Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Method Validation
2.3. Statistical Analyses
3. Results
3.1. The Effect of Temperature and RH Variations in the Range Recommended by EN 14907:2005 (E) [23] on the Mass of Filter Blanks
3.2. Effects of Humidity and Temperature on the Presence of Water in Filters Used Popularly for PM Collection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Air Quality Guidelines Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; Summary of Risk Assessment; Occupational and Environmental Health Team, WHO Press: Geneva, Switzerland, 2005. [Google Scholar]
- US EPA. Particulate Matter PM2.5 Speciation Guidance Document Final Draft; U.S. Environmental Protection Agency Monitoring and Quality Assurance Group Emissions, Monitoring, and Analysis Division Office of Air Quality Planning and Standards Research: Triangle Park, NC, USA, 7 October 1999.
- BS-EN 12341:2014 Ambient Air–Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter; British Standard Institution: London, UK, 2014; 55p.
- Health Impacts of Ultrafine Particles Desktop Literature Review and Analysis; Australian Government, Environment Standards Branch, Department of the Environment and Heritage: Commonwealth of Australia; 2004; ISBN 0642550557. Available online: https://www.environment.gov.au/ (accessed on 17 July 2020).
- Ohlwein, S.; Kappeler, R.; Joss, M.K.; Kunzli, N.; Hoffman, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C. Measurement methods to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manag. 1995, 45, 320–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, J.C.; Lowenthal, D.H.; Antony-Chen, L.-W.; Wang, X.; Watson, J.G. Mass reconstruction methods for PM2.5: A review. Air Qual. Atmos. Health 2015, 8, 243–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bureau Veritas UK Ltd. Analysis of Trends in Gravimetric Particulate Mass Measurements in UK, January 2009; Bureau Veritas UK, Department for the Environment, Food and Rural Affairs (Defra). Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/0806161031_080528_Trends_in_Gravimetric_PM_Measurements_in_the_UK.pdf (accessed on 10 April 2020).
- Canepari, S.; Farao, C.; Marconi, E.; Giovannelli, C.; Perrino, C. Qualitative and quantitative determination of water in airborne particulate matter. Atmos. Chem. Phys. 2013, 13, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Canepari, S.; Simenetti, G.; Perrino, C. Mass size distribution of particle-bound water. Atmos. Environ. 2017, 165, 46–56. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics from air Pollution to Climate Change; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Brown, A.S.; Yardley, R.E.; Quincey, P.G.; Butterfield, D.M. Studies of the effect of humidity and other factors on some different filter materials used for gravimetric measurement of ambient particulate matter. Atmos. Environ. 2006, 40, 4670–4678. [Google Scholar] [CrossRef]
- Su, W.J.; Wang, L.M.; Weng, S.F.; Wang, H.J.; Du, L.L.; Liu, Y.W.; Yang, L.; Chen, W.H. Effect of humidity and temperature on filter and gravimetric measurement of ambient particulate matter in a balance room. Chin. J. Ind. Hyg. Occup. Dis. 2008, 26, 198–202. [Google Scholar]
- Watson, J.G.; Tropp, R.J.; Kohl, S.D.; Wang, X.; Chow, J.C. Filter Processing and Gravimetric Analysis for Suspended Particulate Matter Samples. Aerosol Sci. Eng. 2017, 1, 93–105. [Google Scholar] [CrossRef]
- Wittmaack, K.; Keck, L. Thermodesorption of aerosol matter on multiple filters of different materials for a more detailed evaluation of sampling artifacts. Atmos. Environ. 2004, 38, 5205–5252. [Google Scholar] [CrossRef]
- Perrino, C.; Canepari, S.; Catrambone, M. Comparing the Performance of Teflon and Quartz Membrane Filters Collecting Atmospheric PM: Influence of Atmospheric Water. Aerosol Air Qual. Res. 2013, 13, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Bertram, A.K.; Martin, S.T.; Hanna, S.J.; Smith, M.L.; Bodsworth, A.; Chen, Q.; Kuwata, M.; Liu, A.; You, Y.; Zorn, S.R. Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos. Chem. Phys. 2011, 11, 10995–11006. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.D.; Lance, S.; Gordon, J.A.; Ushijima, S.B.; Tolbert, M.A. Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proc. Natl. Acad. Sci. USA 2015, 112, 15815–15820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. Technical Memorandum. 2012. Available online: https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/Round_Robin_2011_2.pdf (accessed on 10 April 2020).
- US EPA. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. In Compendium Method IO-3.1-Selection, Preparation and Extraction of Filter Material; EPA/625/R-96/010a; EPA Office of Research and Development: Cincinnati, OH, USA, 1999. [Google Scholar]
- DeCaro, C.A.; Aichert, A. Coulometric Karl Fischer Titration; Mettler: Toledo, Spain, 2017. [Google Scholar]
- EN 12341:1999. Air Quality. Determination of the PM10 Fraction of Suspended Particulate Matter; Reference Method and Field Test Procedure to Demonstrate Reference Equivalence of Measurement Methods (Replaced by BS EN 12341:2014 Ambient air; Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter; British Standards Institution: London, UK, 1999.
- EN 14907:2005, Ambient Air Quality-Standard Gravimetric Measurement Method for the Determination of the PM2.5 Mass Fraction of Suspended Particulate Matter; BSI: London, UK, 2005.
- Perrino, C.; Catrambone, M.; Farao, C.; Canepari, S. Assessing the contribution of water to the mass closure of PM10. Atmos. Environ. 2016, 140, 555–564. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Gardner, H.D.; Niu, J. Buoyancy-Corrected Gravimetric Analysis of Lightly Loaded Filters. J. Air Waste Manag. Assoc. 2010, 60, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- US EPA (1997). Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere. Code of Federal Regulations, Appendix L, Part 50, Title 40; Fed. Regist; US Government Information: Washington, DC, USA, 1997; Volume 62, pp. 38714–38752.
- US EPA (2016). Quality Assurance Guidance Document 2.12, Monitoring PM2.5 in Ambient Air Using Designated Reference or Class I Equivalent Methods; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards Air Quality Assessment Division RTP: Triangle Park, NC, USA, 2016.
- Hänninen, O.O.; Koistinen, K.J.; Kousa, A.; Keski-Karhu, J.; Jantunen, M.J. Quantitative analysis of environmental factors in differential weighing of blank Teflon filters. J. Air. Waste Manag. Assoc. 2002, 52, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Peckhaus, A.; Grass, S.; Treuel, L.; Zellner, R. Deliquescence and Efflorescence Behavior of Ternary Inorganic/Organic/Water Aerosol Particles. J. Phys. Chem. A 2012, 116, 6199–6210. [Google Scholar] [CrossRef] [PubMed]
- Lipfert, F.W. Filter Artifacts Associated with Particulate Measurements: Recent Evidence and Effects on Statistical Relationships. Atmos. Environ. 1994, 28, 3233–3249. [Google Scholar] [CrossRef]
- Hering, S.; Cass, G. The Magnitude of Bias in the Measurement of PM2.5 Arising from Volatilization of Particulate Nitrate from Teflon Filters. J. Air. Waste Manag. Assoc. 1999, 49, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Moropoulou, A.; Zervos, S. The immediate impact of aqueous treatments on the strength of paper. Restaurator 2003, 24, 160–177. [Google Scholar] [CrossRef]
Variable | N | Mean | SD | Median | Min | Max | Lower Quartile | Upper Quartile | Perc. 25% | Perc. 75% |
---|---|---|---|---|---|---|---|---|---|---|
Water in Q | 72 | 2608.6 | 588.2 | 2727.8 | 1013.7 | 3401.6 | 2389.4 | 3045.5 | 2389.4 | 3045.5 |
Water in G | 78 | 401.2 | 99.1 | 417.2 | 111.7 | 556.2 | 392.4 | 449.0 | 392.4 | 449.0 |
Water in PTFE | 79 | 82.8 | 33.6 | 81.4 | 20.8 | 188.2 | 53.8 | 102.8 | 53.8 | 102.8 |
Water in N | 80 | 1474.8 | 435.0 | 1582.7 | 509.1 | 2328.0 | 1129.9 | 1824.3 | 1129.9 | 1824.3 |
Water in Quartz Filters [µg] | |||||
Effect | df | SS | MS | F | p |
Intercept | 1 | 445,699,653.0 | 445,699,653.0 | 1,543,273.0 | 0.0000 |
RH [%] | 7 | 19,793,321.0 | 2,827,617.0 | 97.91 | 0.0000 |
T [°C] | 1 | 931.0 | 931.0 | 0.03 | 0.8581 |
RH [%] · T [°C] | 7 | 441,994.0 | 6,142.0 | 2.19 | 0.0498 |
Residual | 54 | 1,559,529.0 | 28,880.0 | ||
Total | 69 | 21,937,020.0 | |||
Water in Glass Filters [µg] | |||||
Effect | df | SS | MS | F | p |
Intercept | 1 | 10,737,087.0 | 10,737,087.0 | 50,201.18 | 0.0000 |
RH [%] | 7 | 524,077.0 | 74,868.0 | 350.05 | 0.0000 |
T [°C] | 1 | 5,363.0 | 5,363.0 | 25.08 | 0.0000 |
RH [%] · T [°C] | 7 | 30,828.0 | 4,404.0 | 20.59 | 0.0000 |
Residual | 54 | 11,550.0 | 214.0 | ||
Total | 69 | 574,048.0 | |||
Water in PTFE Filters [µg] | |||||
Effect | df | SS | MS | F | p |
Intercept | 462,169.5 | 462,169.5 | 6,992.602 | 0.0000 | |
RH [%] | 7 | 59,483.8 | 8,497.7 | 128.570 | 0.0000 |
T [°C] | 1 | 2,369.9 | 2,369.9 | 35.857 | 0.0000 |
RH [%] · T [°C] | 7 | 13,359.3 | 1,908.5 | 28.875 | 0.0000 |
Residual | 54 | 3,569.1 | 66.1 | ||
Total | 69 | 82,404.7 | |||
Water in Nylon Filters [µg] | |||||
Effect | df | SS | MS | F | p |
Intercept | 1 | 149,486,001.0 | 149,486,001.0 | 5,759.898 | 0.0000 |
RH [%] | 7 | 9,196,900.0 | 1,313,843.0 | 50.624 | 0.0000 |
T [°C] | 1 | 147,942.0 | 147,942.0 | 5.700 | 0.0204 |
RH [%] · T [°C] | 7 | 788,726.0 | 112,675.0 | 4.342 | 0.0007 |
Residual | 54 | 1,401,456.0 | 25,953.0 | ||
Total | 69 | 11,582,623.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widziewicz-Rzońca, K.; Tytła, M. Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. Int. J. Environ. Res. Public Health 2020, 17, 5180. https://doi.org/10.3390/ijerph17145180
Widziewicz-Rzońca K, Tytła M. Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. International Journal of Environmental Research and Public Health. 2020; 17(14):5180. https://doi.org/10.3390/ijerph17145180
Chicago/Turabian StyleWidziewicz-Rzońca, Kamila, and Malwina Tytła. 2020. "Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions" International Journal of Environmental Research and Public Health 17, no. 14: 5180. https://doi.org/10.3390/ijerph17145180
APA StyleWidziewicz-Rzońca, K., & Tytła, M. (2020). Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. International Journal of Environmental Research and Public Health, 17(14), 5180. https://doi.org/10.3390/ijerph17145180