Relationship between Unilateral Posterior Crossbite and Human Static Body Posture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention and Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farella, M.; Michelotti, A.; Iodice, G.; Milani, S.; Martina, R. Unilateral posterior crossbite is not associated with TMJ clicking in young adolescents. J. Dent. Res. 2007, 86, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, J.A.; Martín, C.; Palma, J.C. Effect of unilateral posterior crossbite on the electromyographic activity of human masticatory muscles. Am. J. Orthod Dentofacial. Orthop. 2000, 118, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Kilic, N.; Kiki, A.; Oktay, H. Condylar asymmetry in unilateral posterior crossbite patients. Am. J. Orthod. Dentofacial. Orthop. 2008, 133, 382–387. [Google Scholar] [CrossRef]
- Nie, Q.; Kanno, Z.; Xu, T.; Lin, J.; Soma, K. Clinical study of frontal chewing patterns in various crossbite malocclusions. Am. J. Orthod. Dentofacial. Orthop. 2010, 138, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, A.; Rongo, R.; Valentino, R.; D’Anto, V.; Bucci, R.; Danzi, G.; Cioffi, I. Evaluation of masticatory muscle activity in patients with unilateral posterior crossbite before and after rapid maxillary expansion. Eur. J. Orthod. 2019, 23, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Alarcón, J.A.; Palma, J.C. Kinesiographic study of the mandible in young patients with unilateral posterior crossbite. Am. J. Orthod. Dentofacial. Orthop. 2000, 118, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gomis, J.; Lujan-Climent, M.; Palau, S.; Bizar, J.; Salsench, J.; Peraire, M. Relationship between chewing side preference and handedness and lateral asymmetry of peripheral factors. Arch. Oral. Biol. 2009, 54, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Ben-Bassat, Y.; Yitschaky, M.; Kaplan, L.; Brin, I. Occlusal patterns in patients with idiopathic scoliosis. Am. J. Orthod. Dentofacial. Orthop. 2006, 130, 629–633. [Google Scholar] [CrossRef]
- Julià-Sánchez, S.; Álvarez-Herms, J.; Gatterer, H.; Burtscher, M.; Pagès, T.; Viscor, G. Dental Occlusion Influences the Standing Balance on an Unstable Platform. Motor Control. 2015, 19, 341–354. [Google Scholar] [CrossRef]
- Michelotti, A.; Buonocore, G.; Farella, M.; Pellegrino, G.; Piergentili, C.; Altobelli, S.; Martina, R. Postural stability and unilateral posterior crossbite: Is there a relationship? Neurosci. Lett. 2006, 392, 140–144. [Google Scholar] [CrossRef]
- Perinetti, G.; Contardo, L.; Silvestrini-Biavati, A.; Perdoni, L.; Castaldo, A. Dental malocclusion and body posture in young subjects: A multiple regression study. Clin. (Sao Paulo) 2010, 65, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharnweber, B.; Adjami, F.; Schuster, G.; Koop, S.; Natrup, J.; Erbe, C.; Ohlendorf, D. Influence of dental occlusion on postural control and plantar pressure distribution. Cranio 2017, 35, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Baldini, A.; Nota, A.; Tripodi, D.; Longoni, S.; Cozza, P. Evaluation of the correlation between dental occlusion and posture using a force platform. Clin. (Sao Paulo) 2013, 68, 45–49. [Google Scholar] [CrossRef]
- Perinetti, G.; Contardo, L. Posturography as a diagnostic aid in dentistry: A systematic review. J. Oral. Rehabil. 2009, 36, 922–936. [Google Scholar] [CrossRef]
- Manfredini, D.; Castroflorio, T.; Perinetti, G.; Guarda-Nardini, L. Dental occlusion, body posture and temporomandibular disorders: Where we are now and where we are heading for. J. Oral. Rehabil. 2012, 39, 463–471. [Google Scholar] [CrossRef]
- Dimitriadis, Z.; Podogyros, G.; Polyviou, D.; Tasopoulos, I.; Passa, K. The Reliability of Lateral Photography for the Assessment of the Forward Head Posture Through Four Different Angle-Based Analysis Methods in Healthy Individuals. Musculoskelet. Care 2015, 13, 179–186. [Google Scholar] [CrossRef]
- Ruivo, R.M.; Pezarat-Correia, P.; Carita, A.I. Intrarater and interrater reliability of photographic measurement of upper-body standing posture of adolescents. J. Manip. Physiol. Ther. 2015, 38, 74–80. [Google Scholar] [CrossRef]
- Ferreira, E.A.; Duarte, M.; Maldonado, E.P.; Bersanetti., A.A.; Marques, A.P. Quantitative assessment of postural alignment in young adults based on photographs of anterior, posterior, and lateral views. J. Manip. Physiol. Ther. 2011, 34, 371–380. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Mehta, N.R.; Abdallah, E.F.; Forgione, A.; Hirayama, H.; Kawasaki, T.; Yokoyama, A. Examination of the relationship between mandibular position and body posture. Cranio 2007, 25, 237–249. [Google Scholar] [CrossRef]
- Ohlendorf, D.; Seebach, K.; Hoerzer, S.; Nigg, S.; Kopp, S. The effects of a temporarily manipulated dental occlusion on the position of the spine: A comparison during standing and walking. Spine. J. 2014, 14, 2384–2391. [Google Scholar] [CrossRef]
- Youssef, A.R. Photogrammetric quantification of forward head posture is side dependent in healthy participants and patients with mechanical neck pain. Int. J. Physiother. 2016, 3, 326–331. [Google Scholar] [CrossRef]
- Rocha, T.; Castro, M.A.; Guarda-Nardini, L.; Manfredini, D. Subjects with temporomandibular joint disc displacement do not feature any peculiar changes in body posture. J. Oral Rehabil. 2017, 44, 81–88. [Google Scholar] [CrossRef]
- Julià-Sánchez, S.; Álvarez-Herms, J.; Burtscher, M. Dental occlusion and body balance: A question of environmental constraints? J. Oral Rehabil. 2019, 46, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Rovira-Lastra, B.; Flores-Orozco, E.I.; Ayuso-Montero, R.; Peraire, M.; Martinez-Gomis, J. Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition. J. Oral Rehabil. 2016, 43, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Flores-Orozco, E.I.; Rovira-Lastra, B.; Peraire, M.; Salsench, J.; Martinez-Gomis, J. Reliability of a visual analog scale for determining the preferred mastication side. J. Prosthet. Dent. 2016, 115, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Khoury-Ribas, L.; Ayuso-Montero, R.; Willaert, E.; Peraire, M.; Martinez-Gomis, J. Changes in masticatory laterality 3 months after treatment with unilateral implant-supported fixed partial prosthesis. J. Oral Rehabil. 2020, 47, 78–85. [Google Scholar] [CrossRef]
- Lujan-Climent, M.; Martinez-Gomis, J.; Palau, S.; Ayuso-Montero, R.; Salsench, J.; Peraire, M. Influence of static and dynamic occlusal characteristics and muscle force on masticatory performance in dentate adults. Eur. J. Oral Sci. 2008, 116, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.A.; Duarte, M.; Maldonado, E.P.; Burke, T.N.; Marques, A.P. Postural assessment software (PAS/SAPO): Validation and reliabiliy. Clin. (Sao Paulo) 2010, 65, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Galvao, M.C.S.; Sato, J.R.; Coelho, E.C. Dahlberg formula – a novel approach for its evaluation. Dent. Pressj. Orthod. 2012, 17, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, V.F.; Sforza, C.; Miani, A.; D’Addona, A.; Barbini, E. Electromyographic activity of human masticatory muscles in normal young people. Statistical evaluation of reference values for clinical applications. J. Oral Rehabil. 1993, 20, 271–280. [Google Scholar] [CrossRef]
- Giannakopoulos, N.N.; Schindler, H.J.; Hellmann, D. Co-contraction behaviour of masticatory and neck muscles during tooth grinding. J. Oral Rehabil. 2018, 45, 504–511. [Google Scholar] [CrossRef]
- Nakashima, A.; Nakano, H.; Yamada, T.; Inoue, K.; Sugiyama, G.; Kumamaru, W.; Nakajima, Y.; Sumida, T.; Yokohama, T.; Mishiama, K.; et al. The relationship between lateral displacement of the mandible and scoliosis. Oral Maxillofac. Surg. 2017, 21, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Lippold, C.; Moiseenko, T.; Drerup, B.; Schilgen, M.; Végh, A.; Danesh, G. Spine deviations and orthodontic treatment of asymmetric malocclusions in children. Bmc Musculoskelet Disord. 2012, 13, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, M.; Spolaor, F.; Guiotto, A.; De Stefani, A.; Gracco, A.; Sawacha, Z. Gait and posture analysis in patients with maxillary transverse discrepancy, before and after RPE. Int. Orthod. 2018, 16, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, A.; Buonocore, G.; Manzo, P.; Pellegrino, G.; Farella, M. Dental occlusion and posture: An overview. Prog. Orthod. 2011, 12, 53–58. [Google Scholar] [CrossRef]
- Hanke, B.A.; Motschall, E.; Türp, J.C. Association between orthopedic and dental findings: What level of evidence is available? J. Orofac. Orthop. 2007, 68, 91–107. [Google Scholar] [CrossRef]
- Throckmorton, G.S.; Buschang, P.H.; Hayasaki, H.; Pinto, A.S. Changes in the masticatory cycle following treatment of posterior unilateral crossbite in children. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Rilo, B.; da Silva, J.L.; Mora, M.J.; Cadarso-Suárez, C.; Santana, U. Unilateral posterior crossbite and mastication. Arch. Oral Biol. 2007, 52, 474–478. [Google Scholar] [CrossRef]
- Rovira-Lastra, B.; Flores-Orozco, E.I.; Salsench, J.; Peraire, M.; Martinez-Gomis, J. Is the side with the best masticatory performance selected for chewing? Arch. Oral Biol. 2014, 59, 1316–1320. [Google Scholar] [CrossRef] [Green Version]
- Khoury-Ribas, L.; Ayuso-Montero, R.; Rovira-Lastra, B.; Peraire, M.; Martinez-Gomis, J. Reliability of a new test food to assess masticatory function. Arch. Oral Biol. 2018, 87, 1–6. [Google Scholar] [CrossRef]
Data | Control (n = 18) | UPCB (n = 18) | p-Value | ||
---|---|---|---|---|---|
Total (n = 18) | Left (n = 12) | Right (n = 6) | |||
Gender (% women) | 77.8 | 72.2 | 75 | 66.7 | 0.86 |
Age (years) | 20.8 (1.4) | 23.4 (5.8) | 25.0 (6.0) | 20.3 (4.0) | 0.09 † |
Height (cm) | 168.2 (10.2) | 169.7 (10.5) | 170.6 (11.8) | 168.0 (8.2) | 0.73 † |
Weight (kg) | 62.1 (10.3) | 64.1 (10.6) | 64.6 (10.6) | 63.0 (11.6) | 0.78 † |
Crossed teeth (n) | 0 | 3.0 (1.5) | 3.3 (1.5) | 2.3 (1.4) | |
Midline deviation (mm) | 0 | 2.94 (2.0) | 2.75 (2.1) | 3.33 (1.9) | |
Handedness (% right) | 88.9 | 88.9 | 83.3 | 100 | 0.32 |
Footedness (% right) | 94.4 | 77.8 | 83.3 | 66.7 | 0.22 |
Earedness (% right) | 88.9 | 61.1 | 66.7 | 50 | 0.12 |
Eyedness (% right) | 61.1 | 55.6 | 58.3 | 50 | 0.89 |
Masticatory laterality (AI) | 0.36 (0.40) | −0.06 (0.66) | −0.22 (0.66) | 0.26 (0.58) | 0.04 † |
Reproducibility | Intraclass Correlation Coefficients (95%CI) | ||||
---|---|---|---|---|---|
Intercuspal Position | Rest Position | Left Position | Right Position | ||
Horizontal acromion alignment | Standing | 0.71 (0.25;0.90) | 0.72 (0.26;0.91) | 0.76 (0.38;0.92) | 0.82 (0.50;0.94) |
Seated | 0.88 (0.44;0.97) | 0.75 (0.05;0.94) | 0.72 (0.26;0.91) | 0.79 (0.43;0.93) | |
Horizontal ASIS alignment | Standing | 0.61 (0.08;0.87) | 0.53 (0.02;0.83) | 0.41 (−0.10;0.77) | 0.54 (0.04;0.84) |
Seated | - | - | - | - | |
CT angle | Standing | 0.75 (0.34;0.92) | 0.78 (0.40;0.93) | 0.89 (0.58;0.97) | 0.77 (0.40;0.93) |
Seated | 0.78 (0.41;0.93) | 0.78 (0.43;0.93) | 0.68 (0.19;0.90) | 0.73 (0.28;0.91) | |
Weight-foot distribution | Standing | 0.64 (0.16;0.88) | 0.61 (0.13;0.87) | 0.68 (0.23;0.90) | 0.58 (0.01;0.86) |
Seated | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zurita-Hernandez, J.; Ayuso-Montero, R.; Cuartero-Balana, M.; Willaert, E.; Martinez-Gomis, J. Relationship between Unilateral Posterior Crossbite and Human Static Body Posture. Int. J. Environ. Res. Public Health 2020, 17, 5303. https://doi.org/10.3390/ijerph17155303
Zurita-Hernandez J, Ayuso-Montero R, Cuartero-Balana M, Willaert E, Martinez-Gomis J. Relationship between Unilateral Posterior Crossbite and Human Static Body Posture. International Journal of Environmental Research and Public Health. 2020; 17(15):5303. https://doi.org/10.3390/ijerph17155303
Chicago/Turabian StyleZurita-Hernandez, Jorge, Raul Ayuso-Montero, Meritxell Cuartero-Balana, Eva Willaert, and Jordi Martinez-Gomis. 2020. "Relationship between Unilateral Posterior Crossbite and Human Static Body Posture" International Journal of Environmental Research and Public Health 17, no. 15: 5303. https://doi.org/10.3390/ijerph17155303
APA StyleZurita-Hernandez, J., Ayuso-Montero, R., Cuartero-Balana, M., Willaert, E., & Martinez-Gomis, J. (2020). Relationship between Unilateral Posterior Crossbite and Human Static Body Posture. International Journal of Environmental Research and Public Health, 17(15), 5303. https://doi.org/10.3390/ijerph17155303