Anti-Inflammatory and Antioxidative Potential of Aloe vera on the Cartap and Malathion Mediated Toxicity in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Collection of Plant and Storage of Extract
2.4. Treatment of Animals and Animal Care
2.5. Assessment of Rat Blood on Hematological Indices and Preparation of Blood Sample
2.6. Estimation of Inflammatory Markers (TNF-α and IL-6)
2.7. Estimation of Malondialdehyde (MDA)
2.8. Estimation of Glutathione (GSH)
2.9. Activity Assay of Glutathione-S-Transferase (GST)
2.10. Activity Assay of Glutathione Peroxidase (GPx)
2.11. Activity Assay of Superoxide Dismutase (SOD)
2.12. Activity Assay of Catalase (CAT)
2.13. Activity Assay for Transaminases and Phosphatases
2.14. Assessment of Total Protein Content (TPC)
2.15. Histological Analysis of Liver
2.16. Statistical Analysis
3. Results
3.1. Clinical Symptoms Induced by Pesticides and Effect of A. vera Leaf Extract
3.2. Effect of Pesticides and the Aqueous Extract of A. vera Leaf on the Status of Hematological Parameters of Rat
3.3. Effects of Pesticides and the A. vera Leaves on TNF-α and IL-6 Levels in Rat Blood Serum
3.4. Effect of Pesticides and the Aqueous Extract of A.vera Leaves on the Contents of MDA and GSH in Blood Serum of Rat
3.5. Effect of Pesticides and A. vera Leaves Extract on GST, GPx, SOD and CAT Activities in Rat Blood Serum
3.6. Effect of Pesticides and A. vera Leaves Extract on the Activities of Transaminases and Phosphatases in the Rat Blood Serum
3.7. Effect of A. vera Leaves Extract on Pesticides Treated Rat Liver Histology
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, V.K.; Pathak, A.; Siddiqi, N.J.; Sharma, B. Carbofuran Modulating Functions of Acetylcholinesterase from Rat Brain In Vitro. Adv. Biol. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jurewicz, J.; Hanke, W. Prenatal and Childhood Exposure to Pesticides and Neurobehavioral Development: Review of Epidemiological Studies. Int. J. Occup. Med. Environ. Health 2008, 21, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Colovic, M.; Krstić, D.; Lazarevic-Pasti, T.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovska-Gorevski, M.; Dubocovich, M.L.; Rajnarayanan, R.V. Carbamate Insecticides Target Human Melatonin Receptors. Chem. Res. Toxicol. 2017, 30, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Pineiro-Carrero, V.M.; Pineiro, E.O. Liver. Pediatrics 2004, 113, 1097–1106. [Google Scholar]
- Ray, D.E. Pesticides derived from plants and other organisms. In Handbook of Pesticide Toxicology; Hayes, W.J., Jr., Laws, E.R., Jr., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1991; Volume 2, pp. 585–636. [Google Scholar]
- Babu, N.S.; Malik, J.K.; Rao, G.S.; Aggarwal, M.; Ranganathan, V. Effects of subchronic malathion exposure on the pharmacokinetic disposition of pefloxacin. Environ. Toxicol. Pharmacol. 2006, 22, 167–171. [Google Scholar] [CrossRef]
- Taylor, P.; Radić, Z.; Hosea, N.A.; Camp, S.; Marchot, P.; Berman, H.A. Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicol. Lett. 1995, 82, 453–458. [Google Scholar] [CrossRef]
- Bartling, A.; Worek, F.; Szinicz, L.; Thiermann, H. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Toxicology 2007, 233, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicol. Rep. 2018, 5, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Cedergreen, N.; Dalhoff, K.; Li, D.; Gottardi, M.; Kretschmann, A.C. Can toxicokinetic and toxicodynamic modeling be used to understand and predict synergistic interactions between chemicals? Environ. Sci. Technol. 2017, 51, 14379–14389. [Google Scholar] [CrossRef]
- Gilliom, R.J. Pesticides in U.S. Streams and Groundwater. Environ. Sci. Technol. 2007, 41, 3408–3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monosson, E. Chemical Mixtures: Considering the Evolution of Toxicology and Chemical Assessment. Environ. Health Perspect. 2005, 113, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Cedergreen, N. Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology. PLoS ONE 2014, 9, e96580. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B. Role of Phytochemicals in Neurotrophins Mediated Regulation of Alzheimer’s Disease. Int. J. Complement. Altern. Med. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Gupta, V.K.; Ansari, D.; Siddiqi, N.J.; Sharma, B. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro. Toxicol. Rep. 2017, 4, 265–273. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Gupta, V.K.; Siddiqi, N.J.; Sharma, B. Curcumin mediated attenuation of carbofuran induced toxicity in the heart of Wistar rats. Cell. Mol. Biol. 2017, 63, 12–17. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Sendón, R.; Sanches-Silva, A. Aloe vera: Ancient knowledge with new frontiers. Trends Food Sci. Technol. 2017, 61, 94–102. [Google Scholar] [CrossRef]
- López, Z.; Núñez-Jinez, G.; Avalos-Navarro, G.; Rivera, G.; Salazar-Flores, J.; Ramirez, J.; Ayil-Gutiérrez, B.A.; Knauth, P. Antioxidant and Cytotoxicological Effects of Aloe vera Food Supplements. J. Food Qual. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Miroddi, M.; Navarra, M.; Calapai, F.; Mancari, F.; Giofrè, S.V.; Gangemi, S.; Calapai, G. Review of Clinical Pharmacology of Aloe vera L. in the Treatment of Psoriasis. Phytother. Res. 2015, 29, 648–655. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Banerjee, M.; Mandal, T.K.; Mishra, A.; Bhowmik, M.K. A study on analgesic efficacy and adverse effects of A. vera in Wistar rats. Pharma Online 2011, 1, 1098–1108. [Google Scholar]
- Agrawal, A.; Sharma, B. Pesticides induced oxidative stress in mammalian systems. Int. J. Biol. Med. Res. 2010, 1, 90–104. [Google Scholar]
- Niehaus, W.G.; Samuelsson, B. Formation of Malonaldehyde from Phospholipid Arachidonate during Microsomal Lipid Peroxidation. J. Biol. Inorg. Chem. 1968, 6, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Sedlák, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. J. Biol. Inorg. Chem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Beers, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar]
- Reitman, S.; Frankel, S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Goldberg, A.F.; Barka, T. Acid Phosphatase Activity in Human Blood Cells. Nature 1962, 195, 297. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Lasram, M.M.; Annabi, A.B.; El Elj, N.; Selmi, S.; Kamoun, A.; El-Fazaa, S.; Gharbi, N. Metabolic disorders of acute exposure to malathion in adult Wistar rats. J. Hazard. Mater. 2009, 163, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B. Alleviation of Acute Poisoning of Organophosphates in Humans. Anat. Physiol. Biochem. Int. J. 2016, 1. [Google Scholar] [CrossRef]
- El-Beshbishy, H.A. Hepatoprotective effect of green tea (Camellia sinensis) extract against tamoxifen-induced liver injury in rats. J. Biochem. Mol. Biol. 2005, 38, 563–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Sumaya-Martínez, M.T.; Gutiérrez-Salinas, J.; Bautista, M.; Morales-González, Á.; González-Rubio, M.G.-L.Y.; Faisal, J.L.A.; Morales-Gonzalez, J.A. Review of natural products with hepatoprotective effects. World J. Gastroenterol. 2014, 20, 14787–14804. [Google Scholar] [CrossRef] [PubMed]
- Saafi, E.B.; Louedi, M.; Elfeki, A.; Zakhama, A.; Najjar, M.F.; Hammami, M.; Achour, L. Protective effect of date palm fruit extract (Phoenix dactylifera L.) on dimethoate induced-oxidative stress in rat liver. Exp. Toxicol. Pathol. 2011, 63, 433–441. [Google Scholar] [CrossRef]
- Gupta, V.K.; Siddiqi, N.J.; Ojha, A.K.; Sharma, B. Hepatoprotective effect of Aloe vera against cartap- and malathion-induced toxicity in Wistar rats. J. Cell. Physiol. 2019, 234, 18329–18343. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Yilmaz, Z.; Turkoglu, V. Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in rats. Environ. Toxicol. 2009, 24, 128–132. [Google Scholar] [CrossRef]
- Kalender, Y.; Uzunhisarcikli, M.; Ogutcu, A.; Açikgoz, F.; Kalender, S. Effects of diazinon on pseudocholinesterase activity and haematological indices in rats: The protective role of Vitamin E. Environ. Toxicol. Pharmacol. 2006, 22, 46–51. [Google Scholar] [CrossRef]
- Elhalwagy, M.E.; Darwish, N.S.; Zaher, E.M. Prophylactic effect of green tea polyphenols against liver and kidney injury induced by fenitrothion insecticide. Pestic. Biochem. Physiol. 2008, 91, 81–89. [Google Scholar] [CrossRef]
- Benzer, F.; Kandemir, F.M.; Kucukler, S.; Comaklı, S.; Caglayan, C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: By modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch. Physiol. Biochem. 2018, 124, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Gangemi, S.; Gofita, E.; Costa, C.; Teodoro, M.; Briguglio, G.; Nikitovic, D.; Tzanakakis, G.; Tsatsakis, A.; Wilks, M.F.; Spandidos, D.; et al. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int. J. Mol. Med. 2016, 38, 1012–1020. [Google Scholar] [CrossRef] [Green Version]
- Mwanga, H.H.; Dalvie, M.A.; Singh, T.S.; Channa, K.; Jeebhay, M.F. Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers. Int. J. Environ. Res. Public Health 2016, 13, 957. [Google Scholar] [CrossRef] [PubMed]
- Multhoff, G.; Molls, M.; Radons, J. Chronic Inflammation in Cancer Development. Front. Immunol. 2012, 2, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Yagi, A.; Kabash, A.; Mizuno, K.; Moustafa, S.M.; Khalifa, T.I.; Tsuji, H. Radical Scavenging Glycoprotein Inhibiting Cyclooxygenase-2 and Thromboxane A2Synthase from Aloe vera Gel. Planta Med. 2003, 69, 269–271. [Google Scholar] [CrossRef]
- Vazquez, B.; Avila, G.; Segura, D.; Escalante, B. Antiinflammatory activity of extracts from Aloe vera gel. J. Ethnopharmacol. 1996, 55, 69–75. [Google Scholar] [CrossRef]
- Lindsey, K.; Jäger, A.; Viljoen, A.; Van Wyk, B.-E. Cyclooxygenase inhibitory activity of Aloe species. S. Afr. J. Bot. 2002, 68, 47–50. [Google Scholar] [CrossRef]
- Duansak, D.; Somboonwong, J.; Patumraj, S. Effect of Aloe vera on leukocyte adhesion and TNF-a and IL-6 levels in burn wounded rats. Med. Biochem. Biophys. 2009, 29, 239–246. [Google Scholar]
- Haller, J.S. A drug for all seasons. Medical and pharmacological history of aloe. Bull. N. Y. Acad. Med. 1990, 66, 647–659. [Google Scholar]
- Park, M.-Y.; Kwon, H.-J.; Sung, M.-K. Evaluation of Aloin and Aloe-Emodin as Anti-Inflammatory Agents in Aloe by Using Murine Macrophages. Biosci. Biotechnol. Biochem. 2009, 73, 828–832. [Google Scholar] [CrossRef]
- Woźniak, A.; Paduch, R. Aloe vera extract activity on human corneal cells. Pharm. Biol. 2012, 50, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, H.K.; Taylor, A.G. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes. 2005, 30, 400–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazarika, A. Influence of malathion pretreatment on the toxicity of anilofos in male rats: A biochemical interaction study. Toxicology 2003, 185, 1–8. [Google Scholar] [CrossRef]
- Werawatganon, D.; Linlawan, S.; Thanapirom, K.; Somanawat, K.; Klaikeaw, N.; Rerknimitr, R.; Siriviriyakul, P. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis. BMC Complement. Altern. Med. 2014, 14, 229. [Google Scholar] [CrossRef] [Green Version]
- Ross, D. Glutathione, free radicals and chemotherapeutic agents. Pharmacol. Ther. 1988, 37, 231–249. [Google Scholar] [CrossRef]
- Padma, V.V.; Sowmya, P.; Felix, T.A.; Baskaran, R.; Poornima, P. Protective effect of gallic acid against lindane induced toxicity in experimental rats. Food Chem. Toxicol. 2011, 49, 991–998. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992, 59, 1609–1623. [Google Scholar] [CrossRef]
- Eraslan, G.; Kanbur, M.; Silici, S. Effect of carbaryl on some biochemical changes in rats: The ameliorative effect of bee pollen. Food Chem. Toxicol. 2009, 47, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Ncibi, S.; Ben Othman, M.; Akacha, A.; Krifi, M.N.; Zourgui, L. Opuntia ficus indica extract protects against chlorpyrifos-induced damage on mice liver. Food Chem. Toxicol. 2008, 46, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Al-Shinnawy, M.S.; Hassan, A.R.; Ismail, D.A. The Potential Protective and Therapeutic Effects of Aloe vera Juice on Malathion Induced Hepatotoxicity in Rabbits. Egypt. J. Hosp. Med. 2014, 55, 146–158. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed.; Section 23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen; W.H. Freeman: New York, NY, USA, 2002. [Google Scholar]
- Işeri, S.; Ercan, F.; Gedik, N.; Yüksel, M.; Alican, I. Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology 2007, 230, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Handy, R.D.; Samei, H.A.-E.; Bayomy, M.; Mahran, A.; Abdeen, A.; El-Elaimy, E. Chronic diazinon exposure: Pathologies of spleen, thymus, blood cells, and lymph nodes are modulated by dietary protein or lipid in the mouse. Toxicology 2002, 172, 13–34. [Google Scholar] [CrossRef]
- Afolayan, A.; Wintola, O.A. Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacogn. Mag. 2011, 7, 325–333. [Google Scholar] [CrossRef] [Green Version]
P (g) | C | AE + C | Ctp | Mtn | Ctp + Mtn | AE + Ctp | AE + Mtn | AE + Ctp + Mtn |
---|---|---|---|---|---|---|---|---|
BWI | 132.20 ± 5.31 | 135.20 ± 3.38 | 131.80 ± 1.06 | 132.30 ± 1.86 | 135.7 ± 2.99 | 139.30 ± 2.06 | 130.20 ± 2.03 | 136.80 ± 2.46 |
BWF | 141.30 ± 4.74 | 141.60 ± 1.37 | 195.30 ± 3.83 | 214.00 ± 4.88 | 221.0 ± 2.86 | 144.78 ± 3.40 | 151.05 ± 2.79 | 145.18 ± 3.18 |
BW# | +3.44% | +2.36% | +24.08% | +30.87% | +31.42% | +1.96% | +8.00% | +3.06% |
HP | C | AE + C | Ctp | Mtn | Ctp + Mtn | AE + Ctp | AE + Mtn | AE + Ctp + Mtn |
---|---|---|---|---|---|---|---|---|
Total WBC Count (×103/mm3) | 5.233 ± 1.002 | 3.933 ± 1.155 ns | 7.767 ± 0.585 ns | 12.67 ± 1.021 *** | 11.33 ± 1.159 *** | 5.63 ± 1.514 ns | 4.4 ± 0.866 ns | 6.8 ± 0.964 ns |
LYM (%) | 54.93 ± 7.242 | 38.43 ± 20.6 ns | 75.77 ± 5.828 ns | 68.0 ± 9.001 ns | 59.4 ± 22.69 ns | 75.1 ± 8.163 ns | 44.13 ± 6.067 ns | 63.8 ± 7.9 ns |
MON (%) | 15.13 ± 2.743 ns | 15.8 ± 1.825 ns | 13.0 ± 4.244 ns | 12.83 ± 1.914 ns | 11.97 ± 5.514 ns | 11.10 ± 3.305 ns | 17.77 ± 2.715 ns | 13.17 ± 0.923 ns |
GRAN (%) | 29.93 ± 4.508 ns | 45.8 ± 18.83 ns | 11.23 ± 1.589 ns | 19.17 ± 7.821 ns | 28.63 ± 17.18 ns | 13.8 ± 4.859 ns | 38.1 ± 8.73 ns | 23.03 ± 8.822 ns |
MCH (mmg) | 19.63 ± 0.9292 | 17.53 ± 0.7767 ns | 17.73 ± 2.454 ns | 19.23 ± 2.914 ns | 19.33 ± 2.369 ns | 19.43 ± 0.7234 ns | 19.93 ± 0.3786 ns | 21.5 ± 0.8718 ns |
MCHC (mg/dL) | 40.5 ± 0.2646 | 41.13 ± 0.2062 ns | 37.47 ± 7.508 ns | 38.23 ± 6.525 ns | 38.23 ± 5.659 ns | 38.6 ± 2.858 ns | 41.63 ± 1.137 ns | 40.1 ± 0.2 ns |
HGB (g/dL) | 12.8 ± 0.1 ns | 12.33 ± 0.4933 ns | 13.73 ± 0.8083 ns | 10.03 ± 3.754 ns | 10.9 ± 2.707 ns | 11.83 ± 0.6807 ns | 13.5 ± 0.1 ns | 11.67 ± 1.242 ns |
MCV (µm3) | 48.47±1.935 | 42.6 ± 1.587 ns | 47.77 ± 3.493 ns | 50.47 ± 1.405 ns | 50.63 ± 1.358 ns | 50.37 ± 2.023 ns | 47.9 ± 2.17 ns | 53.53 ± 2.369 ns |
HCT (%) | 31.6 ± 0.2 | 29.97 ± 1.097 ns | 36.87 ± 5.054 ns | 25.83 ± 6.643 ns | 27.8 ± 2.787 ns | 30.87 ± 4.2 ns | 32.43 ± 0.8083 ns | 29.07 ± 2.974 ns |
Total RBC Count (×106/mm3) | 6.527 ± 0.2608 ns | 7.033 ± 0.1106 ns | 7.697 ± 0.4801 ns | 5.12 ± 1.309 ns | 5.5 ± 0.6872 ns | 6.11 ± 0.5747 ns | 6.78 ± 0.14 ns | 5.453 ± 0.8198 ns |
PLT(×103/mm3) | 399.7 ± 72.61 | 463.7 ± 54.17 ns | 584.7 ± 11.37 ns | 387.7 ± 119.3 ns | 339.7 ± 207.6 ns | 311.3 ± 115.8 ns | 248 ± 54.62 ns | 252.3 ± 40.5 ns |
MPV (µm3) | 5.967 ± 0.5508 | 5.467 ± 0.05773 ns | 5.367 ± 0.1155 ns | 5.5 ± 0.3 ns | 5.567 ± 0.05773 ns | 6.133 ± 0.5686 ns | 7.3 ± 0.8185 ns | 6.133 ± 0.6506 ns |
PCT (%) | 0.2377 ± 0.03968 ns | 0.253 ± 0.02696 ns | 0.314 ± 0.001732 ns | 0.2743 ± 0.04676 ns | 0.1503 ± 0.1032 ns | 0.195 ± 0.08479 ns | 0.1973 ± 0.05173 ns | 0.1697 ± 0.02566 ns |
P | C | AE + C | Ctp | Mtn | Ctp + Mtn | AE + Ctp | AE + Mtn | AE + Ctp + Mtn |
---|---|---|---|---|---|---|---|---|
MDA | 30.24 ± 2.00 | 31.37 ± 2.24 ns (+3.73%) | 38.55 ± 2.79 ** (+27.48%) | 43.10 ± 1.65 *** (+42.52%) | 37.90 ± 1.95 ** (+25.33%) | 31.64 ± 2.49 ns (+4.62%) | 30.23 ± 1.49 ns (−0.03%) | 33.46 ± 1.50 ns (+10.64%) |
GSH | 245.0 ± 17.7 | 258.0 ± 19.80 ns (+5.30%) | 190.0 ± 20.80 * (−22.44%) | 181.0 ± 15.10 * (−26.12%) | 187.00 ± 10.70 * (−23.67%) | 224.00 ± 18.10 ns (−8.57%) | 215.00 ± 17.80 ns (−12.24%) | 231.0 ± 17.60 ns (−5.71%) |
P | C | AE + C | Ctp | Mtn | Ctp + Mtn | AE + Ctp | AE + Mtn | AE + Ctp + Mtn |
---|---|---|---|---|---|---|---|---|
DH | - | - | ++ | +++ | +++ | - | + | + |
CNH | - | - | +++ | +++ | +++ | - | + | + |
H | - | - | +++ | ++ | ++ | + | + | + |
CCv | - | - | +++ | ++ | ++ | - | + | - |
VD | - | - | ++ | + | + | - | + | - |
DHt | - | - | +++ | +++ | +++ | + | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, V.K.; Kumar, A.; Pereira, M.d.L.; Siddiqi, N.J.; Sharma, B. Anti-Inflammatory and Antioxidative Potential of Aloe vera on the Cartap and Malathion Mediated Toxicity in Wistar Rats. Int. J. Environ. Res. Public Health 2020, 17, 5177. https://doi.org/10.3390/ijerph17145177
Gupta VK, Kumar A, Pereira MdL, Siddiqi NJ, Sharma B. Anti-Inflammatory and Antioxidative Potential of Aloe vera on the Cartap and Malathion Mediated Toxicity in Wistar Rats. International Journal of Environmental Research and Public Health. 2020; 17(14):5177. https://doi.org/10.3390/ijerph17145177
Chicago/Turabian StyleGupta, Vivek Kumar, Abhishek Kumar, Maria de Lourdes Pereira, Nikhat Jamal Siddiqi, and Bechan Sharma. 2020. "Anti-Inflammatory and Antioxidative Potential of Aloe vera on the Cartap and Malathion Mediated Toxicity in Wistar Rats" International Journal of Environmental Research and Public Health 17, no. 14: 5177. https://doi.org/10.3390/ijerph17145177
APA StyleGupta, V. K., Kumar, A., Pereira, M. d. L., Siddiqi, N. J., & Sharma, B. (2020). Anti-Inflammatory and Antioxidative Potential of Aloe vera on the Cartap and Malathion Mediated Toxicity in Wistar Rats. International Journal of Environmental Research and Public Health, 17(14), 5177. https://doi.org/10.3390/ijerph17145177