A Meta-Analysis of Stressors from the Total Environment Associated with Children’s General Cognitive Ability
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Extraction
2.1.1. Inclusion Criteria
- Observational studies, randomized control trials, review or meta-analysis;
- Time of exposure to a determinant or stressor occurred at or before health outcome was assessed;
- Health outcome was measured in children under 18 years old;
- General cognitive outcome was measured using current and earlier versions of evidence-based assessments of cognitive functioning classified as well established [19] and expressed as a continuous variable or categorized as below average or significant cognitive delay (i.e., >1 or >2 standard deviations (SD) below the mean).
- Study included a measure of association and statistical significance;
- Majority of study participants were healthy children without any existing developmental disabilities, neonatal morbidities, pathologies associated with cognitive deficits, or rare disorders.
2.1.2. Data Grouping
2.2. Statistical Analyses
2.2.1. Meta-Analysis
2.2.2. Data Visualization—Violin Plots
2.2.3. Sensitivity Analysis
2.2.4. Publication Bias
3. Results and Discussion
3.1. Prenatal Exposures
3.1.1. Maternal Factors
Socioeconomics
Maternal Health
3.1.2. Inherent Characteristics
Anthropometry and Birth Outcomes
3.2. Childhood Exposures
3.2.1. Chemical Stressors
Toxic Elements
Toxic Gases
Endocrine-Active Stressors
3.2.2. Activities and Behaviors
Breastfeeding
Diet
3.2.3. Social Factors
Social Interactions
Childcare
Stressors Influencing Childhood Cognitive Ability
Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Plomin, R. Genetics and general cognitive ability. Nature 1999, 402, C25. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.; Egan, M.; O’Reilly, F. Childhood general cognitive ability predicts leadership role occupancy across life: Evidence from 17,000 cohort study participants. Leadersh. Q. 2015, 26, 323–341. [Google Scholar] [CrossRef]
- Judge, T.A.; Higgins, C.A.; Thoresen, C.J.; Barrick, M.R. The big five personality traits, general mental ability, and career success across the life span. Pers. Psychol. 1999, 52, 621–652. [Google Scholar] [CrossRef]
- Collins, W. Development during Middle Childhood: The Years from Six to Twelve; National Academy of Sciences Press: Washington, WA, USA, 1984. [Google Scholar]
- Investigators, M.-E.N. Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: Findings from the MAL-ED birth cohort study. BMJ Glob. Health 2018, 3, e000752. [Google Scholar]
- Zielinska, M.A.; Hamulka, J.; Grabowicz-Chądrzyńska, I.; Bryś, J.; Wesolowska, A. Association between Breastmilk LC PUFA, Carotenoids and Psychomotor Development of Exclusively Breastfed Infants. Int. J. Environ. Res. Public Health 2019, 16, 1144. [Google Scholar] [CrossRef] [Green Version]
- Figlio, D.N.; Freese, J.; Karbownik, K.; Roth, J. Socioeconomic status and genetic influences on cognitive development. Proc. Natl. Acad. Sci. USA 2017, 114, 13441–13446. [Google Scholar] [CrossRef] [Green Version]
- Annavarapu, R.N.; Kathi, S. Cognitive disorders in children associated with urban vehicular emissions. Environ. Pollut 2016, 208, 74–78. [Google Scholar] [CrossRef]
- Jukic, A.M.; Baird, D.D.; Weinberg, C.R.; McConnaughey, D.R.; Wilcox, A.J. Length of human pregnancy and contributors to its natural variation. Hum. Reprod 2013, 28, 2848–2855. [Google Scholar] [CrossRef] [Green Version]
- Eskenazi, B.; Chevrier, J.; Rauch, S.A.; Kogut, K.; Harley, K.G.; Johnson, C.; Trujillo, C.; Sjodin, A.; Bradman, A. In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ. Health Perspect. 2013, 121, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Tucker-Drob, E.M.; Harden, K.P. Early childhood cognitive development and parental cognitive stimulation: Evidence for reciprocal gene–environment transactions. Dev. Sci. 2012, 15, 250–259. [Google Scholar] [CrossRef]
- Yang, S.; Platt, R.W.; Kramer, M.S. Variation in child cognitive ability by week of gestation among healthy term births. Am. J. Epidemiol. 2010, 171, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourke, R.; Anderson, V.; Yang, J.S.; Jackman, A.R.; Killedar, A.; Nixon, G.M.; Davey, M.J.; Walker, A.M.; Trinder, J.; Horne, R.S. Cognitive and academic functions are impaired in children with all severities of sleep-disordered breathing. Sleep Med. 2011, 12, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.D.; Blunden, S.; Hirte, C.; Parsons, D.W.; Martin, A.J.; Crowe, E.; Williams, D.; Pamula, Y.; Lushington, K. Reduced neurocognition in children who snore. Pediatr. Pulmonol. 2004, 37, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. A strategy for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. Environ. Health Perspect. 2011, 120, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Sexton, K.; Hattis, D. Assessing cumulative health risks from exposure to environmental mixtures—Three fundamental questions. Environ. Health Perspect. 2007, 115, 825–832. [Google Scholar] [CrossRef]
- Tulve, N.; Ruiz, J.D.C.; Lichtveld, K.; Darney, S.; Quakenboss, J. Development of a Conceptual Framework Depicting a Childs Total (Built, Natural, Social) Environment in Order to Optimize Health and Well-Being. Ommega Int. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Lewis, G. Environmental toxicity and poor cognitive outcomes in children and adults. J. Environ. Health 2014, 76, 130. [Google Scholar]
- Ferguson, K.T.; Cassells, R.C.; MacAllister, J.W.; Evans, G.W. The physical environment and child development: An international review. Int. J. Psychol. 2013, 48, 437–468. [Google Scholar]
- Walker, S.P.; Wachs, T.D.; Grantham-McGregor, S.; Black, M.M.; Nelson, C.A.; Huffman, S.L.; Baker-Henningham, H.; Chang, S.M.; Hamadani, J.D.; Lozoff, B. Inequality in early childhood: Risk and protective factors for early child development. Lancet 2011, 378, 1325–1338. [Google Scholar] [CrossRef]
- Casey, B.; Galvan, A.; Hare, T.A. Changes in cerebral functional organization during cognitive development. Curr. Opin. Neurobiol. 2005, 15, 239–244. [Google Scholar] [CrossRef]
- Aschner, M.; Aschner, J.L. Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neurosci. Biobehav. Rev. 1990, 14, 169–176. [Google Scholar] [CrossRef]
- Julvez, J.; Debes, F.; Weihe, P.; Choi, A.L.; Grandjean, P. Thyroid dysfunction as a mediator of organochlorine neurotoxicity in preschool children. Environ. Health Perspect. 2011, 119, 1429–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.; Barone, S., Jr.; LaMantia, A.; Philen, R.; Rice, D.; Spear, L.; Susser, E. Workshop to identify critical windows of exposure for children’s health: Neurobehavioral work group summary. Environ. Health Perspect. 2000, 108, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fudvoye, J.; Bourguignon, J.-P.; Parent, A.-S. Endocrine-disrupting chemicals and human growth and maturation: A focus on early critical windows of exposure. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2014; Volume 94, pp. 1–25. [Google Scholar]
- Choi, A.L.; Zhang, Y.; Sun, G.; Bellinger, D.C.; Wang, K.; Yang, X.J.; Li, J.S.; Zheng, Q.; Fu, Y.; Grandjean, P. Association of lifetime exposure to fluoride and cognitive functions in Chinese children: A pilot study. Neurotoxicol. Teratol. 2015, 47, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegerif, R.; Mercer, N.; Dawes, L. From social interaction to individual reasoning: An empirical investigation of a possible socio-cultural model of cognitive development. Learn. Instr. 1999, 9, 493–516. [Google Scholar] [CrossRef]
- St John, A.M.; Tarullo, A.R. Neighbourhood chaos moderates the association of socioeconomic status and child executive functioning. Infant Child Dev. 2019, e2153. [Google Scholar]
- Koutra, K.; Chatzi, L.; Roumeliotaki, T.; Vassilaki, M.; Giannakopoulou, E.; Batsos, C.; Koutis, A.; Kogevinas, M. Socio-demographic determinants of infant neurodevelopment at 18 months of age: Mother-Child Cohort (Rhea Study) in Crete, Greece. Infant Behav. Dev. 2012, 35, 48–59. [Google Scholar] [CrossRef]
- Buckhalt, J.A.; El-Sheikh, M.; Keller, P. Children’s sleep and cognitive functioning: Race and socioeconomic status as moderators of effects. Child Dev. 2007, 78, 213–231. [Google Scholar] [CrossRef]
- Tong, S.; Baghurst, P.; Vimpani, G.; McMichael, A. Socioeconomic position, maternal IQ, home environment, and cognitive development. J. Pediatr. 2007, 151, 284–288. [Google Scholar] [CrossRef]
- Benton, D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res. 2010, 54, 457–470. [Google Scholar] [CrossRef]
- Bellisle, F. Effects of diet on behaviour and cognition in children. Br. J. Nutr. 2004, 92, S227–S232. [Google Scholar] [CrossRef] [Green Version]
- Ednick, M.; Cohen, A.P.; McPhail, G.L.; Beebe, D.; Simakajornboon, N.; Amin, R.S. A review of the effects of sleep during the first year of life on cognitive, psychomotor, and temperament development. Sleep 2009, 32, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Gertner, S.; Greenbaum, C.W.; Sadeh, A.; Dolfin, Z.; Sirota, L.; Ben-Nun, Y. Sleep–wake patterns in preterm infants and 6 month’s home environment: Implications for early cognitive development. Early Hum. Dev. 2002, 68, 93–102. [Google Scholar] [CrossRef]
- Gruber, R.; Laviolette, R.; Deluca, P.; Monson, E.; Cornish, K.; Carrier, J. Short sleep duration is associated with poor performance on IQ measures in healthy school-age children. Sleep Med. 2010, 11, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, S.L.; Fernandez-Mendoza, J.; Vgontzas, A.N.; Mayes, S.D.; Tsaoussoglou, M.; Rodriguez-Munoz, A.; Bixler, E.O. Learning, attention/hyperactivity, and conduct problems as sequelae of excessive daytime sleepiness in a general population study of young children. Sleep 2012, 35, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.M.; Wright, M.J.; Luciano, M.; Martin, N.G.; de Geus, E.J.; van Beijsterveldt, C.E.; Bartels, M.; Posthuma, D.; Boomsma, D.; Davis, O. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol. Psychiatry 2010, 15, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, C.; Jacobson, S.W.; Jacobson, J.L. Fetal substance exposure and cumulative environmental risk in an African American cohort. Child Dev. 2008, 79, 1761–1776. [Google Scholar] [CrossRef] [Green Version]
- Virgolini, M.; Rossi-George, A.; Lisek, R.; Weston, D.; Thiruchelvam, M.; Cory-Slechta, D. CNS effects of developmental Pb exposure are enhanced by combined maternal and offspring stress. Neurotoxicology 2008, 29, 812–827. [Google Scholar] [CrossRef] [Green Version]
- Weiss, B.; Bellinger, D.C. Social ecology of children’s vulnerability to environmental pollutants. Environ. Health Perspect. 2006, 114, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Solon, O.; Riddell, T.J.; Quimbo, S.A.; Butrick, E.; Aylward, G.P.; Bacate, M.L.; Peabody, J.W. Associations between cognitive function, blood lead concentration, and nutrition among children in the central Philippines. J. Pediatr. 2008, 152, 237–243. [Google Scholar] [CrossRef]
- Reardon, S.F. The widening academic achievement gap between the rich and the poor: New evidence and possible explanations. Whither Oppor. 2011, 1, 91–116. [Google Scholar]
- Perera, F.P.; Wang, S.; Rauh, V.; Zhou, H.; Stigter, L.; Camann, D.; Jedrychowski, W.; Mroz, E.; Majewska, R. Prenatal exposure to air pollution, maternal psychological distress, and child behavior. Pediatrics 2013, 132, e1284–e1294. [Google Scholar] [CrossRef] [Green Version]
- Horton, M.K.; Kahn, L.G.; Perera, F.; Barr, D.B.; Rauh, V. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory? Neurotoxicol. Teratol. 2012, 34, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Huitt, W.; Hummel, J. Piaget’s theory of cognitive development. Educ. Psychol. Interact. 2003, 3, 1–5. [Google Scholar]
- Piaget, J. Part I: Cognitive development in children: Piaget development and learning. J. Res. Sci. Teach. 1964, 2, 176–186. [Google Scholar] [CrossRef]
- Ruiz, J.D.C.; Quackenboss, J.J.; Tulve, N.S. Contributions of a child’s built, natural, and social environments to their general cognitive ability: A systematic scoping review. PLoS ONE 2016, 11, e0147741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ard, K.; Colen, C.; Becerra, M.; Velez, T. Two mechanisms: The role of social capital and industrial pollution exposure in explaining racial disparities in self-rated health. Int. J. Environ. Res. Public Health 2016, 13, 1025. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.; Solo-Gabriele, H. Children’s exposure to environmental contaminants: An editorial reflection of articles in the IJERPH special issue entitled,“children’s exposure to environmental contaminants”. Int. J. Environ. Res. Public Health 2016, 13, 1117. [Google Scholar] [CrossRef] [Green Version]
- Rappazzo, K.; Coffman, E.; Hines, E. Exposure to perfluorinated alkyl substances and health outcomes in children: A systematic review of the epidemiologic literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef]
- Jensen, S.K.; Berens, A.E.; Nelson, C.A., 3rd. Effects of poverty on interacting biological systems underlying child development. Lancet Child. Adolesc. Health 2017, 1, 225–239. [Google Scholar] [CrossRef]
- Coxon, T.; Goldstein, L.; Odhiambo, B. Analysis of spatial distribution of trace metals, PCB, and PAH and their potential impact on human health in Virginian Counties and independent cities, USA. Environ. Geochem. Health 2019, 41, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Matonda-Ma-Nzuzi, T.; Mampunza Ma Miezi, S.; Mpembi, M.N.; Mvumbi, D.M.; Aloni, M.N.; Malendakana, F.; Mpaka Mbeya, D.; Lelo, G.M.; Charlier-Mikolajczak, D. Factors associated with behavioral problems and cognitive impairment in children with epilepsy of Kinshasa, Democratic Republic of the Congo. Epilepsy Behav. 2018, 78, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Buck, K.D.; Kevin Summers, J.; Smith, L.M.; Harwell, L.C. Application of the Human Well-Being Index to Sensitive Population Divisions: A Children’s Well-Being Index Development. Child Indic. Res. 2018, 11, 1249–1280. [Google Scholar] [CrossRef] [PubMed]
- Stalgaitis, C.A.; Wagner, D.E.; Djakaria, M.; Jordan, J.W. Understanding Adversity and Peer Crowds to Prevent Youth Health Risks. Am. J. Health Behav. 2019, 43, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kaaya, S.; Chai, J.; McCoy, D.; Surkan, P.; Black, M.; Sutter-Dallay, A.-L.; Verdoux, H.; Smith-Fawzi, M. Maternal depressive symptoms and early childhood cognitive development: A meta-analysis. Psychol. Med. 2017, 47, 680–689. [Google Scholar] [CrossRef]
- Britto, P.R.; Lye, S.J.; Proulx, K.; Yousafzai, A.K.; Matthews, S.G.; Vaivada, T.; Perez-Escamilla, R.; Rao, N.; Ip, P.; Fernald, L.C. Nurturing care: Promoting early childhood development. Lancet 2017, 389, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Deoni, S.C.; O’Muircheartaigh, J.; Elison, J.T.; Walker, L.; Doernberg, E.; Waskiewicz, N.; Dirks, H.; Piryatinsky, I.; Dean, D.C.; Jumbe, N. White matter maturation profiles through early childhood predict general cognitive ability. Brain Struct. Funct. 2016, 221, 1189–1203. [Google Scholar] [CrossRef] [Green Version]
- Klingberg, T. Childhood cognitive development as a skill. Trends Cogn. Sci. 2014, 18, 573–579. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wickham, H.; Wickham, M.H. Package Tidyverse. Available online: http://tidyverse.tidyverse.org (accessed on 20 July 2020).
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Team, R. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015; Volume 42, p. 14. Available online: http://www.rstudio.com (accessed on 29 April 2018).
- Xie, Y.; Allaire, J.J.; Grolemund, G. R Markdown: The Definitive Guide; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rmarkdown: Dynamic Documents for R, R Package Version 1.14. 2019. Available online: https://github.com/rstudio/rmarkdown (accessed on 20 July 2020).
- Vasdekis, V.G.; Vlachonikolis, I.G. On the difference between ML and REML estimators in the modelling of multivariate longitudinal data. J. Stat. Plan. Inference 2005, 134, 194–205. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.; Rothstein, H. Meta-analysis: Fixed effect vs random effects. Meta-Anal. Com 2007, 16, 2012. [Google Scholar]
- Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 2010, 19, 227. [Google Scholar] [PubMed]
- Thabane, L.; Mbuagbaw, L.; Zhang, S.; Samaan, Z.; Marcucci, M.; Ye, C.; Thabane, M.; Giangregorio, L.; Dennis, B.; Kosa, D.; et al. A tutorial on sensitivity analyses in clinical trials: The what, why, when and how. BMC Med. Res. Methodol. 2013, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sutton, A.J.; Duval, S.J.; Tweedie, R.L.; Abrams, K.R.; Jones, D.R. Empirical assessment of effect of publication bias on meta-analyses. BMJ 2000, 320, 1574–1577. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Comparison of two methods to detect publication bias in meta-analysis. JAMA 2006, 295, 676–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macaskill, P.; Walter, S.D.; Irwig, L. A comparison of methods to detect publication bias in meta-analysis. Stat. Med. 2001, 20, 641–654. [Google Scholar] [CrossRef]
- Lau, J.; Ioannidis, J.P.A.; Terrin, N.; Schmid, C.H.; Olkin, I. The case of the misleading funnel plot. BMJ 2006, 333, 597–600. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Alati, R.; MacLeod, J.; Hickman, M.; Sayal, K.; May, M.; Smith, G.D.; Lawlor, D.A. Intrauterine Exposure to Alcohol and Tobacco Use and Childhood IQ: Findings from a Parental-Offspring Comparison within the Avon Longitudinal Study of Parents and Children. Pediatr. Res. 2008, 64, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Arendt, R.; Short, E.; Minnes, S.; Hewitt, J.; Flynn, S.; Carlson, L.; Min, M.; Klein, N.; Flannery, D. Children prenatally exposed to cocaine: Developmental outcomes and environmental risks at seven years of age. J. Dev. Behav. Pediatr. 2004, 25, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Bahena-Medina, L.A.; Torres-Sanchez, L.; Schnaas, L.; Cebrian, M.E.; Chavez, C.H.; Osorio-Valencia, E.; Hernandez, R.M.G.; Lopez-Carrillo, L. Neonatal neurodevelopment and prenatal exposure to dichlorodiphenyldichloroethylene (DDE): A cohort study in Mexico. J. Expos. Sci. Environ. Epidemiol. 2011, 21, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.N.; Tamis-LeMonda, C.S. Infants’ persistence and mothers’ teaching as predictors of toddlers’ cognitive development. Infant Behav. Dev. 2007, 30, 479–491. [Google Scholar] [CrossRef]
- Bennett, D.S.; Bendersky, M.; Lewis, M. Children’s cognitive ability from 4 to 9 years old as a function of prenatal cocaine exposure, environmental risk, and maternal verbal intelligence. Dev. Psychol. 2008, 44, 919–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, K.; Sarkar, P.; Glover, V.; O’Connor, T.G. Maternal Prenatal Cortisol and Infant Cognitive Development: Moderation by Infant–Mother Attachment. Biol. Psychiatry 2010, 67, 1026–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, A.L.; Lieberman, A.F. Mothers’ Adult Attachment Interview ratings predict preschool children’s IQ following domestic violence exposure. Attach. Hum. Dev. 2010, 12, 505–527. [Google Scholar] [CrossRef]
- Canfield, R.L.; Henderson, C.R.J.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- Chiodo, L.M.; Jacobson, S.W.; Jacobson, J.L. Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol. Teratol. 2004, 26, 359–371. [Google Scholar] [CrossRef]
- Craig, W.Y.; Allan, W.C.; Kloza, E.M.; Pulkkinen, A.J.; Waisbren, S.; Spratt, D.I.; Palomaki, G.E.; Neveux, L.M.; Haddow, J.E. Mid-gestational maternal free thyroxine concentration and offspring neurocognitive development at age two years. J. Clin. Endocrinol. Metab. 2012, 97, E22–E28. [Google Scholar] [CrossRef]
- Davis, E.P.; Sandman, C.A. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev. 2010, 81, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Deroma, L.; Parpinel, M.; Tognin, V.; Channoufi, L.; Tratnik, J.; Horvat, M.; Valent, F.; Barbone, F. Neuropsychological assessment at school-age and prenatal low-level exposure to mercury through fish consumption in an Italian birth cohort living near a contaminated site. Int. J. Hyg. Environ. Health 2013, 216, 486–493. [Google Scholar] [CrossRef]
- Emond, A.M.; Blair, P.S.; Emmett, P.M.; Drewett, R.F. Weight faltering in infancy and IQ levels at 8 years in the Avon Longitudinal Study of Parents and Children. Pediatrics 2007, 120, e1051–e1058. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Melotti, R.; Heron, J.; Ramchandani, P.; Wiles, N.; Murray, L.; Stein, A. The timing of maternal depressive symptoms and child cognitive development: A longitudinal study. J. Child Psychol. Psychiatry Allied Discip. 2012, 53, 632–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falgreen Eriksen, H.L.; Mortensen, E.L.; Kilburn, T.; Underbjerg, M.; Bertrand, J.; Stovring, H.; Wimberley, T.; Grove, J.; Kesmodel, U.S. The effects of low to moderate prenatal alcohol exposure in early pregnancy on IQ in 5-year-old children. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1191–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falgreen Eriksen, H.L.; Kesmodel, U.S.; Wimberley, T.; Underbjerg, M.; Kilburn, T.R.; Mortensen, E.L. Effects of tobacco smoking in pregnancy on offspring intelligence at the age of 5. J. Pregnancy 2012, 2012, 945196. [Google Scholar] [CrossRef] [Green Version]
- Forns, J.; Julvez, J.; Garcia-Esteban, R.; Guxens, M.; Ferrer, M.; Grellier, J.; Vrijheid, M.; Sunyer, J. Maternal intelligence-mental health and child neuropsychological development at age 14 months. Gac. Sanit. 2012, 26, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.A.; Rose-Jacobs, R.; Beeghly, M.; Wilbur, M.; Bellinger, D.; Cabral, H. Level of prenatal cocaine exposure and 48-month IQ: Importance of preschool enrichment. Neurotoxicol. Teratol. 2005, 27, 15–28. [Google Scholar] [CrossRef]
- Freire, C.; Ramos, R.; Puertas, R.; Lopez-Espinosa, M.J.; Julvez, J.; Aguilera, I.; Cruz, F.; Fernandez, M.F.; Sunyer, J.; Olea, N. Association of traffic-related air pollution with cognitive development in children. J. Epidemiol. Community Health 2010, 64, 223–228. [Google Scholar] [CrossRef]
- Galbally, M.; Lewis, A.J.; Buist, A. Developmental outcomes of children exposed to antidepressants in pregnancy. Aust. N. Z. J. Psychiatry 2011, 45, 393–399. [Google Scholar] [CrossRef]
- Gomez-Sanchiz, M.; Canete, R.; Rodero, I.; Baeza, J.E.; Gonzalez, J.A. Influence of breast-feeding and parental intelligence on cognitive development in the 24-month-old child. Clin. Pediatr. 2004, 43, 753–761. [Google Scholar] [CrossRef]
- Gomez-Sanchiz, M.; Canete, R.; Rodero, I.; Baeza, J.E.; Avila, O. Influence of breast-feeding on mental and psychomotor development. Clin. Pediatr. 2003, 42, 35–42. [Google Scholar] [CrossRef]
- Gustafsson, P.A.; Duchen, K.; Birberg, U.; Karlsson, T. Breastfeeding, very long polyunsaturated fatty acids (PUFA) and IQ at 6 1/2 years of age. Acta Paediatr. 2004, 93, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Hamadani, J.D.; Grantham-McGregor, S.M.; Tofail, F.; Nermell, B.; Fangstrom, B.; Huda, S.N.; Yesmin, S.; Rahman, M.; Vera-Hernandez, M.; Arifeen, S.E.; et al. Pre- and postnatal arsenic exposure and child development at 18 months of age: A cohort study in rural Bangladesh. Int. J. Epidemiol. 2010, 39, 1206–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.J. Maternal nonstandard work schedules and child cognitive outcomes. Child Dev. 2005, 76, 137–154. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Schieve, L.A.; Stein, A.D.; Swan, D.W.; Ramakrishnan, U.; Sharma, A.J. Associations between maternal prepregnancy body mass index and child neurodevelopment at 2 years of age. Int. J. Obes. 2012, 36, 1312–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Tellez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-Garcia, A.; Hernandez-Avila, M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ. Health Perspect. 2006, 114, 1730–1735. [Google Scholar] [CrossRef]
- Huang, P.C.; Su, P.H.; Chen, H.Y.; Huang, H.B.; Tsai, J.L.; Huang, H.I.; Wang, S.L. Childhood blood lead levels and intellectual development after ban of leaded gasoline in Taiwan: A 9-year prospective study. Environ. Int. 2012, 40, 88–96. [Google Scholar] [CrossRef]
- Jacobson, S.W.; Jacobson, J.L.; Sokol, R.J.; Chiodo, L.M.; Corobana, R. Maternal age, alcohol abuse history, and quality of parenting as moderators of the effects of prenatal alcohol exposure on 7.5-year intellectual function. Alcohol. Clin. Exp. Res. 2004, 28, 1732–1745. [Google Scholar] [CrossRef]
- Jedrychowski, W.; Perera, F.P.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.; Lisowska-Miszczyk, I. Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 2009, 32, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Jedrychowski, W.; Perera, F.; Jankowski, J.; Butscher, M.; Mroz, E.; Flak, E.; Kaim, I.; Lisowska-Miszczyk, I.; Skarupa, A.; Sowa, A. Effect of exclusive breastfeeding on the development of children’s cognitive function in the Krakow prospective birth cohort study. Eur. J. Pediatr. 2012, 171, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Jedrychowski, W.; Maugeri, U.; Perera, F.; Stigter, L.; Jankowski, J.; Butscher, M.; Mroz, E.; Flak, E.; Skarupa, A.; Sowa, A. Cognitive function of 6-year old children exposed to mold-contaminated homes in early postnatal period. Prospective birth cohort study in Poland. Physiol. Behav. 2011, 104, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Julvez, J.; Alvarez-Pedrerol, M.; Rebagliato, M.; Murcia, M.; Forns, J.; Garcia-Esteban, R.; Lertxundi, N.; Espada, M.; Tardon, A.; Riano Galan, I.; et al. Thyroxine levels during pregnancy in healthy women and early child neurodevelopment. Epidemiology 2013, 24, 150–157. [Google Scholar] [CrossRef]
- Julvez, J.; Ribas-Fito, N.; Torrent, M.; Forns, M.; Garcia-Esteban, R.; Sunyer, J. Maternal smoking habits and cognitive development of children at age 4 years in a population-based birth cohort. Int. J. Epidemiol. 2007, 36, 825–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesmodel, U.S.; Eriksen, H.L.; Underbjerg, M.; Kilburn, T.R.; Stovring, H.; Wimberley, T.; Mortensen, E.L. The effect of alcohol binge drinking in early pregnancy on general intelligence in children. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Kesmodel, U.S.; Bertrand, J.; Stovring, H.; Skarpness, B.; Denny, C.H.; Mortensen, E.L. The effect of different alcohol drinking patterns in early to mid pregnancy on the child’s intelligence, attention, and executive function. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1180–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Kim, B.N.; Hong, Y.C.; Shin, M.S.; Yoo, H.J.; Kim, J.W.; Bhang, S.Y.; Cho, S.C. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology 2009, 30, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Kolobe, T.H. Childrearing practices and developmental expectations for Mexican-American mothers and the developmental status of their infants. Phys. Ther. 2004, 84, 439–453. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef]
- Lee, B.E.; Hong, Y.C.; Park, H.; Ha, M.; Kim, J.H.; Chang, N.; Roh, Y.M.; Kim, B.N.; Kim, Y.; Oh, S.Y.; et al. Secondhand smoke exposure during pregnancy and infantile neurodevelopment. Environ. Res. 2011, 111, 539–544. [Google Scholar] [CrossRef]
- Lewis, M.W.; Misra, S.; Johnson, H.L.; Rosen, T.S. Neurological and developmental outcomes of prenatally cocaine-exposed offspring from 12 to 36 months. Am. J. Drug Alcohol Abuse 2004, 30, 299–320. [Google Scholar] [CrossRef]
- Li, Y.; Shan, Z.; Teng, W.; Yu, X.; Fan, C.; Teng, X.; Guo, R.; Wang, H.; Li, J.; Chen, Y.; et al. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin. Endocrinol. 2010, 72, 825–829. [Google Scholar] [CrossRef]
- Li, X.; Atkins, M.S. Early childhood computer experience and cognitive and motor development. Pediatrics 2004, 113, 1715–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llop, S.; Guxens, M.; Murcia, M.; Lertxundi, A.; Ramon, R.; Riano, I.; Rebagliato, M.; Ibarluzea, J.; Tardon, A.; Sunyer, J.; et al. Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: Study of potential modifiers. Am. J. Epidemiol. 2012, 175, 451–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovasi, G.S.; Quinn, J.W.; Rauh, V.A.; Perera, F.P.; Andrews, H.F.; Garfinkel, R.; Hoepner, L.; Whyatt, R.; Rundle, A. Chlorpyrifos exposure and urban residential environment characteristics as determinants of early childhood neurodevelopment. Am. J. Public Health 2011, 101, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Gil, J.; Tamis-LeMonda, C.S. Family resources and parenting quality: Links to children’s cognitive development across the first 3 years. Child Dev. 2008, 79, 1065–1085. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Filho, J.A.; Novaes Cde, O.; Moreira, J.C.; Sarcinelli, P.N.; Mergler, D. Elevated manganese and cognitive performance in school-aged children and their mothers. Environ. Res. 2011, 111, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Messinger, D.S.; Bauer, C.R.; Das, A.; Seifer, R.; Lester, B.M.; Lagasse, L.L.; Wright, L.L.; Shankaran, S.; Bada, H.S.; Smeriglio, V.L.; et al. The maternal lifestyle study: Cognitive, motor, and behavioral outcomes of cocaine-exposed and opiate-exposed infants through three years of age. Pediatrics 2004, 113, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Morrow, C.E.; Culbertson, J.L.; Accornero, V.H.; Xue, L.; Anthony, J.C.; Bandstra, E.S. Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure. Dev. Neuropsychol. 2006, 30, 905–931. [Google Scholar] [CrossRef] [Green Version]
- Murcia, M.; Rebagliato, M.; Iniguez, C.; Lopez-Espinosa, M.J.; Estarlich, M.; Plaza, B.; Barona-Vilar, C.; Espada, M.; Vioque, J.; Ballester, F. Effect of iodine supplementation during pregnancy on infant neurodevelopment at 1 year of age. Am. J. Epidemiol. 2011, 173, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.; Black, M.M.; Ackerman, J.P.; Schuler, M.E.; Keane, V.A. Children’s cognitive-behavioral functioning at age 6 and 7: Prenatal drug exposure and caregiving environment. Ambul. Pediatr. Off. J. Ambul. Pediatr. Assoc. 2008, 8, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, S.; Saijo, Y.; Kato, S.; Sasaki, S.; Uno, A.; Kanagami, N.; Hirakawa, H.; Hori, T.; Tobiishi, K.; Todaka, T.; et al. Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age. Environ. Health Perspect. 2006, 114, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Nulman, I.; Koren, G.; Rovet, J.; Barrera, M.; Pulver, A.; Streiner, D.; Feldman, B. Neurodevelopment of children following prenatal exposure to venlafaxine, selective serotonin reuptake inhibitors, or untreated maternal depression. Am. J. Psychiatry 2012, 169, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Nulman, I.; Rovet, J.; Kennedy, D.; Wasson, C.; Gladstone, J.; Fried, S.; Koren, G. Binge alcohol consumption by non-alcohol-dependent women during pregnancy affects child behaviour, but not general intellectual functioning; a prospective controlled study. Arch. Women’s Ment. Health 2004, 7, 173–181. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, F.V.; O’Callaghan, M.; Najman, J.M.; Williams, G.M.; Bor, W. Prenatal alcohol exposure and attention, learning and intellectual ability at 14 years: A prospective longitudinal study. Early Hum. Dev. 2007, 83, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, F.P.; Tang, D.; Rauh, V.; Tu, Y.H.; Tsai, W.Y.; Becker, M.; Stein, J.L.; King, J.; Del Priore, G.; Lederman, S.A. Relationship between polycyclic aromatic hydrocarbon-DNA adducts, environmental tobacco smoke, and child development in the World Trade Center cohort. Environ. Health Perspect. 2007, 115, 1497–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, F.P.; Li, Z.; Whyatt, R.; Hoepner, L.; Wang, S.; Camann, D.; Rauh, V. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009, 124, e195–e202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piteo, A.M.; Yelland, L.N.; Makrides, M. Does maternal depression predict developmental outcome in 18 month old infants? Early Hum. Dev. 2012, 88, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Pop, V.J.; Brouwers, E.P.; Vader, H.L.; Vulsma, T.; van Baar, A.L.; de Vijlder, J.J. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: A 3-year follow-up study. Clin. Endocrinol. 2003, 59, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Puertas, R.; Lopez-Espinosa, M.J.; Cruz, F.; Ramos, R.; Freire, C.; Perez-Garcia, M.; Abril, A.; Julvez, J.; Salvatierra, M.; Campoy, C.; et al. Prenatal exposure to mirex impairs neurodevelopment at age of 4 years. Neurotoxicology 2010, 31, 154–160. [Google Scholar] [CrossRef]
- Raikes, H.; Pan, B.A.; Luze, G.; Tamis-LeMonda, C.S.; Brooks-Gunn, J.; Constantine, J.; Tarullo, L.B.; Raikes, H.A.; Rodriguez, E.T. Mother-child bookreading in low-income families: Correlates and outcomes during the first three years of life. Child Dev. 2006, 77, 924–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauh, V.; Arunajadai, S.; Horton, M.; Perera, F.; Hoepner, L.; Barr, D.B.; Whyatt, R. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ. Health Perspect. 2011, 119, 1196–1201. [Google Scholar] [CrossRef]
- Rauh, V.A.; Whyatt, R.M.; Garfinkel, R.; Andrews, H.; Hoepner, L.; Reyes, A.; Diaz, D.; Camann, D.; Perera, F.P. Developmental effects of exposure to environmental tobacco smoke and material hardship among inner-city children. Neurotoxicol. Teratol. 2004, 26, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Fito, N.; Cardo, E.; Sala, M.; Eulalia de Muga, M.; Mazon, C.; Verdu, A.; Kogevinas, M.; Grimalt, J.O.; Sunyer, J. Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics 2003, 111, e580–e585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, G.A.; Goldschmidt, L.; Willford, J. The effects of prenatal cocaine use on infant development. Neurotoxicol. Teratol. 2008, 30, 96–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva Rde, C.; Assis, A.M.; Hasselmann, M.H.; dos Santos, L.M.; Pinto Ede, J.; Rodrigues, L.C. Influence of domestic violence on the association between malnutrition and low cognitive development. J. Pediatr. 2012, 88, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, L.T.; Minnes, S.; Short, E.; Arendt, R.; Farkas, K.; Lewis, B.; Klein, N.; Russ, S.; Min, M.O.; Kirchner, H.L. Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA 2004, 291, 2448–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, L.T.; Moore, D.G.; Fulton, S.; Goodwin, J.; Turner, J.J.; Min, M.O.; Parrott, A.C. Neurobehavioral outcomes of infants exposed to MDMA (Ecstasy) and other recreational drugs during pregnancy. Neurotoxicol. Teratol. 2012, 34, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Slykerman, R.F.; Thompson, J.M.; Pryor, J.E.; Becroft, D.M.; Robinson, E.; Clark, P.M.; Wild, C.J.; Mitchell, E.A. Maternal stress, social support and preschool children’s intelligence. Early Hum. Dev. 2005, 81, 815–821. [Google Scholar] [CrossRef]
- Smith, L.M.; LaGasse, L.L.; Derauf, C.; Newman, E.; Shah, R.; Haning, W.; Arria, A.; Huestis, M.; Strauss, A.; Della Grotta, S.; et al. Motor and cognitive outcomes through three years of age in children exposed to prenatal methamphetamine. Neurotoxicol. Teratol. 2011, 33, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Smithers, L.G.; Golley, R.K.; Mittinty, M.N.; Brazionis, L.; Northstone, K.; Emmett, P.; Lynch, J.W. Do dietary trajectories between infancy and toddlerhood influence IQ in childhood and adolescence? Results from a prospective birth cohort study. PLoS ONE 2013, 8, e58904. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.W.; Reihman, J.; Lonky, E.I.; Darvill, T.J.; Pagano, J. Cognitive development in preschool children prenatally exposed to PCBs and MeHg. Neurotoxicol. Teratol. 2003, 25, 11–22. [Google Scholar] [CrossRef]
- Stewart, P.W.; Lonky, E.; Reihman, J.; Pagano, J.; Gump, B.B.; Darvill, T. The relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environ. Health Perspect. 2008, 116, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.W.; Reihman, J.; Lonky, E.; Pagano, J. Issues in the interpretation of associations of PCBs and IQ. Neurotoxicol. Teratol. 2012, 34, 96–107. [Google Scholar] [CrossRef]
- Sutter-Dallay, A.L.; Murray, L.; Dequae-Merchadou, L.; Glatigny-Dallay, E.; Bourgeois, M.L.; Verdoux, H. A prospective longitudinal study of the impact of early postnatal vs. chronic maternal depressive symptoms on child development. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2011, 26, 484–489. [Google Scholar] [CrossRef]
- Sylva, K.; Stein, A.; Leach, P.; Barnes, J.; Malmberg, L.E. Effects of early child-care on cognition, language, and task-related behaviours at 18 months: An English study. Br. J. Dev. Psychol. 2011, 29, 18–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamis-LeMonda, C.S.; Shannon, J.D.; Cabrera, N.J.; Lamb, M.E. Fathers and mothers at play with their 2- and 3-year-olds: Contributions to language and cognitive development. Child Dev. 2004, 75, 1806–1820. [Google Scholar] [CrossRef] [PubMed]
- Tofail, F.; Hamadani, J.D.; Ahmed, A.Z.; Mehrin, F.; Hakim, M.; Huda, S.N. The mental development and behavior of low-birth-weight Bangladeshi infants from an urban low-income community. Eur. J. Clin. Nutr. 2012, 66, 237–243. [Google Scholar] [CrossRef]
- Vrijheid, M.; Martinez, D.; Aguilera, I.; Bustamante, M.; Ballester, F.; Estarlich, M.; Fernandez-Somoano, A.; Guxens, M.; Lertxundi, N.; Martinez, M.D.; et al. Indoor air pollution from gas cooking and infant neurodevelopment. Epidemiology 2012, 23, 23–32. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Levy, D.; Factor-Litvak, P.; Kline, J.; van Geen, A.; Slavkovich, V.; LoIacono, N.J.; et al. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2006, 114, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; van Geen, A.; Slavkovich, V.; LoIacono, N.J.; Cheng, Z.; Hussain, I.; et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2004, 112, 1329–1333. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.L.; Salkie, F.J.; Letourneau, N. Welfare reforms and the cognitive development of young children. Can. J. Public Health 2005, 96, 13–17. [Google Scholar] [CrossRef]
- Zhou, S.J.; Baghurst, P.; Gibson, R.A.; Makrides, M. Home environment, not duration of breast-feeding, predicts intelligence quotient of children at four years. Nutrition 2007, 23, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Huizink, A.C.; Robles de Medina, P.G.; Mulder, E.J.; Visser, G.H.; Buitelaar, J.K. Stress during pregnancy is associated with developmental outcome in infancy. J. Child Psychol. Psychiatry Allied Discip. 2003, 44, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, P. Cognitive development in bilingual children: A case for bilingual instruction in early childhood education. Biling. Res. J. 1996, 20, 499–522. [Google Scholar] [CrossRef] [Green Version]
- Bialystok, E. Consequences of bilingualism for cognitive development. Handb. Biling. Psycholinguist. Approaches 2005, 417–432. [Google Scholar]
- Kenny, L.C.; Lavender, T.; McNamee, R.; O’Neill, S.M.; Mills, T.; Khashan, A.S. Advanced maternal age and adverse pregnancy outcome: Evidence from a large contemporary cohort. PLoS ONE 2013, 8, e56583. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.M.; Brockert, J.E.; Ward, R.H. Association of young maternal age with adverse reproductive outcomes. N. Engl. J.Med. 1995, 332, 1113–1118. [Google Scholar] [CrossRef]
- Negro, R.; Schwartz, A.; Gismondi, R.; Tinelli, A.; Mangieri, T.; Stagnaro-Green, A. Thyroid antibody positivity in the first trimester of pregnancy is associated with negative pregnancy outcomes. J. Clin. Endocrinol. Metab. 2011, 96, E920–E924. [Google Scholar] [CrossRef] [Green Version]
- Männistö, T.; Mendola, P.; Grewal, J.; Xie, Y.; Chen, Z.; Laughon, S.K. Thyroid diseases and adverse pregnancy outcomes in a contemporary US cohort. J. Clin. Endocrinol. Metab. 2013, 98, 2725–2733. [Google Scholar] [CrossRef]
- Khashan, A.S.; Kenny, L.C. The effects of maternal body mass index on pregnancy outcome. Eur. J. Epidemiol. 2009, 24, 697. [Google Scholar] [CrossRef]
- Sebire, N.J.; Jolly, M.; Harris, J.; Wadsworth, J.; Joffe, M.; Beard, R.; Regan, L.; Robinson, S. Maternal obesity and pregnancy outcome: A study of 287 213 pregnancies in London. Int. J. Obes. 2001, 25, 1175. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, F.M.; Tulve, N.S. A systematic review and meta-analysis examining the interrelationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. Environ. Res. 2020, 180, 108884. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.; Doyle, L.W.; Victorian Infant Collaborative Study Group. NEurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003, 289, 3264–3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrigas, C.; Fragoso, I. Obesity, academic performance and reasoning ability in Portuguese students between 6 and 12 years old. J. Biosoc. Sci. 2012, 44, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Beyerlein, A.; Ness, A.R.; Streuling, I.; Hadders-Algra, M.; von Kries, R. Early rapid growth: No association with later cognitive functions in children born not small for gestational age. Am. J. Clin. Nutr. 2010, 92, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, N.J.; Fagan, J.; Wight, V.; Schadler, C. Influence of mother, father, and child risk on parenting and children’s cognitive and social behaviors. Child Dev. 2011, 82, 1985–2005. [Google Scholar] [CrossRef] [Green Version]
- Carlo, W.A.; Goudar, S.S.; Pasha, O.; Chomba, E.; McClure, E.M.; Biasini, F.J.; Wallander, J.L.; Thorsten, V.; Chakraborty, H.; Wright, L.L. Neurodevelopmental outcomes in infants requiring resuscitation in developing countries. J. Pediatr. 2012, 160, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, S.; Otiv, M.; Chitale, A.; Pandit, A.; Hoge, M. Pune low birth weight study--cognitive abilities and educational performance at twelve years. Indian Pediatr. 2004, 41, 121–128. [Google Scholar]
- Cho, S.C.; Bhang, S.Y.; Hong, Y.C.; Shin, M.S.; Kim, B.N.; Kim, J.W.; Yoo, H.J.; Cho, I.H.; Kim, H.W. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ. Health Perspect. 2010, 118, 1027–1032. [Google Scholar] [CrossRef]
- Claus Henn, B.; Ettinger, A.S.; Schwartz, J.; Tellez-Rojo, M.M.; Lamadrid-Figueroa, H.; Hernandez-Avila, M.; Schnaas, L.; Amarasiriwardena, C.; Bellinger, D.C.; Hu, H.; et al. Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology 2010, 21, 433–439. [Google Scholar] [CrossRef]
- Cooke, R.W.; Foulder-Hughes, L. Growth impairment in the very preterm and cognitive and motor performance at 7 years. Arch. Dis. Child. 2003, 88, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Cserjesi, R.; Van Braeckel, K.N.; Butcher, P.R.; Kerstjens, J.M.; Reijneveld, S.A.; Bouma, A.; Geuze, R.H.; Bos, A.F. Functioning of 7-year-old children born at 32 to 35 weeks’ gestational age. Pediatrics 2012, 130, e838–e846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-khayat, H.; Shaaban, S.; Emam, E.K.; Elwakkad, A. Cognitive functions in protein-energy malnutrition: In relation to long chain-polyunsaturated fatty acids. Pak. J. Biol. Sci. 2007, 10, 1773–1781. [Google Scholar] [PubMed] [Green Version]
- Feldman, R.; Eidelman, A.I. Does a triplet birth pose a special risk for infant development? Assessing cognitive development in relation to intrauterine growth and mother-infant interaction across the first 2 years. Pediatrics 2005, 115, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Ramos, R.; Amaya, E.; Fernandez, M.F.; Santiago-Fernandez, P.; Lopez-Espinosa, M.J.; Arrebola, J.P.; Olea, N. Newborn TSH concentration and its association with cognitive development in healthy boys. Eur. J. Endocrinol. 2010, 163, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; Martyn, C.N.; Marriott, L.D.; Limond, J.; Crozier, S.; Inskip, H.M.; Godfrey, K.M.; Law, C.M.; Cooper, C.; Robinson, S.M. Dietary patterns in infancy and cognitive and neuropsychological function in childhood. J. Child Psychol. Psychiatry Allied Discipl. 2009, 50, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; O’Callaghan, F.J.; Bredow, M.; Martyn, C.N. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics 2006, 118, 1486–1492. [Google Scholar] [CrossRef]
- Gunnell, D.; Miller, L.L.; Rogers, I.; Holly, J.M. Association of insulin-like growth factor I and insulin-like growth factor-binding protein-3 with intelligence quotient among 8- to 9-year-old children in the Avon Longitudinal Study of Parents and Children. Pediatrics 2005, 116, e681–e686. [Google Scholar] [CrossRef] [Green Version]
- Horton, M.K.; Rundle, A.; Camann, D.E.; Boyd Barr, D.; Rauh, V.A.; Whyatt, R.M. Impact of prenatal exposure to piperonyl butoxide and permethrin on 36-month neurodevelopment. Pediatrics 2011, 127, e699–e706. [Google Scholar] [CrossRef] [Green Version]
- Kilbride, H.W.; Thorstad, K.; Daily, D.K. Preschool outcome of less than 801-gram preterm infants compared with full-term siblings. Pediatrics 2004, 113, 742–747. [Google Scholar] [CrossRef]
- Larroque, B.; Ancel, P.Y.; Marret, S.; Marchand, L.; Andre, M.; Arnaud, C.; Pierrat, V.; Roze, J.C.; Messer, J.; Thiriez, G.; et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): A longitudinal cohort study. Lancet 2008, 371, 813–820. [Google Scholar] [CrossRef]
- Lowe, J.; Erickson, S.J.; MacLean, P. Cognitive correlates in toddlers born very low birth weight and full-term. Infant Behav. Dev. 2010, 33, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Marlow, N.; Wolke, D.; Bracewell, M.A.; Samara, M. Neurologic and developmental disability at six years of age after extremely preterm birth. N. Engl. J. Med. 2005, 352, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Sunyer, J.; Julvez, J.; Castro-Giner, F.; Estivill, X.; Torrent, M.; De Cid, R. GSTM1 polymorphisms modify the effect of maternal smoking during pregnancy on cognitive functioning in preschoolers. Int. J. Epidemiol. 2009, 38, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Morales, E.; Bustamante, M.; Gonzalez, J.R.; Guxens, M.; Torrent, M.; Mendez, M.; Garcia-Esteban, R.; Julvez, J.; Forns, J.; Vrijheid, M.; et al. Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS ONE 2011, 6, e17181. [Google Scholar] [CrossRef] [Green Version]
- Munck, P.; Niemi, P.; Lapinleimu, H.; Lehtonen, L.; Haataja, L. Stability of cognitive outcome from 2 to 5 years of age in very low birth weight children. Pediatrics 2012, 129, 503–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, S.; Lerner, E.; Needlman, R.; Salvator, A.; Singer, L.T. Cocaine, anemia, and neurodevelopmental outcomes in children: A longitudinal study. J. Dev. Behav. Pediatr. 2004, 25, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepomnyaschy, L.; Hegyi, T.; Ostfeld, B.M.; Reichman, N.E. Developmental outcomes of late-preterm infants at 2 and 4 years. Matern. Child Health J. 2012, 16, 1612–1624. [Google Scholar] [CrossRef]
- Odd, D.E.; Lewis, G.; Whitelaw, A.; Gunnell, D. Resuscitation at birth and cognition at 8 years of age: A cohort study. Lancet 2009, 373, 1615–1622. [Google Scholar] [CrossRef]
- Orchinik, L.J.; Taylor, H.G.; Espy, K.A.; Minich, N.; Klein, N.; Sheffield, T.; Hack, M. Cognitive outcomes for extremely preterm/extremely low birth weight children in kindergarten. J. Int. Neuropsychol. Soc. 2011, 17, 1067–1079. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Hertz-Picciotto, I.; Sovcikova, E.; Kocan, A.; Drobna, B.; Trnovec, T. Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: A birth cohort study. Environ. Health Glob. Access Sci. Sour. 2010, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Park, J.S.; Sovcikova, E.; Kocan, A.; Linderholm, L.; Bergman, A.; Trnovec, T.; Hertz-Picciotto, I. Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ. Health Perspect. 2009, 117, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B.; Whitehead, R.; Tang, D.; Whyatt, R.W. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006, 118, e1845–e1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riojas-Rodriguez, H.; Solis-Vivanco, R.; Schilmann, A.; Montes, S.; Rodriguez, S.; Rios, C.; Rodriguez-Agudelo, Y. Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese. Environ. Health Perspect. 2010, 118, 1465–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schermann, L.; Sedin, G. Cognitive function at 10 years of age in children who have required neonatal intensive care. Acta Paediatr. 2004, 93, 1619–1629. [Google Scholar] [CrossRef]
- Schnaas, L.; Rothenberg, S.J.; Flores, M.F.; Martinez, S.; Hernandez, C.; Osorio, E.; Velasco, S.R.; Perroni, E. Reduced intellectual development in children with prenatal lead exposure. Environ. Health Perspect. 2006, 114, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Short, E.J.; Klein, N.K.; Lewis, B.A.; Fulton, S.; Eisengart, S.; Kercsmar, C.; Baley, J.; Singer, L.T. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics 2003, 112, e359. [Google Scholar] [CrossRef] [Green Version]
- Serenius, F.; Kallen, K.; Blennow, M.; Ewald, U.; Fellman, V.; Holmstrom, G.; Lindberg, E.; Lundqvist, P.; Marsal, K.; Norman, M.; et al. Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. JAMA 2013, 309, 1810–1820. [Google Scholar] [CrossRef] [Green Version]
- Soria-Pastor, S.; Padilla, N.; Zubiaurre-Elorza, L.; Ibarretxe-Bilbao, N.; Botet, F.; Costas-Moragas, C.; Falcon, C.; Bargallo, N.; Mercader, J.M.; Junque, C. Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 2009, 124, e1161–e1170. [Google Scholar] [CrossRef]
- Surkan, P.J.; Zhang, A.; Trachtenberg, F.; Daniel, D.B.; McKinlay, S.; Bellinger, D.C. Neuropsychological function in children with blood lead levels <10 microg/dL. Neurotoxicology 2007, 28, 1170–1177. [Google Scholar] [CrossRef] [Green Version]
- Tellez-Rojo, M.M.; Bellinger, D.C.; Arroyo-Quiroz, C.; Lamadrid-Figueroa, H.; Mercado-Garcia, A.; Schnaas-Arrieta, L.; Wright, R.O.; Hernandez-Avila, M.; Hu, H. Longitudinal associations between blood lead concentrations lower than 10 microg/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics 2006, 118, e323–e330. [Google Scholar] [CrossRef]
- von Ehrenstein, O.S.; Mikolajczyk, R.T.; Zhang, J. Timing and trajectories of fetal growth related to cognitive development in childhood. Am. J. Epidemiol. 2009, 170, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; Kline, J.; van Geen, A.; Slavkovich, V.; Loiacono, N.J.; Levy, D.; et al. Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ. Health Perspect. 2007, 115, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Watson, G.E.; Evans, K.; Thurston, S.W.; van Wijngaarden, E.; Wallace, J.M.; McSorley, E.M.; Bonham, M.P.; Mulhern, M.S.; McAfee, A.J.; Davidson, P.W.; et al. Prenatal exposure to dental amalgam in the Seychelles Child Development Nutrition Study: Associations with neurodevelopmental outcomes at 9 and 30 months. Neurotoxicology 2012, 33, 1511–1517. [Google Scholar] [CrossRef] [Green Version]
- Watson, G.E.; Lynch, M.; Myers, G.J.; Shamlaye, C.F.; Thurston, S.W.; Zareba, G.; Clarkson, T.W.; Davidson, P.W. Prenatal exposure to dental amalgam: Evidence from the Seychelles Child Development Study main cohort. J. Am. Dent. Assoc. 2011, 142, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Whyatt, R.M.; Liu, X.; Rauh, V.A.; Calafat, A.M.; Just, A.C.; Hoepner, L.; Diaz, D.; Quinn, J.; Adibi, J.; Perera, F.P.; et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ. Health Perspect. 2012, 120, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Tilling, K.; Martin, R.; Davies, N.; Ben-Shlomo, Y.; Kramer, M.S. Pre-natal and post-natal growth trajectories and childhood cognitive ability and mental health. Int. J. Epidemiol. 2011, 40, 1215–1226. [Google Scholar] [CrossRef]
- Delahunty, C.; Falconer, S.; Hume, R.; Jackson, L.; Midgley, P.; Mirfield, M.; Ogston, S.; Perra, O.; Simpson, J.; Watson, J. Levels of neonatal thyroid hormone in preterm infants and neurodevelopmental outcome at 5½ years: Millennium cohort study. J. Clin. Endocrinol. Metab. 2010, 95, 4898–4908. [Google Scholar] [CrossRef]
- Grunau, R.E.; Whitfield, M.F.; Petrie-Thomas, J.; Synnes, A.R.; Cepeda, I.L.; Keidar, A.; Rogers, M.; MacKay, M.; Hubber-Richard, P.; Johannesen, D. Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain 2009, 143, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Zuccolo, L.; Smith, G.D.; Macleod, J.; Rodriguez, S.; Draper, E.S.; Barrow, M.; Alati, R.; Sayal, K.; Ring, S. Fetal alcohol exposure and IQ at age 8: Evidence from a population-based birth-cohort study. PLoS ONE 2012, 7, e49407. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.D.; Han, Z.; Mulla, S.; Beyene, J. Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: Systematic review and meta-analyses. BMJ 2010, 341, c3428. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, K.J.; Casey, P.H.; Bradley, R.H.; Pope, S.K.; Whiteside, L.; Barrett, K.W.; Swanson, M.E.; Kirby, R.S. Risk factors and outcomes for failure to thrive in low birth weight preterm infants. Pediatrics 1993, 91, 941–948. [Google Scholar] [PubMed]
- Kimura, D.; Hampson, E. Cognitive pattern in men and women is influenced by fluctuations in sex hormones. Curr. Dir. Psychol. Sci. 1994, 3, 57–61. [Google Scholar] [CrossRef]
- Berenbaum, S.A.; Korman, K.; Leveroni, C. Early hormones and sex differences in cognitive abilities. Learn. Individ. Differ. 1995, 7, 303–321. [Google Scholar] [CrossRef]
- Waber, D.P. Sex differences in cognition: A function of maturation rate? Science 1976, 192, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Kostović, I.; Jovanov-Milošević, N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal Neonatal Med. 2006, 11, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, L.M.; Janisse, J.; Delaney-Black, V.; Sokol, R.J.; Hannigan, J.H. A metric of maternal prenatal risk drinking predicts neurobehavioral outcomes in preschool children. Alcohol. Clin. Exp. Res. 2009, 33, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.W.; Strain, J.J.; Myers, G.J.; Thurston, S.W.; Bonham, M.P.; Shamlaye, C.F.; Stokes-Riner, A.; Wallace, J.M.; Robson, P.J.; Duffy, E.M.; et al. Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. Neurotoxicology 2008, 29, 767–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S.C.; Jedrychowski, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Flak, E.; Li, Z.; Wang, S.; Rauh, V.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef]
- Hamadani, J.D.; Tofail, F.; Nermell, B.; Gardner, R.; Shiraji, S.; Bottai, M.; Arifeen, S.E.; Huda, S.N.; Vahter, M. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: A population-based cohort study. Int. J. Epidemiol. 2011, 40, 1593–1604. [Google Scholar] [CrossRef]
- Harari, R.; Julvez, J.; Murata, K.; Barr, D.; Bellinger, D.C.; Debes, F.; Grandjean, P. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environ. Health Perspect. 2010, 118, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Jedrychowski, W.; Perera, F.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.; Lisowska-Miszczyk, I. Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-lead levels: The prospective cohort study in three-year olds. Early Hum. Dev. 2009, 85, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedrychowski, W.; Jankowski, J.; Flak, E.; Skarupa, A.; Mroz, E.; Sochacka-Tatara, E.; Lisowska-Miszczyk, I.; Szpanowska-Wohn, A.; Rauh, V.; Skolicki, Z.; et al. Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: Epidemiologic cohort study in Poland. Ann. Epidemiol. 2006, 16, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Laslo-Baker, D.; Barrera, M.; Knittel-Keren, D.; Kozer, E.; Wolpin, J.; Khattak, S.; Hackman, R.; Rovet, J.; Koren, G. Child neurodevelopmental outcome and maternal occupational exposure to solvents. Arch. Pediatr. Adolesc. Med. 2004, 158, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Min, M.O.; Singer, L.T.; Kirchner, H.L.; Minnes, S.; Short, E.; Hussain, Z.; Nelson, S. Cognitive development and low-level lead exposure in poly-drug exposed children. Neurotoxicol. Teratol. 2009, 31, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Perera, F.P.; Rauh, V.; Whyatt, R.M.; Tsai, W.Y.; Tang, D.; Diaz, D.; Hoepner, L.; Barr, D.; Tu, Y.H.; Camann, D.; et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ. Health Perspect. 2006, 114, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Seraj, B.; Shahrabi, M.; Shadfar, M.; Ahmadi, R.; Fallahzadeh, M.; Eslamlu, H.F.; Kharazifard, M.J. Effect of high water fluoride concentration on the intellectual development of children in makoo/iran. J. Dent. 2012, 9, 221–229. [Google Scholar]
- Shivaprakash, P.K.; Ohri, K.; Noorani, H. Relation between dental fluorosis and intelligence quotient in school children of Bagalkot district. J. Indian Soc. Pedod. Prev. Dent. 2011, 29, 117–120. [Google Scholar] [CrossRef]
- Shy, C.G.; Huang, H.L.; Chang-Chien, G.P.; Chao, H.R.; Tsou, T.C. Neurodevelopment of infants with prenatal exposure to polybrominated diphenyl ethers. Bull. Environ. Contam. Toxicol. 2011, 87, 643–648. [Google Scholar] [CrossRef]
- Thompson, W.W.; Price, C.; Goodson, B.; Shay, D.K.; Benson, P.; Hinrichsen, V.L.; Lewis, E.; Eriksen, E.; Ray, P.; Marcy, S.M.; et al. Early thimerosal exposure and neuropsychological outcomes at 7 to 10 years. N. Engl. J. Med. 2007, 357, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.X.; Wang, Z.H.; Cheng, X.T.; Li, J.; Sang, Z.P.; Zhang, X.D.; Han, L.L.; Qiao, X.Y.; Wu, Z.M.; Wang, Z.Q. Arsenic and fluoride exposure in drinking water: Children’s IQ and growth in Shanyin county, Shanxi province, China. Environ. Health Perspect. 2007, 115, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Karri, V.; Schuhmacher, M.; Kumar, V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol. 2016, 48, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Hammond, P.B.; Bornschein, R.L. Lead exposure and the cognitive development of urban preschool children: The Cincinnati Lead Study cohort at age 4 years. Neurotoxicol. Teratol. 1991, 13, 203–211. [Google Scholar] [CrossRef]
- Smith, P.W. Memory Maintenance and Cognitive Decline. In Anti-Aging Therapeutics Volume XVI; Klatz, R., Goldman, R., Eds.; A4M Publications: Chicago, IL, USA, 2015. [Google Scholar]
- Braun, J.M.; Kalloo, G.; Chen, A.; Dietrich, K.N.; Liddy-Hicks, S.; Morgan, S.; Xu, Y.; Yolton, K.; Lanphear, B.P. Cohort profile: The Health Outcomes and Measures of the Environment (HOME) study. Int. J. Epidemiol. 2017, 46, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillett, T. PAHs and Cognitive Impairment: Prenatal Exposure Catches Up with Toddlers. Environ. Health Perspect. 2006, 114, A487. [Google Scholar] [CrossRef] [Green Version]
- Jurewicz, J.; Polańska, K.; Hanke, W. Exposure to widespread environmental toxicants and children’s cognitive development and behavioral problems. Int. J. Occup. Med. Environ. Health 2013, 26, 185–204. [Google Scholar] [PubMed]
- Yolton, K.; Dietrich, K.; Auinger, P.; Lanphear, B.P.; Hornung, R. Exposure to environmental tobacco smoke and cognitive abilities among US children and adolescents. Environ. Health Perspect. 2005, 113, 98–103. [Google Scholar] [CrossRef]
- Tabb, M.M.; Blumberg, B. New modes of action for endocrine-disrupting chemicals. Mol. Endocrinol. 2006, 20, 475–482. [Google Scholar] [CrossRef]
- Galea, L.A.; Uban, K.A.; Epp, J.R.; Brummelte, S.; Barha, C.K.; Wilson, W.L.; Lieblich, S.E.; Pawluski, J.L. Endocrine regulation of cognition and neuroplasticity: Our pursuit to unveil the complex interaction between hormones, the brain, and behaviour. Can. J. Exp. Psychol./Revue Can. Psychol. Exp. 2008, 62, 247. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.M.; Froehlich, T.E.; Daniels, J.L.; Dietrich, K.N.; Hornung, R.; Auinger, P.; Lanphear, B.P. Association of environmental toxicants and conduct disorder in U.S. children: NHANES 2001–2004. Environ. Health Perspect. 2008, 116, 956–962. [Google Scholar] [CrossRef]
- Braun, J.M.; Kalkbrenner, A.E.; Calafat, A.M.; Yolton, K.; Ye, X.; Dietrich, K.N.; Lanphear, B.P. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 2011, 128, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, F.; Frank, J.; Tulve, N. A Systematic Review and Meta-Analysis Investigating the Relationship between Exposures to Chemical and Non-Chemical Stressors during Prenatal Development and Childhood Externalizing Behaviors. Int. J. Environ. Res. Public Health 2020, 17, 2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, E.C.; Ghys, A.J.A.; Kester, A.D.M.; Vles, J.S.H.; Dubas, J.S.; Blanco, C.E.; Hornstra, G. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7[emsp14]y of age. Eur. J. Clin. Nutr. 2003, 57, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calhoun, S.L.; Mayes, S.D.; Vgontzas, A.N.; Tsaoussoglou, M.; Shifflett, L.J.; Bixler, E.O. No relationship between neurocognitive functioning and mild sleep disordered breathing in a community sample of children. J. Clin. Sleep Med. Off. Publ. Am. Acad. Sleep Med. 2009, 5, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Chatzi, L.; Papadopoulou, E.; Koutra, K.; Roumeliotaki, T.; Georgiou, V.; Stratakis, N.; Lebentakou, V.; Karachaliou, M.; Vassilaki, M.; Kogevinas, M. Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: The mother-child cohort ‘Rhea’ study in Crete, Greece. Public Health Nutr. 2012, 15, 1728–1736. [Google Scholar] [CrossRef] [Green Version]
- del Rio Garcia, C.; Torres-Sanchez, L.; Chen, J.; Schnaas, L.; Hernandez, C.; Osorio, E.; Portillo, M.G.; Lopez-Carrillo, L. Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): Their impact on child neurodevelopment. Nutr. Neurosci. 2009, 12, 13–20. [Google Scholar] [CrossRef]
- Emancipator, J.L.; Storfer-Isser, A.; Taylor, H.G.; Rosen, C.L.; Kirchner, H.L.; Johnson, N.L.; Zambito, A.M.; Redline, S. Variation of cognition and achievement with sleep-disordered breathing in full-term and preterm children. Arch. Pediatr. Adolesc. Med. 2006, 160, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Freire, C.; Ramos, R.; Lopez-Espinosa, M.J.; Diez, S.; Vioque, J.; Ballester, F.; Fernandez, M.F. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ. Res. 2010, 110, 96–104. [Google Scholar] [CrossRef]
- Gale, C.R.; Robinson, S.M.; Godfrey, K.M.; Law, C.M.; Schlotz, W.; O’Callaghan, F.J. Oily fish intake during pregnancy--association with lower hyperactivity but not with higher full-scale IQ in offspring. J. Child Psychol. Psychiatry Allied Discipl. 2008, 49, 1061–1068. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Chase, C.; Vezina, R.M.; Heeren, T.C.; Corwin, M.J.; Auerbach, S.H.; Weese-Mayer, D.E.; Lesko, S.M. Sleep-disordered breathing symptoms are associated with poorer cognitive function in 5-year-old children. J. Pediatr. 2004, 145, 458–464. [Google Scholar] [CrossRef]
- Guxens, M.; Mendez, M.A.; Molto-Puigmarti, C.; Julvez, J.; Garcia-Esteban, R.; Forns, J.; Ferrer, M.; Vrijheid, M.; Lopez-Sabater, M.C.; Sunyer, J. Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development. Pediatrics 2011, 128, e880–e889. [Google Scholar] [CrossRef] [Green Version]
- Jackman, A.R.; Biggs, S.N.; Walter, L.M.; Embuldeniya, U.S.; Davey, M.J.; Nixon, G.M.; Anderson, V.; Trinder, J.; Horne, R.S. Sleep-disordered breathing in preschool children is associated with behavioral, but not cognitive, impairments. Sleep Med. 2012, 13, 621–631. [Google Scholar] [CrossRef]
- Jacobson, J.L.; Jacobson, S.W.; Muckle, G.; Kaplan-Estrin, M.; Ayotte, P.; Dewailly, E. Beneficial effects of a polyunsaturated fatty acid on infant development: Evidence from the inuit of arctic Quebec. J. Pediatr. 2008, 152, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Julvez, J.; Fortuny, J.; Mendez, M.; Torrent, M.; Ribas-Fito, N.; Sunyer, J. Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatr. Perinat. Epidemiol. 2009, 23, 199–206. [Google Scholar] [CrossRef]
- Kaemingk, K.L.; Pasvogel, A.E.; Goodwin, J.L.; Mulvaney, S.A.; Martinez, F.; Enright, P.L.; Rosen, G.M.; Morgan, W.J.; Fregosi, R.F.; Quan, S.F. Learning in children and sleep disordered breathing: Findings of the Tucson Children’s Assessment of Sleep Apnea (tuCASA) prospective cohort study. J. Int. Neuropsychol. Soc. 2003, 9, 1016–1026. [Google Scholar] [CrossRef]
- Kohler, M.J.; Lushington, K.; van den Heuvel, C.J.; Martin, J.; Pamula, Y.; Kennedy, D. Adenotonsillectomy and neurocognitive deficits in children with Sleep Disordered Breathing. PLoS ONE 2009, 4, e7343. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.A.; Torrent, M.; Julvez, J.; Ribas-Fito, N.; Kogevinas, M.; Sunyer, J. Maternal fish and other seafood intakes during pregnancy and child neurodevelopment at age 4 years. Public Health Nutr. 2009, 12, 1702–1710. [Google Scholar] [CrossRef] [Green Version]
- Miano, S.; Paolino, M.C.; Urbano, A.; Parisi, P.; Massolo, A.C.; Castaldo, R.; Villa, M.P. Neurocognitive assessment and sleep analysis in children with sleep-disordered breathing. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2011, 122, 311–319. [Google Scholar] [CrossRef]
- Pilsner, J.R.; Hu, H.; Wright, R.O.; Kordas, K.; Ettinger, A.S.; Sanchez, B.N.; Cantonwine, D.; Lazarus, A.L.; Cantoral, A.; Schnaas, L.; et al. Maternal MTHFR genotype and haplotype predict deficits in early cognitive development in a lead-exposed birth cohort in Mexico City. Am. J. Clin. Nutr. 2010, 92, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Fito, N.; Julvez, J.; Torrent, M.; Grimalt, J.O.; Sunyer, J. Beneficial effects of breastfeeding on cognition regardless of DDT concentrations at birth. Am. J. Epidemiol. 2007, 166, 1198–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Sanchez, L.; Rothenberg, S.J.; Schnaas, L.; Cebrian, M.E.; Osorio, E.; Del Carmen Hernandez, M.; Garcia-Hernandez, R.M.; Del Rio-Garcia, C.; Wolff, M.S.; Lopez-Carrillo, L. In utero p,p’-DDE exposure and infant neurodevelopment: A perinatal cohort in Mexico. Environ. Health Perspect. 2007, 115, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Veldwijk, J.; Scholtens, S.; Hornstra, G.; Bemelmans, W.J. Body mass index and cognitive ability of young children. Obes. Facts 2011, 4, 264–269. [Google Scholar] [CrossRef]
- Quigley, M.A.; Hockley, C.; Carson, C.; Kelly, Y.; Renfrew, M.J.; Sacker, A. Breastfeeding is associated with improved child cognitive development: A population-based cohort study. J. Pediatr. 2012, 160, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.E.; Alexander, J.E.; Winningham, R.G. Omega-3 polyunsaturated fatty acids and cognition throughout the lifespan: A review. Nutr. Neurosci. 2011, 14, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Willatts, P.; Forsyth, J. The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot. Essent. Fat. Acids 2000, 63, 95–100. [Google Scholar] [CrossRef]
- Qawasmi, A.; Landeros-Weisenberger, A.; Leckman, J.F.; Bloch, M.H. Meta-analysis of long-chain polyunsaturated fatty acid supplementation of formula and infant cognition. Pediatrics 2012, 129, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Willatts, P.; Forsyth, S.; Agostoni, C.; Casaer, P.; Riva, E.; Boehm, G. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood. Am. J. Clin. Nutr. 2013, 98, 536S–542S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khodaee, G.H.; Emami Moghadam, Z.; Khademi, G.; Saeidi, M. Healthy Diet in Children: Facts and Keys. Int. J. Pediatr. 2015, 3, 1183–1194. [Google Scholar]
- Jago, R.; Baranowski, T.; Baranowski, J.C.; Thompson, D.; Greaves, K. BMI from 3–6 y of age is predicted by TV viewing and physical activity, not diet. Int. J. Obes. 2005, 29, 557. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.A.; Ogden, J.; Vögele, C.; Gibson, E.L. The role of parental control practices in explaining children’s diet and BMI. Appetite 2008, 50, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Albers, E.M.; Riksen-Walraven, J.M.; de Weerth, C. Developmental stimulation in child care centers contributes to young infants’ cognitive development. Infant Behav. Dev. 2010, 33, 401–408. [Google Scholar] [CrossRef]
- DePrince, A.P.; Weinzierl, K.M.; Combs, M.D. Executive function performance and trauma exposure in a community sample of children. Child Abuse Negl. 2009, 33, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, D.; Warner, T.; Krebs, C.; Trevarthen, N.; Flannery, B.; Hammond, J. Differential relationships between personal and community stressors and children’s neurocognitive functioning. Child Maltreatment 2009, 14, 299–315. [Google Scholar] [CrossRef]
- Koenen, K.C.; Moffitt, T.E.; Caspi, A.; Taylor, A.; Purcell, S. Domestic violence is associated with environmental suppression of IQ in young children. Dev. Psychopathol. 2003, 15, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Pears, K.; Fisher, P.A. Developmental, cognitive, and neuropsychological functioning in preschool-aged foster children: Associations with prior maltreatment and placement history. J. Dev. Behav. Pediatr. 2005, 26, 112–122. [Google Scholar] [CrossRef]
- Yang, S.; Kramer, M.S. Paternal alcohol consumption, family transition and child development in a former Soviet country. Int. J. Epidemiol. 2012, 41, 1086–1096. [Google Scholar] [CrossRef] [Green Version]
- Perret-Clermont, A.-N. Social Interaction and Cognitive Development in Children; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Peisner-Feinberg, E.S.; Burchinal, M.R.; Clifford, R.M.; Culkin, M.L.; Howes, C.; Kagan, S.L.; Yazejian, N. The relation of preschool child-care quality to children’s cognitive and social developmental trajectories through second grade. Child Dev. 2001, 72, 1534–1553. [Google Scholar] [CrossRef]
- Moore, G.T. The physical environment and cognitive development in child-care centers. In Spaces for Children; Springer: Berlin/Heidelberg, Germany, 1987; pp. 41–72. [Google Scholar]
- Duncan, G.J.; National Institute of Child Health; Human Development Early Child Care Research Network. Modeling the impacts of child care quality on children’s preschool cognitive development. Child Dev. 2003, 74, 1454–1475. [Google Scholar]
- Caughy, M.O.B.; DiPietro, J.A.; Strobino, D.M. Day-care participation as a protective factor in the cognitive development of low-income children. Child Dev. 1994, 65, 457–471. [Google Scholar] [CrossRef]
Prenatal Exposures | Childhood Exposures | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Primary Factor | Exposure + Variables | Studies | Sampling Events | Individuals | Secondary Factor | Primary Factor | Exposure + Variables | Studies | Sampling Events | Individuals | Secondary Factor |
Maternal (1.04) *** | Socioeconomics (1.13) *** | 55 | 139 | 113,976 | Social | Activities & Behaviors (1.05) *** | Breastfeeding (1.16) *** | 24 | 63 | 28,895 | Maternal/Social |
Employment (1.06) *** | 6 | 15 | 6818 | Yes/No (1.16) ** | 6 | 6 | 3349 | ||||
Education (1.18) *** | 45 | 71 | 55,020 | Duration (1.15) *** | 16 | 47 | 23,789 | ||||
Income (1.13) *** | 19 | 29 | 28,235 | LC-PUFAs (1.20) *** | 3 | 13 | 1757 | ||||
Language (0.96) * | 5 | 7 | 2580 | Diet (1.05) *** | 17 | 39 | 46,179 | ||||
Resources (1.06) ** | 5 | 6 | 3149 | BMI (1.14) *** | 3 | 8 | 1802 | ||||
Home Ownership (0.99) * | 3 | 5 | 17,418 | Diet pattern (1.03) ** | 5 | 10 | 39,284 | ||||
Technology Access (1.17) ** | 3 | 6 | 602 | Folic Acid (1.04) * | 4 | 5 | 1499 | ||||
Maternal Health (1.02) *** | 43 | 127 | 125,369 | Inherent/Social | Fish Intake (1.01) *** | 5 | 16 | 3594 | |||
Age (1.08) *** | 25 | 31 | 25,100 | Sleep (0.82) *** | 11 | 26 | 3963 | ||||
BMI (1.01) *** | 10 | 22 | 52,271 | Duration (1.06) ** | 3 | 3 | 657 | ||||
Thyroid Health (1.05) *** | 6 | 20 | 6121 | Snoring (0.66) | 4 | 4 | 356 | ||||
Mental Health (0.91) *** | 11 | 24 | 36,909 | Disordered Breathing (0.77) ** | 8 | 16 | 2950 | ||||
Stress (perceived) (0.97) *** | 7 | 20 | 4917 | Social (1.07) *** | Social Interaction (1.14) *** | 18 | 56 | 43,081 | Inherent/Maternal | ||
Stress (cortisol) (1.08) ** | 3 | 10 | 1496 | Maternal Sensitivity (1.29) *** | 7 | 11 | 2092 | ||||
Substance Use (0.97) *** | 39 | 147 | 159,067 | Social | Parent/Child Interact (1.25) *** | 7 | 24 | 26,804 | |||
Alcohol (amount) (0.99) *** | 19 | 60 | 64,292 | Childhood Trauma (0.93) *** | 6 | 21 | 14,185 | ||||
Alcohol (binging) (0.96) *** | 4 | 19 | 36,817 | Home/Family (0.98) *** | 27 | 55 | 119,554 | ||||
Cigarettes (0.96) *** | 25 | 38 | 51,251 | Number of Siblings (0.94) ** | 6 | 8 | 17,393 | ||||
Cocaine (0.98) *** | 9 | 18 | 4218 | Caregiver Relationship (0.92) ** | 5 | 9 | 4579 | ||||
Other Narcotics (0.96) ** | 5 | 12 | 2489 | Family Stability (0.98) *** | 7 | 11 | 41,287 | ||||
Inherent (1.03) *** | Anthropometry (1.1) *** | 84 | 138 | 111,310 | Maternal | Marital Status (1.01) *** | 11 | 14 | 53,001 | ||
Head Size (1.22) *** | 10 | 10 | 4111 | Home Location (0.99) *** | 4 | 13 | 3294 | ||||
Body Length (1.21) *** | 9 | 12 | 17,112 | Childcare (1.15) *** | 4 | 14 | 4144 | ||||
Birth Weight (1.14) *** | 37 | 47 | 43,129 | Quality of Care (1.25) ** | 3 | 5 | 1349 | ||||
Fetal Growth (1.06) ** | 3 | 6 | 2315 | Time in Care (1.13) ** | 3 | 5 | 2251 | ||||
Sex (1.05) *** | 59 | 63 | 44,643 | Attendance (1.07) * | 4 | 4 | 4144 | ||||
Birth Outcomes (0.91) *** | 33 | 67 | 53,490 | Chemical (1.05) *** | Toxic Gases (1.06) *** | 16 | 25 | 10,640 | Social/Activities & Behaviors | ||
Delivery Method (0.98) | 3 | 3 | 2532 | PAHs (1.35) *** | 5 | 6 | 1514 | ||||
Preterm (0.78) *** | 11 | 21 | 16,558 | Cigarette Smoke (0.97) *** | 13 | 16 | 7017 | ||||
Parity (0.89) *** | 14 | 24 | 20,195 | Toxic Elements (1.04) *** | 25 | 58 | 25,754 | ||||
Multiple Births (0.86) | 3 | 3 | 8387 | Fluorine (1.40) * | 3 | 3 | 902 | ||||
Gestational Age (1.11) *** | 13 | 16 | 5818 | Arsenic (0.95) ** | 5 | 11 | 12,249 | ||||
Child Health (1.0) *** | 18 | 40 | 63,969 | Manganese (0.90) * | 3 | 5 | 520 | ||||
Medical History (1.03) *** | 6 | 18 | 47,923 | Lead (1.03) *** | 11 | 23 | 6314 | ||||
Iron Deficiency (0.89) * | 6 | 7 | 1302 | Mercury (1.10) *** | 8 | 16 | 4769 | ||||
Genetics (0.99) *** | 4 | 15 | 14,744 | Endocrine Active (0.99) *** | 12 | 27 | 4621 | ||||
Pesticides (1.05) *** | 8 | 10 | 1498 | ||||||||
Chlorinated (0.92) ** | 3 | 11 | 1835 | ||||||||
PBDE/phthalates (0.92) * | 3 | 6 | 1288 |
Factor | Sensitivity Analysis | Publication Bias | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Meta-Analysis Estimation Model | Data Robustness | Method | p-Value | |||||||
REML (This Study) | FE | HE | DL | PM | EB | ML | (% ORs within 10%) | |||
Maternal | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 100% | SE | 0.86 |
OR Difference | 0 | 0 | 0 | 0 | 0 | 0 | 1/n | 0.88 | ||
% Difference | 0% | 0% | 0% | 0% | 0% | 0% | ||||
Inherent | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 100% | SE | 0.76 |
OR Difference | 0 | 0 | 0 | 0 | 0 | 0 | 1/n | 1.0 | ||
% Difference | 0% | 0% | 0% | 0% | 0% | 0% | ||||
Chemical | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 100% | SE | 0.67 |
OR Difference | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1/n | 0.72 | ||
% Difference | 0% | 0% | 0% | 0% | 0% | 0% | ||||
Behavioral | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 100% | SE | 0.87 |
OR Difference | 0 | 0 | 0 | 0 | 0 | 0 | 1/n | 0.89 | ||
% Difference | 0% | 0% | 0% | 0% | 0% | 0% | ||||
Social | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 100% | SE | 0.63 |
OR Difference | 0 | 0 | 0 | 0 | 0 | 0 | 1/n | 0.59 | ||
% Difference | 0% | 0% | 0% | 0% | 0% | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsen, F.M.; Ruiz, J.D.C.; Tulve, N.S. A Meta-Analysis of Stressors from the Total Environment Associated with Children’s General Cognitive Ability. Int. J. Environ. Res. Public Health 2020, 17, 5451. https://doi.org/10.3390/ijerph17155451
Nilsen FM, Ruiz JDC, Tulve NS. A Meta-Analysis of Stressors from the Total Environment Associated with Children’s General Cognitive Ability. International Journal of Environmental Research and Public Health. 2020; 17(15):5451. https://doi.org/10.3390/ijerph17155451
Chicago/Turabian StyleNilsen, Frances M., Jazmin D.C. Ruiz, and Nicolle S. Tulve. 2020. "A Meta-Analysis of Stressors from the Total Environment Associated with Children’s General Cognitive Ability" International Journal of Environmental Research and Public Health 17, no. 15: 5451. https://doi.org/10.3390/ijerph17155451
APA StyleNilsen, F. M., Ruiz, J. D. C., & Tulve, N. S. (2020). A Meta-Analysis of Stressors from the Total Environment Associated with Children’s General Cognitive Ability. International Journal of Environmental Research and Public Health, 17(15), 5451. https://doi.org/10.3390/ijerph17155451