sci. Total Environ. 2012, 424, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Dunnet, N.; Kingsbury, N. Planting Green Roofs and Living Walls; Timber Press: Portland, OR, USA, 2008. [Google Scholar]
- Ismail, M.R. Quiet environment: Acoustics of vertical green wall systems of the Islamic urban form. Front. Arch. Res. 2013, 2, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Hosanna Work Package 5 Deliverable 5.7. Technical Report. Available online: http://www.hosanna.bartvanderaa.com/ (accessed on 16 September 2019).
- Patel, R.; Boning, W. Acoustics. In Cities Alive Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
- Pérez-Urrestarazu, L.; Fernández-Cañero, R.; Franco, A.; Egea, G. Influence of an active living wall on indoor temperature and humidity conditions. Ecol. Eng. 2016, 90, 120–124. [Google Scholar] [CrossRef]
- Darlington, A.; Chan, M.; Malloch, D.; Pilger, C.; Dixon, M. The Biofiltration of Indoor Air: Implications for Air quality. Indoor Air 2000, 10, 39–46. [Google Scholar] [CrossRef]
- Meier, A.K. Strategic landscaping and air-conditioning savings: Literature review. Energy Build. 2010, 15, 1990–1991. [Google Scholar] [CrossRef]
- Alspach, P.; Göhring, A. Urban Heat Island Effect. In Cities Alive, 1st ed.; ARUP Group: Berlin, Germany, 2016; Available online: https://www.arup.com/-/media/arup/files/publications/g/green-building-envelope-report_gesamt_170109.pdf (accessed on 10 September 2019).
- Meier, K. Strategic Landscaping and Air-Conditioning Savings: A Green Building Envelope; Scheuermann, R., Armour, T., Pauli, M., Law, A., Eds.; Arup Deutschland: Berlin, Germany, 2016. [Google Scholar]
Site Number | Site Location | Notes | General Land Use | Elevation above Sea Level (m) | Size (m2) | Number of Plants |
---|---|---|---|---|---|---|
1 | Ashfield (33°53′25.7″ S 151°07′40.3″ E) | Apartment complex with green wall in outdoor foyer | Residential | 18 | 27 | 1296 |
2 | Tamarama (33°53′53.5″ S 151°16′23.6″ E) | Residential property, green wall situated in back yard | Residential | 33 | 12.5 | 600 |
3 | Mosman (33°49′41.7″ S 151°14′04.1″ E) | Apartment complex with outdoor green wall | Residential and industry | 70 | 72 | 3456 |
4 | Lane Cove (33°48′55.8″ S 151°10′10.6″ E) | Display home with green wall situated in an outdoor area | Industry | 50 | 9 | 432 |
5 | Woollahra (33°53′15.7″ S 151°14′59.1″ E) | Residential property, green wall in front courtyard | Residential | 85 | 6 | 288 |
6 | Gordon (33°45′33.2″ S 151°09′20.0″ E) | High School. Green wall situated in a courtyard | Residential | 121 | 140 | 9150 |
7 | The Rocks, Site 1 (33°51′45.6″ S 151°12′20.4″ E) | Extensive green wall situated on expressway | Transport | 19 | 142 | 6891 |
8 | The Rocks, Site 2 (33°51′39.4″ S 151°12′29.9″ E) | Green wall situated under rail line support structure | Transport | 19 | 25 | 1600 |
9 | Summer Hill (33°53′29.7″ S 151°08′10.2″ E) | High School, green wall situated in a courtyard | Residential | 55 | 4.5 | 216 |
10 | Camperdown (33°53′04.0″ S 151°10′33.8″ E) | Multi-storey apartment complex | Residential and commercial | 30 | 18 | 864 |
11 | Ultimo (33°53′00.7″ S 151°11′58.0″ E) | Green wall situated on a tertiary education facility | Educational | 15 | 145 | 9280 |
12 | Crows Nest (33°49′38.3″ S 151°12′07.0″ E) | Green wall situated on the exterior of a grocery store | Commercial | 101 | 25 | 1200 |
Response | Terms | Estimate | SE | df | t Value | p |
---|---|---|---|---|---|---|
Green wall PM2.5 | Traffic | 0.281 | 0.101 | 7.8 | 2.782 | 0.03 |
Max wind speed | −0.139 | 0.077 | 62.2 | −1.811 | 0.07 | |
Humidity | 0.465 | 0.194 | 62.3 | 2.391 | 0.02 | |
Green wall area | −1.198 | 1.214 | 6.4 | −0.986 | 0.40 | |
Plant number | 1.173 | 1.125 | 6.4 | 1.042 | 0.30 | |
Green wall PM10 | Traffic | 0.23 | 0.081 | 8.6 | 2.847 | 0.02 |
Max wind speed | −0.098 | 0.073 | 64.5 | −1.334 | 0.20 | |
Humidity | 0.197 | 0.185 | 64.6 | 1.062 | 0.30 | |
Green wall area | −0.389 | 0.955 | 7.4 | −0.407 | 0.70 | |
Plant number | 0.333 | 0.885 | 7.4 | 0.376 | 0.70 | |
∆ PM2.5 | Traffic | −0.02 | 0.009 | 66 | −2.299 | 0.03 |
Max wind speed | 0.017 | 0.008 | 66 | 2.076 | 0.04 | |
Humidity | 0.002 | 0.021 | 66 | 0.081 | 0.90 | |
Green wall area | 0.079 | 0.101 | 66 | 0.778 | 0.40 | |
Plant number | −0.071 | 0.094 | 66 | −0.758 | 0.50 | |
∆ PM10 | Traffic | 0.004 | 0.007 | 66 | 0.628 | 0.50 |
Max wind speed | −0.004 | 0.007 | 66 | −0.497 | 0.60 | |
Humidity | 0.02 | 0.018 | 66 | 1.131 | 0.30 | |
Green wall area | −0.053 | 0.088 | 66 | −0.604 | 0.50 | |
Plant number | 0.05 | 0.081 | 66 | 0.62 | 0.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paull, N.; Krix, D.; Torpy, F.; Irga, P. Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature? Int. J. Environ. Res. Public Health 2020, 17, 5084. https://doi.org/10.3390/ijerph17145084
Paull N, Krix D, Torpy F, Irga P. Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature? International Journal of Environmental Research and Public Health. 2020; 17(14):5084. https://doi.org/10.3390/ijerph17145084
Chicago/Turabian StylePaull, Naomi, Daniel Krix, Fraser Torpy, and Peter Irga. 2020. "Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature?" International Journal of Environmental Research and Public Health 17, no. 14: 5084. https://doi.org/10.3390/ijerph17145084
APA StylePaull, N., Krix, D., Torpy, F., & Irga, P. (2020). Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature? International Journal of Environmental Research and Public Health, 17(14), 5084. https://doi.org/10.3390/ijerph17145084