Perception of Health Conditions and Test Availability as Predictors of Adults’ Mental Health during the COVID-19 Pandemic: A Survey Study of Adults in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insomnia
2.2. Anxiety
2.3. Depression
2.4. Distress
3. Results
3.1. Descriptive Findings
3.2. Predictors of Insomnia, Anxiety, Depression, and Distress
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomes, R. Covid-19: UN Urges Actions on Mental Health. Available online: https://www.vaticannews.va/en/world/news/2020-05/united-nations-guterres-kestel-mental-health-action-covid19.html (accessed on 12 June 2020).
- Kang, L.; Ma, S.; Chen, M.; Yang, J.; Wang, Y.; Li, R.; Yao, L. Impact on mental health and perceptions of psychological care among medical and nursing staff in Wuhan during the 2019 novel coronavirus disease outbreak: A cross-sectional study. Brain. Behav. Immun. 2020, 87, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Ma, S.; Wang, Y.; Cai, Z.; Hu, J.; Wei, N.; Wu, J. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw. Open 2020, 3, e203976. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Wong, J.G.; McAlonan, G.M.; Cheung, V.; Cheung, C.; Sham, P.C.; Chu, C.-M.; Wong, P.-C.; Tsang, K.W.; Chua, S.E. Stress and Psychological Distress among SARS Survivors 1 Year after the Outbreak. Can. J. Psychiatry 2007, 52, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.P.H.; Hui, B.P.H.; Wan, E.Y.F. Depression and Anxiety in Hong Kong during COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3740. [Google Scholar] [CrossRef] [PubMed]
- Shevlin, M.; Nolan, E.; Owczarek, M.; McBride, O.; Murphy, J.; Gibson Miller, J.; Hartman, T.K.; Levita, L.; Mason, L.; Martinez, A.P.; et al. COVID-19-related anxiety predicts somatic symptoms in the UK population. Br. J. Health Psychol. 2020. [Google Scholar] [CrossRef]
- Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev. 2020, e3319. [Google Scholar] [CrossRef] [Green Version]
- Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E736–E741. [Google Scholar] [CrossRef] [Green Version]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Schmitz, N.; Kruse, J. The SF-36 summary scores and their relation to mental disorders: Physical functioning may affect performance of the summary scores. J. Clin. Epidemiol. 2007, 60, 163–170. [Google Scholar] [CrossRef]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents 2020, 55, 105948. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health Malaysia. Malaysian Health at a Glance; Malaysian Healthcare Performance Unit, Ministry of Health Malaysia: Putrajaya, Malaysia, 2020.
- COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/country/malaysia/ (accessed on 20 June 2020).
- Goodman, L.A. Statistical methods for the mover-stayer model. J. Am. Stat. Assoc. 1961, 56, 841–868. [Google Scholar] [CrossRef]
- Demographics of Malaysia. Available online: https://en.wikipedia.org/wiki/Demographics_of_Malaysia (accessed on 18 June 2020).
- Hughes, K. How to Prevent Response Bias when Conducting Surveys. 2019. Available online: https://www.projectmanager.com/blog/prevent-response-bias-surveys (accessed on 18 July 2020).
- Spector, P.E.; Brannick, M.T. Common method variance or measurement bias? The problem and possible solutions. In The Sage Handbook of Organizational Research Methods; Sage Publications Ltd.: Newbury Park, CA, USA, 2009; pp. 346–362. [Google Scholar]
- Gill, T.; Broderick, D.; Avery, J.; Dal Grande, E.; Taylor, A. Self reported overall health status: Implications for intervention strategies. Australas. Med. J. 2008, 1, 44–57. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Soldatos, C.R.; Dikeos, D.G.; Paparrigopoulos, T.J. Athens Insomnia Scale: Validation of an instrument based on ICD-10 criteria. J. Psychosom. Res. 2000, 48, 555–560. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9 validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Kessler, R.C.; Green, J.G.; Gruber, M.J.; Sampson, N.A.; Bromet, E.; Cuitan, M.; Furukawa, T.A.; Gureje, O.; Hinkov, H.; Hu, Y.; et al. Screening for serious mental illness in the general population with the K6 screening scale: Results from the WHO World Mental Health (WMH) survey initiative. Int. J. Methods Psychiatr. Res. 2010, 19, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.X.; Wang, Y.; Rauch, A.; Wei, F. Unprecedented disruption of lives and work: Health, distress and life satisfaction of working adults in China one month into the COVID-19 outbreak. Psychiatry Res. 2020, 288, 112958. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, L.; Liu, S.; Ma, S.; Wang, Y.; Cai, Z.; Du, H.; Li, R.; Kang, L.; Su, M.; et al. Survey of insomnia and related social psychological factors among medical staff involved in the 2019 novel coronavirus disease outbreak. Front. Psychiatry 2020, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.X.; Liu, J.; Jahanshahi, A.A.; Nawaser, K.; Yousefi, A.; Li, J.; Sun, S. At the height of the storm: Healthcare staff’s health conditions and job satisfaction and their associated predictors during the epidemic peak of COVID-19. Brain. Behav. Immun. 2020, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Sun, S.; Jahanshahi, A.A.; Alvarez-Risco, A.; Ibarra, V.G.; Li, J.; Patty-Tito, R.M. Developing and testing a measure of COVID-19 Organizational Support of Healthcare Workers—Results from Peru, Ecuador, and Bolivia. Psychiatry Res. 2020, 113174. [Google Scholar] [CrossRef] [PubMed]
- Voitsidis, P.; Gliatas, I.; Bairachtari, V.; Papadopoulou, K.; Papageorgiou, G.; Parlapani, E.; Syngelakis, M.; Holeva, V.; Diakogiannis, I. Insomnia during the COVID-19 pandemic in a Greek population. Psychiatry Res. 2020, 289, 113076. [Google Scholar] [CrossRef] [PubMed]
- Raaj, S.; Tharmaselan, M.; Navanathan, S. An overview of the mental health burden in Malaysia. Jr. Dr. Netw. 2020, 18, 28–30. [Google Scholar]
- Alias, A. Malaysia’s Internet Penetration is Now 85.7 Percent. Available online: https://www.nst.com.my/business/2018/03/346978/malaysias-internet-penetration-now-857-cent (accessed on 18 July 2020).
Variables | Description n (%) | Insomnia | Anxiety | Depression | Distress |
---|---|---|---|---|---|
Mean (SD 1) | 669 (100%) | 1.76 (0.84) | 4.36 (4.89) | 4.49 (5.03) | 5.10 (5.73) |
Min | 1 | 0 | 0 | 0 | |
Max | 5 | 21 | 27 | 24 | |
Mean (SD) | |||||
Gender | |||||
Male | 324 (48.43%) | 1.69 (0.76) | 4.04 (4.68) | 4.02 (4.54) | 5.25 (6.00) |
Female | 345 (51.57%) | 1.84 (0.91) | 4.66 (5.06) | 4.93 (5.43) | 4.96 (5.48) |
Age (years old) | |||||
20–29 | 100 (14.95%) | 1.89 (0.79) | 5.29 (5.00) | 5.95 (4.72) | 5.78 (5.83) |
30–39 | 197 (29.45%) | 1.99 (0.91) | 5.12 (5.10) | 5.64 (5.67) | 5.54 (5.89) |
40–49 | 192 (28.70%) | 1.65 (0.81) | 4.37 (4.78) | 4.16 (4.85) | 5.02 (5.73) |
50–59 | 148 (22.12%) | 1.58 (0.76) | 3.07 (4.32) | 3.03 (4.19) | 4.62 (5.77) |
60–71 | 32 (4.78%) | 1.52 (0.74) | 2.69 (4.80) | 1.56 (2.84) | 2.88 (3.27) |
Education level | |||||
Secondary school | 49 (7.32%) | 1.71 (0.72) | 4.63 (4.72) | 4.08 (5.24) | 6.08 (5.77) |
College or university | 406 (60.69%) | 1.80 (0.86) | 4.42 (4.81) | 4.69 (4.97) | 5.17 (5.71) |
Graduate school | 214 (31.99%) | 1.70 (0.83) | 4.18 (5.08) | 4.20 (5.11) | 4.73 (5.75) |
Number of children in household | |||||
0 | 322 (48.13%) | 1.78 (0.85) | 4.30 (4.72) | 4.77 (5.02) | 4.79 (5.10) |
1 | 114 (17.04%) | 1.69 (0.82) | 4.31 (5.18) | 4.18 (5.02) | 5.44 (6.63) |
2 | 101 (15.10%) | 1.68 (0.73) | 4.21 (4.28) | 3.89 (4.20) | 5.61 (5.63) |
≥3 | 132 (19.73%) | 1.77 (0.92) | 4.48 (5.47) | 4.25 (5.63) | 5.36 (6.41) |
Religion | |||||
Islam | 352 (52.62%) | 1.80 (0.88) | 4.53 (5.06) | 4.64 (5.24) | 5.12 (5.80) |
Buddhism | 112 (16.74%) | 1.66 (0.74) | 4.38 (4.62) | 4.39 (4.62) | 4.97 (5.37) |
Hinduism | 24 (3.59%) | 1.93 (0.83) | 5.00 (6.47) | 4.67 (5.47) | 6.17 (6.03) |
Traditional Chinese religion | 26 (3.89%) | 1.63 (0.78) | 3.62 (3.61) | 4.31 (4.92) | 4.58 (5.93) |
Sikhism | 6 (0.90%) | 2.08 (1.06) | 9.83 (7.91) | 7.17 (5.38) | 5.83 (4.12) |
Christianity/Catholic | 124 (18.54%) | 1.73 (0.82) | 3.44 (3.76) | 3.74 (4.42) | 4.99 (5.98) |
Others | 3 (0.45%) | 1.33 (0.58) | 0.67 (1.15) | 0.67 (1.15) | 0.67 (1.15) |
None | 22 (3.29%) | 1.91 (0.94) | 6.05 (6.21) | 6.68 (6.19) | 5.82 (5.42) |
Ethnic group | |||||
Malay | 328 (49.03%) | 1.78 (0.87) | 4.41 (5.02) | 4.59 (5.23) | 5.07 (5.80) |
Chinese | 221 (33.03%) | 1.65 (0.76) | 3.91 (4.32) | 4.18 (4.58) | 4.77 (5.44) |
Indian | 36 (5.38%) | 1.94 (0.87) | 5.86 (6.70) | 5.00 (5.17) | 7.22 (6.61) |
Bumiputra of Sabah and Sarawak | 75 (11.21%) | 1.93 (0.90) | 4.84 (4.82) | 4.56 (5.18) | 5.09 (5.47) |
Others | 9 (1.35%) | 1.78 (0.74) | 3.67 (4.50) | 5.67 (6.98) | 5.44 (8.03) |
COVID-19 test availability | |||||
strongly disagree | 33 (4.93%) | 1.98 (1.02) | 7.97 (7.65) | 8.24 (7.32) | 7.55 (6.84) |
Disagree | 34 (5.08%) | 1.92 (1.01) | 5.26 (5.12) | 4.79 (5.12) | 6.06 (6.83) |
Somewhat disagree | 42 (6.28%) | 1.79 (0.69) | 3.98 (4.26) | 4.05 (4.25) | 6.98 (7.43) |
Neither agree nor disagree | 150 (22.42%) | 1.80 (0.89) | 4.49 (4.40) | 5.00 (5.50) | 5.33 (5.65) |
Somewhat agree | 94 (14.05%) | 1.73 (0.71) | 3.77 (4.04) | 4.02 (3.79) | 4.85 (5.69) |
Agree | 227 (33.93%) | 1.63 (0.76) | 3.69 (4.42) | 3.54 (4.16) | 4.34 (4.86) |
strongly agree | 89 (13.30%) | 1.93 (0.99) | 4.98 (5.85) | 5.25 (5.90) | 4.72 (5.83) |
Health condition | |||||
Poor | 7 (1.05%) | 3.00 (1.41) | 13.29 (9.84) | 13.57 (7.46) | 9.71 (7.54) |
Fair | 74 (11.06%) | 2.15 (1.00) | 7.41 (5.78) | 7.09 (5.80) | 6.85 (5.52) |
Good | 209 (31.24%) | 1.80 (0.82) | 4.46 (4.63) | 4.63 (5.09) | 4.89 (5.15) |
Very good | 250 (37.37%) | 1.63 (0.74) | 3.47 (3.91) | 3.65 (4.12) | 4.93 (5.98) |
Excellent | 129 (19.28%) | 1.66 (0.80) | 3.68 (4.96) | 3.91 (5.01) | 4.51 (5.94) |
Variables | Insomnia | Anxiety | Depression | Distress | ||||
---|---|---|---|---|---|---|---|---|
β (95% CI 1) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Health condition–square | 0.10 (0.03 to 0.17) | 0.003 | 0.79 (0.36 to 1.22) | 0.000 | 0.74 (0.38 to 1.11) | 0.000 | 0.45 (0.01 to 0.88) | 0.045 |
Health condition | −0.91 (−1.41 to −0.42) | 0.000 | −6.91 (−10.06 to −3.77) | 0.000 | −6.53 (−9.18 to −3.88) | 0.000 | −4.00 (−7.08 to −0.91) | 0.011 |
Test availability–square | 0.01 (−0.01 to 0.03) | 0.404 | 0.17 (0.03 to 0.31) | 0.017 | 0.16 (0.02 to 0.29) | 0.027 | 0.02 (−0.14 to 0.18) | 0.790 |
Test availability | −0.11 (−0.30 to 0.08) | 0.253 | −1.82 (−3.10 to −0.55) | 0.005 | −1.73 (−2.99 to −0.46) | 0.007 | −0.67 (−2.08 to 0.75) | 0.355 |
Gender (Female) | 0.08 (−0.05 to 0.21) | 0.214 | 0.22 (−0.48 to 0.93) | 0.535 | 0.49 (−0.24 to 1.22) | 0.190 | −0.54 (−1.40 to 0.32) | 0.217 |
Age | −0.02 (−0.02 to −0.01) | 0.000 | −0.08 (−0.11 to −0.05) | 0.000 | −0.11 (−0.14 to −0.08) | 0.000 | −0.06 (−0.10 to −0.02) | 0.005 |
Education level | −0.05 (0.36 to −0.15) | 0.056 | −0.25 (−0.86 to 0.36) | 0.414 | −0.10 (−0.74 to 0.55) | 0.770 | −0.64 (−1.40 to 0.12) | 0.100 |
Number of children | 0.02 (−0.02 to 0.07) | 0.331 | 0.16 (−0.09 to 0.41) | 0.209 | 0.02 (−0.27 to 0.30) | 0.912 | 0.25 (−0.07 to 0.56) | 0.131 |
Religion | ||||||||
Islam | Reference group | Reference group | Reference group | Reference group | ||||
Buddhism | −0.12 (−0.54 to 0.31) | 0.593 | −0.02 (−2.39 to 2.35) | 0.986 | 0.61 (−1.75 to 2.96) | 0.613 | 0.15 (−2.66 to 2.97) | 0.916 |
Hinduism | 0.08 (−0.62 to 0.79) | 0.814 | −0.02 (−4.10 to 4.07) | 0.994 | 1.13 (−2.77 to 5.04) | 0.569 | −3.34 (−10.00 to 3.32) | 0.325 |
Traditional Chinese religion | −0.15 (−0.64 to 0.35) | 0.561 | −0.80 (−3.29 to 1.69) | 0.529 | 0.71 (−2.09 to 3.51) | 0.618 | −0.37 (−3.89 to 3.16) | 0.837 |
Sikhism | 0.11 (−0.8 to 1.03) | 0.807 | 3.78 (−2.57 to 10.13) | 0.243 | 3.31 (−1.23 to 7.84) | 0.153 | −4.90 (−11.86 to 2.07) | 0.168 |
Christianity/Catholic | −0.12 (−0.51 to 0.27) | 0.546 | −1.56 (−3.71 to 0.58) | 0.154 | −0.22 (−2.39 to 1.95) | 0.840 | −0.16 (−2.65 to 2.33) | 0.900 |
Others | −0.77 (−1.89 to 0.34) | 0.175 | −6.10 (−11.52 to −0.69) | 0.027 | −5.64 (−10.54 to −0.74) | 0.024 | −6.22 (−10.94 to −1.50) | 0.010 |
None | 0.12 (−0.40 to 0.64) | 0.642 | 1.40 (−1.90 to 4.69) | 0.406 | 2.70 (−0.46 to 5.85) | 0.094 | 0.42 (−2.98 to 3.83) | 0.807 |
Ethnic group | ||||||||
Malay | Reference group | Reference group | Reference group | Reference group | ||||
Chinese | −0.03 (−0.45 to 0.39) | 0.873 | −0.03 (−2.30 to 2.23) | 0.977 | −1.08 (−3.33 to 1.16) | 0.343 | −0.31 (−2.98 to 2.37) | 0.823 |
Indian | 0.17 (−0.49 to 0.82) | 0.622 | 1.24 (−2.30 to 4.78) | 0.491 | −0.78 (−4.17 to 2.61) | 0.651 | 5.30 (−1.23 to 11.84) | 0.111 |
Bumiputra of Sabah and Sarawak | 0.19 (−0.19 to 0.58) | 0.329 | 1.25 (−0.91 to 3.41) | 0.256 | −0.38 (−2.52 to 1.77) | 0.731 | 0.07 (−2.22 to 2.36) | 0.951 |
Others | 0.24 (−0.32 to 0.80) | 0.405 | 0.80 (−2.59 to 4.20) | 0.642 | 1.59 (−2.34 to 5.52) | 0.427 | 2.16 (−4.09 to 8.42) | 0.497 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Zhang, S.X.; Looi, K.H.; Su, R.; Li, J. Perception of Health Conditions and Test Availability as Predictors of Adults’ Mental Health during the COVID-19 Pandemic: A Survey Study of Adults in Malaysia. Int. J. Environ. Res. Public Health 2020, 17, 5498. https://doi.org/10.3390/ijerph17155498
Dai H, Zhang SX, Looi KH, Su R, Li J. Perception of Health Conditions and Test Availability as Predictors of Adults’ Mental Health during the COVID-19 Pandemic: A Survey Study of Adults in Malaysia. International Journal of Environmental Research and Public Health. 2020; 17(15):5498. https://doi.org/10.3390/ijerph17155498
Chicago/Turabian StyleDai, Huiyang, Stephen X. Zhang, Kim Hoe Looi, Rui Su, and Jizhen Li. 2020. "Perception of Health Conditions and Test Availability as Predictors of Adults’ Mental Health during the COVID-19 Pandemic: A Survey Study of Adults in Malaysia" International Journal of Environmental Research and Public Health 17, no. 15: 5498. https://doi.org/10.3390/ijerph17155498
APA StyleDai, H., Zhang, S. X., Looi, K. H., Su, R., & Li, J. (2020). Perception of Health Conditions and Test Availability as Predictors of Adults’ Mental Health during the COVID-19 Pandemic: A Survey Study of Adults in Malaysia. International Journal of Environmental Research and Public Health, 17(15), 5498. https://doi.org/10.3390/ijerph17155498