Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Data for Downscaling Climate Change Projections
2.2.2. Data for Calculating Drought Index
2.2.3. Data for Estimating the Econometric Model
2.3. Methods
2.3.1. Step 1. Projecting Future Climatic Change Using Statistical Downscaling Model (SDSM 5.3)
Downscaling Daily Temperature and Precipitation Time Series
Calibration and Validation of SDSM
2.3.2. Step 2. Calculating the Reconnaissance Drought Index (RDI)
2.3.3. Step 3. Estimation Technique and Model Specification
3. Results and Discussion
3.1. Statistical Downscaling Model
3.1.1. Selection of Predictors
3.1.2. SDSM Performance
3.1.3. Projection of Precipitation and Temperature
3.2. The Reconnaissance Drought Index (RDI)
3.3. Pre-estimation Specification Tests
3.4. Impact of Climate Change and Drought on Average Yield and Yield Variability of Dryland Wheat (Linear Model)
3.5. Impact of Climate Change and Drought on Average Yield and Yield Variability of Dryland Wheat (Non-linear Model)
3.6. Elasticities of Climatic Variables
3.7. Predicting the Mean Yield and Yield Variability in the Presence of Future Climatic Change
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, R.; Singh, G. Traditional agriculture: A climate-smart approach for sustainable food production. Energy Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef]
- Radmehr, R.; Shayanmehr, S. The Determinants of Sustainable Irrigation water Prces in Iran. Bulg. J. Agric. Sci. 2018, 24, 893–919. [Google Scholar]
- Azad, N.; Behmanesh, J.; Rezaverdinejad, V.; Tayfeh Rezaie, H. Climate change impacts modeling on winter wheat yield under full and deficit irrigation in Myandoab-Iran. Arch. Agron. Soil Sci. 2018, 64, 731–746. [Google Scholar] [CrossRef]
- Kheiri, M.; Soufizadeh, S.; Ghaffari, A.; AghaAlikhani, M.; Eskandari, A. Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Clim. Chang. 2017, 141, 703–717. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ghalhari, G.F.; Baaghideh, M. Impacts of climate change on apple tree cultivation areas in Iran. Clim. Chang. 2019, 153, 91–103. [Google Scholar] [CrossRef]
- Wang, H.; Ge, Q.; Dai, J.; Tao, Z. Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. Int. J. Biometeorol. 2015, 59, 961–969. [Google Scholar] [CrossRef]
- Team, C.W.; Pachauri, R.K.; Meyer, L. IPCC, 2014: Climate change 2014: Synthesis report. Contribution of Working Groups I. In II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Biglari, T.; Maleksaeidi, H.; Eskandari, F.; Jalali, M. Livestock insurance as a mechanism for household resilience of livestock herders to climate change: Evidence from Iran. Land Use policy 2019, 87, 104043. [Google Scholar] [CrossRef]
- Cabas, J.; Weersink, A.; Olale, E. Crop yield response to economic, site and climatic variables. Clim. Chang. 2010, 101, 599–616. [Google Scholar] [CrossRef]
- Özdoğan, M. Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agric. Ecosyst. Environ. 2011, 141, 1–12. [Google Scholar] [CrossRef]
- Sarker, M.A.R.; Alam, K.; Gow, J. Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. Renew. Agric. Food Syst. 2019, 34, 304–312. [Google Scholar] [CrossRef]
- Sinnarong, N.; Chen, C.-C.; McCarl, B.; Tran, B.-L. Estimating the potential effects of climate change on rice production in Thailand. Paddy Water Environ. 2019, 17, 761–769. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Rosenberg, N.J.; Brown, R.A.; Thomson, A.M. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States: Part II. Regional agricultural production in 2030 and 2095. Agric. For. Meteorol. 2003, 117, 97–122. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Liu, W.-Z.; Li, Z.; Chen, J. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios. Agric. For. Meteorol. 2011, 151, 1297–1304. [Google Scholar] [CrossRef]
- Gupta, R.; Mishra, A. Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India. Agric. Syst. 2019, 173, 1–11. [Google Scholar] [CrossRef]
- De-Graft, A.H.; Kweku, K.C. The effects of climatic variables and crop area on maize yield and variability in Ghana. Russ. J. Agric. Socio Econ. Sci. 2012, 10, 10–13. [Google Scholar]
- Gohari, A.; Eslamian, S.; Abedi-Koupaei, J.; Bavani, A.M.; Wang, D.; Madani, K. Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Sci. Total Environ. 2013, 442, 405–419. [Google Scholar] [CrossRef]
- Ye, L.; Xiong, W.; Li, Z.; Yang, P.; Wu, W.; Yang, G.; Fu, Y.; Zou, J.; Chen, Z.; Van Ranst, E. Climate change impact on China food security in 2050. Agron. Sustain. Dev. 2013, 33, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R.; Soori, H.; Alipour, A.; Bitaraf, E.; Khodakarim, S. The impact of ambient temperature on acute myocardial infarction admissions in Tehran, Iran. J. Therm. Biol. 2018, 73, 24–31. [Google Scholar] [CrossRef]
- Baghestani, M.A.; Zand, E.; Soufizadeh, S.; Bagherani, N.; Deihimfard, R. Weed control and wheat (Triticum aestivum L.) yield under application of 2, 4-D plus carfentrazone-ethyl and florasulam plus flumetsulam: Evaluation of the efficacy. Crop Prot. 2007, 26, 1759–1764. [Google Scholar] [CrossRef]
- MAJ, Ministry of Agriculture Jihad. 2017. Available online: https://www.maj.ir/Index.aspx?page (accessed on 21 July 2020).
- Paymard, P.; Yaghoubi, F.; Nouri, M.; Bannayan, M. Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor. Appl. Climatol. 2019, 138, 1361–1373. [Google Scholar] [CrossRef]
- Radmehr, R.; Ghorbani, M.; Kulshreshtha, S. Selecting strategic policy for irrigation water management (Case Study: Qazvin Plain, Iran). J. Agric. Sci. Technol. 2020, 22, 579–593. [Google Scholar]
- Eyshi Rezaie, E.; Bannayan, M. Rainfed wheat yields under climate change in northeastern Iran. Meteorol. Appl. 2012, 19, 346–354. [Google Scholar] [CrossRef]
- Bannayan, M.; Lotfabadi, S.S.; Sanjani, S.; Mohamadian, A.; Aghaalikhani, M. Effects of precipitation and temperature on crop production variability in northeast Iran. Int. J. Biometeorol. 2011, 55, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Bannayan, M.; Rezaei, E.E. Future production of rainfed wheat in Iran (Khorasan province): Climate change scenario analysis. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 211–227. [Google Scholar] [CrossRef]
- Just, R.E.; Pope, R.D. Production function estimation and related risk considerations. Am. J. Agric. Econ. 1979, 61, 276–284. [Google Scholar] [CrossRef]
- UNEP. World Atlas of Desertification, 2nd ed.; United Nations Environment Programme: London, UK, 1997. [Google Scholar]
- Nouri, M.; Homaee, M.; Bannayan, M. Climate variability impacts on rainfed cereal yields in west and northwest Iran. Int. J. Biometeorol. 2017, 61, 1571–1583. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Den Elzen, M.G.; Lucas, P.L.; Eickhout, B.; Strengers, B.J.; Van Ruijven, B.; Wonink, S.; Van Houdt, R. Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Clim. Chang. 2007, 81, 119–159. [Google Scholar] [CrossRef] [Green Version]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-Lamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of limiting CO2 concentrations for land use and energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Zou, H.; Liu, D.; Guo, S.; Xiong, L.; Liu, P.; Yin, J.; Zeng, Y.; Zhang, J.; Shen, Y. Quantitative assessment of adaptive measures on optimal water resources allocation by using reliability, resilience, vulnerability indicators. Stoch. Environ. Res. Risk Assess. 2020, 34, 103–119. [Google Scholar] [CrossRef]
- Adham, A.; Wesseling, J.G.; Abed, R.; Riksen, M.; Ouessar, M.; Ritsema, C.J. Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agric. Water Manag. 2019, 221, 131–140. [Google Scholar] [CrossRef]
- Armah, F.A.; Odoi, J.O.; Yengoh, G.T.; Obiri, S.; Yawson, D.O.; Afrifa, E.K. Food security and climate change in drought-sensitive savanna zones of Ghana. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 291–306. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178, 521–534. [Google Scholar] [CrossRef]
- Sada, R.; Schmalz, B.; Kiesel, J.; Fohrer, N. Projected changes in climate and hydrological regimes of the Western Siberian lowlands. Environ. Earth Sci. 2019, 78, 56. [Google Scholar] [CrossRef]
- Tigkas, D.; Tsakiris, G. Early estimation of drought impacts on rainfed wheat yield in Mediterranean climate. Environ. Process. 2015, 2, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, G.; Tigkas, D. Drought risk in agriculture in Mediterranean regions. Case study: Eastern Crete. In Methods and Tools for Drought Analysis and Management; Springer: Berlin/Heidelberg, Germany, 2007; pp. 399–414. [Google Scholar]
- Tsakiris, G.; Vangelis, H.; Tigkas, D. Drought impacts on yield potential in rainfed agriculture. In Proceedings of the 2nd International Conference on Drought Management ‘Economics of Drought and Drought Preparedness in a Climate Change Context, Istanbul, Turqiye, 4–6 March 2010; pp. 4–6. [Google Scholar]
- Tigkas, D. Drought characterisation and monitoring in regions of Greece. Eur. Water 2008, 23, 29–39. [Google Scholar]
- Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal variations of drought in the Yunnan-Guizhou Plateau, southwest China, during 1960–2013 and their association with large-scale circulations and historical records. Ecol. Indic. 2020, 112, 106041. [Google Scholar] [CrossRef]
- Khan, A.; Guttormsen, A.; Roll, K.H. Production risk of pangas (Pangasius hypophthalmus) fish farming. Aquac. Econ. Manag. 2018, 22, 192–208. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Tsionas, E.G. Estimation of production risk and risk preference function: A nonparametric approach. Ann. Oper. Res. 2010, 176, 369–378. [Google Scholar] [CrossRef]
- Lien, G.; Kumbhakar, S.C.; Hardaker, J.B. Accounting for risk in productivity analysis: An application to Norwegian dairy farming. J. Product. Anal. 2017, 47, 247–257. [Google Scholar] [CrossRef]
- Asche, F.; Cojocaru, A.L.; Pincinato, R.B.; Roll, K.H. Production risk in the Norwegian Fisheries. Environ. Resour. Econ. 2020, 75, 137–149. [Google Scholar] [CrossRef]
- Isik, M.; Khanna, M. Stochastic technology, risk preferences, and adoption of site-specific technologies. Am. J. Agric. Econ. 2003, 85, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Ogundari, K.; Akinbogun, O.O. Modeling technical efficiency with production risk: A study of fish farms in Nigeria. Marine Resour. Econ. 2010, 25, 295–308. [Google Scholar] [CrossRef]
- Chen, C.-C.; McCarl, B.A.; Schimmelpfennig, D.E. Yield variability as influenced by climate: A statistical investigation. Clim. Chang. 2004, 66, 239–261. [Google Scholar] [CrossRef] [Green Version]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econom. J. Econom. Soc. 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Shankar, B.; Bennett, R.; Morse, S. Production risk, pesticide use and GM crop technology in South Africa. Appl. Econ. 2008, 40, 2489–2500. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.A.R.; Alam, K.; Gow, J. Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data. Econ. Anal. Policy 2014, 44, 405–416. [Google Scholar] [CrossRef]
- Arshad, M.; Amjath-Babu, T.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kächele, H.; Müller, K. Climate variability and yield risk in South Asia’s rice–wheat systems: Emerging evidence from Pakistan. Paddy Water Environ. 2017, 15, 249–261. [Google Scholar] [CrossRef]
- Mahmood, N.; Arshad, M.; Kächele, H.; Ma, H.; Ullah, A.; Müller, K. Wheat yield response to input and socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Sci. Total Environ. 2019, 688, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.K. The income–temperature relationship in a cross-section of countries and its implications for predicting the effects of global warming. Environ. Resour. Econ. 2009, 44, 475–493. [Google Scholar] [CrossRef]
- Isik, M.; Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 2006, 38, 835–844. [Google Scholar] [CrossRef]
- Harvey, A.C. Estimating regression models with multiplicative heteroscedasticity. Econom. J. Econom. Soc. 1976, 44, 461–465. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Gupta, R.; Somanathan, E.; Dey, S. Global warming and local air pollution have reduced wheat yields in India. Clim. Chang. 2017, 140, 593–604. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Asner, G.P.; Matson, P.A.; Naylor, R.L.; Falcon, W.P. Analysis of wheat yield and climatic trends in Mexico. Field Crops Res. 2005, 94, 250–256. [Google Scholar] [CrossRef]
- Poudel, M.P.; Chen, S.-E.; Huang, W.-C. Climate influence on rice, maize and wheat yields and yield variability in Nepal. J. Agric. Sci. Technol. B 2014, 4, 38. [Google Scholar]
Synoptic Stations | Lat (°N) | Lon (°E) | Alt (m) | Max (°C) | Min (°C) | Pre (mm) |
---|---|---|---|---|---|---|
East Azerbaijan Province | ||||||
Ahar | 38.43 | 47.07 | 1391 | 16.7 | 5.4 | 288 |
Jolfa | 38.93 | 45.60 | 736 | 21.1 | 10.5 | 217 |
Maragheh | 37.35 | 46.15 | 1344 | 19.1 | 8.0 | 283 |
Mianeh | 37.45 | 47.70 | 1110 | 20.8 | 7.5 | 274 |
Sarab | 37.93 | 47.53 | 1682 | 16.2 | 1.4 | 250 |
Tabriz | 38.12 | 46.24 | 1361 | 19.0 | 7.7 | 246 |
West Azerbaijan Province | ||||||
Khoy | 38.56 | 45.00 | 1103 | 19.2 | 6.1 | 265 |
Mahabad | 36.75 | 45.72 | 1351 | 19.5 | 7.0 | 402 |
Maku | 39.38 | 44.39 | 1411 | 15.9 | 5.6 | 312 |
Piranshahr | 36.70 | 45.15 | 1443 | 18.5 | 7.0 | 666 |
Takab | 36.40 | 47.10 | 1817 | 16.6 | 2.7 | 316 |
Urmia | 37.66 | 45.06 | 1328 | 18.1 | 5.2 | 310 |
Station Name | Climatic Factors | MAE | RMSE | NSE |
---|---|---|---|---|
Tabriz station | Maximum temperature | 0.95 | 1.35 | 0.98 |
(East Azerbaijan province) | Minimum temperature | 1.15 | 1.40 | 0.97 |
Precipitation | 0.12 | 0.18 | 0.86 | |
Urmia station | Maximum temperature | 0.50 | 0.71 | 0.99 |
(West Azerbaijan province) | Minimum temperature | 0.63 | 0.87 | 0.98 |
Precipitation | 0.20 | 0.30 | 0.80 |
Synoptic Station | RCPs | Change in Climate Variables (%) | ||
---|---|---|---|---|
Maximum Temperature | Minimum Temperature | Precipitation | ||
Tabriz station | 2.6 | 2.26 | 1.60 | 7.75 |
(East Azerbaijan province) | 4.5 | 2.61 | 1.62 | 1.10 |
8.5 | 2.32 | 2.48 | 13.42 | |
Urmia station | 2.6 | 3.02 | 4.39 | 1.74 |
(West Azerbaijan province) | 4.5 | 3.94 | 11.58 | 8.02 |
8.5 | 3.84 | 11.26 | 2.97 |
Variables | Fisher-ADF | LLC | Breitung |
---|---|---|---|
Yield (tons/ha) | 109.872 *** | −3.397 *** | −7.226 *** |
Area (ha) | 93.649 *** | −4.480 *** | −3.953 *** |
Maximum temperature (°C) | 116.463 *** | −5.200 *** | −8.807 *** |
Minimum temperature (°C) | 119.961 *** | −6.836 *** | −6.481 *** |
Precipitation (mm) | 133.793 *** | −4.704 *** | −8.177 *** |
Heteroscedasticity Tests | Fixed Effects Versus Random Effects | |
---|---|---|
White’s Test | Breusch-Pagan Test | Hausman Test |
167.74 *** | 61.59 *** | 17.53 *** |
Variables | Mean Yield | Yield Variability | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
Constant | −4.240 ** | 2.021 | −10.290 *** | 2.704 |
Trend | 0.015 ** | 0.007 | 0.037 ** | 0.018 |
Area | −0.000004 ** | 0.000002 | −0.020 ** | 0.010 |
Drought | −0.152 ** | 0.065 | 0.036 | 0.363 |
Maximum temperature | 0.100 *** | 0.029 | 0.532 *** | 0.210 |
Minimum temperature | −0.112 *** | 0.040 | −0.562 *** | 0.237 |
Precipitation | 0.015 *** | 0.002 | 0.021 | 0.019 |
Model statistics | ||||
F-test | 68.38 | 3.625 | ||
Prob > F | 0.000 | 0.001 | ||
R-squared | 0.715 | 0.113 | ||
Adj R-squared | 0.6988 | 0.062 | ||
Log-likelihood | −616.556 | −658.943 | ||
AIC | 1247.113 | 1331.888 | ||
BIC | 1273.315 | 1358.089 | ||
No. of obs. | 312 | 312 |
Variables | Mean Yield | Yield Variability | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
Constant | −0.341 | 0.662 | −57.303 ** | 25.034 |
Trend | 0.002 | 0.002 | 0.012 | 0.022 |
Area | −0.000001 | 0.000001 | −0.000008 | 0.00001 |
Drought | −0.103 ** | 0.050 | 0.202 | 0.464 |
Maximum temperature | 0.210 *** | 0.047 | 7.863 ** | 3.594 |
Minimum temperature | −0.417 *** | 0.112 | −5.582 * | 3.061 |
Precipitation | 0.008 | 0.015 | 0.237 | 0.243 |
Maximum temperature, squared | −0.012 *** | 0.003 | −0.289 ** | 0.129 |
Minimum temperature, squared | −0.017 * | 0.009 | −0.123 | 0.115 |
Precipitation, squared | −0.0001 *** | 0.00004 | −0.0005 | 0.0005 |
Maximum temperature * Minimum temperature | 0.034 *** | 0.010 | 0.389 * | 0.222 |
Maximum temperature * Precipitation | 0.0005 | 0.001 | −0.014 | 0.017 |
Minimum temperature * Precipitation | 0.0008 | 0.001 | 0.014 | 0.015 |
Model statistics | ||||
F-test | 44.68 | 0.99 | ||
Prob > F | 0.000 | 0.459 | ||
R-squared | 0.738 | 0.039 | ||
Adj R-squared | 0.717 | −0.037 | ||
Log-likelihood | −621.255 | −701.877 | ||
AIC | 1268.511 | 1429.755 | ||
BIC | 1317.170 | 1478.414 | ||
No. of obs. | 312 | 312 |
Functional Form | Climate Variables | Average Yield | Yield Variability |
---|---|---|---|
Linear | Maximum temperature | 1.581 | 3.876 |
Minimum temperature | −0.346 | −0.885 | |
Precipitation | 0.366 | 0.997 | |
Non-linear | Maximum temperature | −0.328 | 3.032 |
Minimum temperature | 0.001 | −0.671 | |
Precipitation | 0.396 | 1.421 |
Provinces | Functional Form | RCP | Average Yield | Yield Variability |
---|---|---|---|---|
East Azerbaijan province | Linear | 2.6 | 5.81 | 15.00 |
4.5 | 3.97 | 9.79 | ||
8.5 | 7.65 | 20.09 | ||
Non-linear | 2.6 | 2.30 | 16.68 | |
4.5 | −0.40 | 8.38 | ||
8.5 | 4.49 | 24.29 | ||
West Azerbaijan province | Linear | 2.6 | 3.90 | 9.56 |
4.5 | 5.17 | 13.02 | ||
8.5 | 3.30 | 7.91 | ||
Non-linear | 2.6 | −0.28 | 8.66 | |
4.5 | 1.87 | 15.48 | ||
8.5 | −0.05 | 8.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shayanmehr, S.; Rastegari Henneberry, S.; Sabouhi Sabouni, M.; Shahnoushi Foroushani, N. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach. Int. J. Environ. Res. Public Health 2020, 17, 5264. https://doi.org/10.3390/ijerph17145264
Shayanmehr S, Rastegari Henneberry S, Sabouhi Sabouni M, Shahnoushi Foroushani N. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach. International Journal of Environmental Research and Public Health. 2020; 17(14):5264. https://doi.org/10.3390/ijerph17145264
Chicago/Turabian StyleShayanmehr, Samira, Shida Rastegari Henneberry, Mahmood Sabouhi Sabouni, and Naser Shahnoushi Foroushani. 2020. "Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach" International Journal of Environmental Research and Public Health 17, no. 14: 5264. https://doi.org/10.3390/ijerph17145264
APA StyleShayanmehr, S., Rastegari Henneberry, S., Sabouhi Sabouni, M., & Shahnoushi Foroushani, N. (2020). Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach. International Journal of Environmental Research and Public Health, 17(14), 5264. https://doi.org/10.3390/ijerph17145264