Does the Caesarean Section Impact on 11β HSD2 and Fetal Cortisol?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Determination of 11β-HSD 2 and Cortisol
2.3. Statistical Analyses
- −
- Kruskal-Wallis’ H test to compare cortisol concentration and 11β-HSD 2 between three modes of birth;
- −
- Mann-Whitney’s test to compare cortisol concentration and 11β-HSD 2 between two modes of birth in pairs, between male and female neonates, as well as between epidural analgesia and no analgesia in vaginal deliveries;
- −
- Spearman’s correlation coefficient (r) to correlate: cortisol concentration and 11β-HSD 2, cortisol concentration and continuous characteristics, 11β-HSD 2 and continuous characteristics.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Braun, T.; Challis, J.R.; Newnham, J.; Sloboda, D.M. Early-life glucocorticoid exposure: The hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev. 2013, 34, 885–916. [Google Scholar] [CrossRef] [Green Version]
- Chrousos, G.; Kino, T. Glucocorticoid signaling in the cell. Ann. N. Y. Acad. Sci. 2009, 1179, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.M.; Prescott, S.M. Can licorice lick colon cancer? J. Clin. Investig. 2009, 119, 760–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.; Ho, J.T.; Torpy, D.J.; Rogers, A.; Doogue, M.; Lewis, J.; Czajko, R.J.; Inder, W. A Longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 2011, 96, 1533–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busada, J.T.; Cidlowski, J.A. Mechanisms of glucocorticoid action during development. Curr. Top. Dev. Biol. 2017, 125, 147–170. [Google Scholar] [CrossRef]
- Rehman, K.S.; Sirianni, R.; Parker, C.R.; Rainey, W.E.; Carr, B.R. The regulation of adrenocorticotrophic hormone receptor by corticotropin-releasing hormone in human fetal adrenal definitive/transitional zone cells. Reprod. Sci. 2007, 14, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Howland, M.A.; Sandman, C.A.; Glynn, L.M. Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev. Endocrinol. Metab. 2017, 12, 321–339. [Google Scholar] [CrossRef]
- Ishimoto, H.; Jaffe, R. Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocr. Rev. 2010, 32, 317–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, V.E.; Clifton, V.L. Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 2003, 24, 739–744. [Google Scholar] [CrossRef]
- Jain, L.; Eaton, D.C. Physiology of fetal lung fluid clearance and the effect of labor. Semin. Perinatol. 2006, 30, 34–43. [Google Scholar] [CrossRef]
- Bird, A.D.; McDougall, A.R.A.; Seow, B.; Hooper, S.B.; Cole, T.J. Minireview: Glucocorticoid regulation of lung development: Lessons learned from conditional gr knockout mice. Mol. Endocrinol. 2014, 29, 158–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nada, A.; Shafeek, M.; El Maraghy, M.; Nageeb, A.; El-Din, A.S.; Awad, M.; Salaheldine, A. Antenatal corticosteroid administration before elective caesarean section at term to prevent neonatal respiratory morbidity: A randomized controlled trial. Eur. J. Obstet. Gynecol. Reprod. Boil. 2016, 199, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Sotiriadis, A.; Makrydimas, G.; Papatheodorou, S.; Ioannidis, J.P.; McGoldrick, E. Corticosteroids for preventing neonatal respiratory morbidity after elective caesarean section at term. Cochrane Database Syst. Rev. 2018, 8, CD006614. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2017, 2017, CD004454. [Google Scholar] [CrossRef] [PubMed]
- Nixon, M.; Upreti, R.; Andrew, R. 5α-Reduced glucocorticoids: A story of natural selection. J. Endocrinol. 2011, 212, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonen, E.; Vervenne, H.; Meersseman, P.; Andrew, R.; Mortier, L. Reduced cortisol metabolism during critical illness. N. Engl. J. Med. 2013, 368, 1477–1488. [Google Scholar] [CrossRef] [Green Version]
- Ghaemmaghami, P.; Dainese, S.M.; La Marca, R.; Zimmermann, R.; Ehlert, U. The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome. Dev. Psychobiol. 2013, 56, 734–747. [Google Scholar] [CrossRef]
- O’Donnell, K.J.; Bugge Jensen, A.; Freeman, L.; Khalife, N.; O’Connor, T.G.; Glover, V. Maternal prenatal anxiety and downregulation of placental 11beta-HSD2. Psychoneuroendocrinology. 2012, 37, 818–826. [Google Scholar] [CrossRef]
- Harris, A.P.; Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 2011, 59, 279–289. [Google Scholar] [CrossRef]
- Conradt, E.; Lester, B.M.; Appleton, A.A.; Armstrong, D.A.; Marsit, C.J. The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 2013, 8, 1321–1329. [Google Scholar] [CrossRef] [Green Version]
- Elbay, A.; Celik, U.; Celik, B.; Ozer, O.F.; Kilic, G.; Akkan, J.C.U.; Bayraktar, B.T.; Kaymak, N.Z. Intraocular pressure in infants and its association with hormonal changes with vaginal birth versus cesarean section. Int. Ophthalmol. 2016, 36, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Nemati, B.; Atmodjo, W.; Gagnon, S.; Humes, D.; McKerlie, C.; Kaplan, F.; Sweezey, N.B. Glucocorticoid receptor disruption delays structural maturation in the lungs of newborn mice. Pediatr. Pulmonol. 2007, 43, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Rog-Zielinska, E.A.; Thomson, A.; Kenyon, C.J.; Brownstein, D.G.; Moran, C.M.; Szumska, D.; Michailidou, Z.; Richardson, J.; Owen, E.; Watt, A.; et al. Glucocorticoid receptor is required for fetal heart maturation. Hum. Mol. Genet. 2013, 22, 3269–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Słabuszewska-Jóźwiak, A.; Włodarczyk, M.; Ciebiera, M.; Zwolińska, J.; Wojtyła, C.; Nowicka, G.; Jakiel, G.; Raczkiewicz, D. Placental DNA methylation in caesarean sections—A pilot study. Arch. Med Sci. 2020, 16. [Google Scholar] [CrossRef]
- Dahlerup, B.R.; Egsmose, E.L.; Siersma, V.; Mortensen, E.L.; Hedegaard, M.; Knudsen, L.E.; Mathiesen, L. Maternal stress and placental function, a study using questionnaires and biomarkers at birth. PLoS ONE 2018, 13, e0207184. [Google Scholar] [CrossRef] [Green Version]
- Glover, V.; Bergman, K.; Sarkar, P.; O’Connor, T.G. Association between maternal and amniotic fluid cortisol is moderated by maternal anxiety. Psychoneuroendocrinology 2009, 34, 430–435. [Google Scholar] [CrossRef]
- Hellgren, C.; Edvinsson, Å.; Olivier, J.D.; Fornes, R.; Stener-Victorin, E.; Ubhayasekera, S.K.A.; Skalkidou, A.; Bergquist, J.; Poromaa, I.S. Tandem mass spectrometry determined maternal cortisone to cortisol ratio and psychiatric morbidity during pregnancy−interaction with birth weight. Psychoneuroendocrinology 2016, 69, 142–149. [Google Scholar] [CrossRef]
- Kosicka, K.; Siemiątkowska, A.; Główka, F.K. 11β-hydroxysteroid dehydrogenase 2 in preeclampsia. Int. J. Endocrinol. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kosicka, K.; Siemiątkowska, A.; Szpera-Goździewicz, A.; Krzyścin, M.; Breborowicz, G.H.; Główka, F. Increased cortisol metabolism in women with pregnancy-related hypertension. Endocrine 2018, 61, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Kane, H.S.; Schetter, C.D.; Glynn, L.M.; Hobel, C.J.; Sandman, C.A. Pregnancy anxiety and prenatal cortisol trajectories. Boil. Psychol. 2014, 100, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Vogl, S.; Worda, C.; Egarter, C.; Bieglmayer, C.; Szekeres, T.; Huber, J.; Husslein, P. Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG: Int. J. Obstet. Gynaecol. 2006, 113, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Mears, K.; McAuliffe, F.; Grimes, H.; Morrison, J. Fetal cortisol in relation to labour, intrapartum events and mode of delivery. J. Obstet. Gynaecol. 2004, 24, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.; Fisk, N.M.; Modi, N.; Glover, V. Stress responses at birth: Determinants of cord arterial cortisol and links with cortisol response in infancy. BJOG: Int. J. Obstet. Gynaecol. 2005, 112, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Sano, Y.; Doi, T.; Kikuchi, S.; Kawai, K.; Tanaka, M. Correlations between stress hormone levels in umbilical cord blood and duration of delivery. J Pak Med Assoc 2015, 65, 782–784. [Google Scholar] [PubMed]
- Schuller, C.; Känel, N.; Müller, O.; Kind, A.B.; Tinner, E.M.; Hösli, I.; Zimmermann, R.; Surbek, D. Stress and pain response of neonates after spontaneous birth and vacuum-assisted and cesarean delivery. Am. J. Obstet. Gynecol. 2012, 207, 416.e1–416.e6. [Google Scholar] [CrossRef] [PubMed]
- Stirrat, L.I.; Sengers, B.G.; E Norman, J.; Homer, N.Z.M.; Andrew, R.; Lewis, R.M.; Reynolds, R.M. Transfer and metabolism of cortisol by the isolated perfused human placenta. J. Clin. Endocrinol. Metab. 2018, 103, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Alfaidy, N.; Gupta, S.; DeMarco, C.; Caniggia, I.; Challis, J.R.G. Oxygenregulationofplacental 11ß-hydroxysteroid dehydrogenase 2: Physiological and pathological implications. J. Clin. Endocrinol. Metab. 2002, 87, 4797–4805. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Julan, L.; Rubio, F.; Sharma, A.; Guan, H. Cadmium reduces 11 beta-hydroxys- teroid dehydrogenase type 2 activity and expression in human placental trophoblast cells. Am. J. Physiol. Endocrinol. Metab. 2016, 290, E135–E142. [Google Scholar] [CrossRef]
- Sharma, A.; Guan, H.; Yang, K. The p38 Mitogen-Activated Protein Kinase Regulates 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) expression in human trophoblast cells through modulation of 11beta-HSD2 messenger ribonucleic acid stability. Endocrinology 2009, 150, 4278–4286. [Google Scholar] [CrossRef]
- Glover, V. Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. Adv. Neurobiol. 2014, 10, 269–283. [Google Scholar] [CrossRef]
- Togher, K.L.; O’Keeffe, M.; Khashan, A.S.; Gutierrez, H.; Kenny, L.; O’Keeffe, G.W. Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics 2014, 9, 816–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancause, K.N.; Veru, F.; Andersen, R.E.; Laplante, D.P.; King, S. Prenatal stress due to a natural disaster predicts insulin secretion in adolescence. Early Hum. Dev. 2013, 89, 773–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancause, K.N.; Vilar, M.; Chan, C.; Dehuff, C.; Wilson, M.; E Soloway, L.; Tarivonda, L.; Regenvanu, R.; Kaneko, A.; Garruto, R.M.; et al. Patterns of childhood and adolescent overweight and obesity during health transition in Vanuatu. Public Heal. Nutr. 2011, 15, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde, A.; Figueiredo, B. 24-h urinary free cortisol from mid-pregnancy to 3-months postpartum: Gender and parity differences and effects. Psychoneuroendocrinology 2014, 50, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Bleker, L.S.; Roseboom, T.J.; Vrijkotte, T.G.; Reynolds, R.M.; de Rooij, S.R. Determinants of cortisol during pregnancy—The ABCD cohort. Psychoneuroendocrinology 2017, 83, 172–181. [Google Scholar] [CrossRef]
- Stirrat, L.I.; O’Reilly, J.R.; Barr, S.M.; Andrew, R.; Riley, S.C.; Howie, A.F.; Bowman, M.; Smith, R.; Lewis, J.; Denison, F.C.; et al. Decreased maternal hypothalamic-pituitary-adrenal axis activity in very severely obese pregnancy: Associations with birthweight and gestation at delivery. Psychoneuroendocrinology 2016, 63, 135–143. [Google Scholar] [CrossRef]
- Chin, E.H.; Schmidt, K.L.; Martel, K.M.; Wong, C.K.; Hamden, J.E.; Gibson, W.T.; Soma, K.K.; Christians, J.K. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice. PLoS ONE 2017, 12, e0174030. [Google Scholar] [CrossRef]
- Cuffe, J.S.; Dickinson, H.; Simmons, D.; Moritz, K.M. Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 2011, 32, 981–989. [Google Scholar] [CrossRef]
- Murphy, V.E.; Gibson, P.G.; Giles, W.; Zakar, T.; Smith, R.; Bisits, A.M.; Kessell, C.G.; Clifton, V.L. Maternal asthma is associated with reduced female fetal growth. Am. J. Respir. Crit. Care Med. 2003, 168, 1317–1323. [Google Scholar] [CrossRef]
- Van Lieshout, R.J.; Boylan, K. Increased depressive symptoms in female but not male adolescents born at low birth weight in the offspring of a national cohort. Can. J. Psychiatry 2010, 55, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Seron-Ferre, M.; Riffo, R.; Valenzuela, G.J.; Germain, A.M. Twenty-four–hour pattern of cortisol in the human fetus at term. Am. J. Obstet. Gynecol. 2001, 184, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Group (N = 111) | Elective Caesarean Section (n = 49) | Intrapartum Caesarean Section (n = 16) | Vaginal Delivery (n = 46) | p# |
---|---|---|---|---|---|
Maternal age (years), Me (25–75%) | 31 (28–35) | 32 (30–36) | 30 (28–36) | 30 (28–33) | 0.085 |
Gestational age (weeks), n (%) | 0.004 | ||||
37 | 11 (9.91) | 5 (10.20) | 1 (6.25) | 5 (10.87) | |
38 | 18 (16.22) | 8 (16.33) | 4 (25.00) | 6 (13.04) | |
39 | 51 (45.95) | 31 (63.27) | 4 (25.00) | 16 (34.78) | |
40 | 18 (16.22) | 3 (6.12) | 2 (12.50) | 13 (28.26) | |
41 | 13 (11.71) | 2 (4.08) | 5 (31.25) | 6 (13.04) | |
Parity, n (%) | 0.122 | ||||
1 | 63 (56.76) | 22 (44.90) | 13 (81.25) | 28 (60.87) | |
2 | 42 (37.84) | 25 (51.02) | 3 (18.75) | 14 (30.43) | |
3 | 5 (4.50) | 2 (4.08) | 0 (0.00) | 3 (6.52) | |
4 | 1 (0.90) | 0 (0.00) | 0 (0.00) | 1 (2.17) | |
Pre-pregnancy BMI (kg/m2), Me (IQR) | 23.12 (20.81–25.46) | 24.21 (21.51–26.70) | 21.62 (19.47–25.06) | 22.75 (20.70–24.91) | 0.092 |
Pregnancy BMI (kg/m2), Me (IQR) | 28.63 (26.03–30.82) | 29.14 (27.28–30.80) | 27.42 (25.71–31.71) | 28.26 (25.82–30.45) | 0.297 |
Weight gain during pregnancy (kg), Me (IQR) | 14 (11–18) | 14 (11–18) | 17 (14–19) | 14 (11–17) | 0.494 |
Weight gain during pregnancy (%), Me (IQR) | 21.92 (16.67–29.03) | 21.67 (15.15–27.59) | 30.20 (19.09–33.91) | 22.02 (16.92–28.57) | 0.203 |
Newborn weight (kg), Me (IQR) | 3.52 (3.25–3.85) | 3.50 (3.32–3.85) | 3.62 (3.41–3.80) | 3.51 (3.12–3.85) | 0.476 |
Newborn gender, n (%) | 0.356 | ||||
male | 51 (45.95) | 21 (42.86) | 10 (62.50) | 20 (43.48) | |
female | 60 (54.05) | 28 (57.14) | 6 (37.50) | 26 (56.52) | |
Apgar score at 1st minute, n (%) | 0.065 | ||||
7 | 1 (0.90) | 0 (0.00) | 0 (0.00) | 1 (2.17) | |
8 | 7 (6.31) | 6 (12.24) | 1 (6.25) | 0 (0.00) | |
9 | 17 (15.32) | 11 (22.45) | 2 (12.50) | 4 (8.70) | |
10 | 86 (77.48) | 32 (65.31) | 13 (81.25) | 41 (89.13) | |
Apgar score at 5th minute, n (%) | 0.188 | ||||
7 | 1 (0.90) | 0 (0.00) | 0 (0.00) | 1 (2.17) | |
8 | 1 (0.90) | 1 (2.04) | 0 (0.00) | 0 (0.00) | |
9 | 10 (9.01) | 8 (16.33) | 0 (0.00) | 2 (4.35) | |
10 | 99 (89.19) | 40 (81.63) | 16 (100.00) | 43 (93.48) | |
Duration of uterine contraction (hours), Me (IQR) | - | - | - | 5.46 (3.50–7.67) | - |
Analgesia *, n (%) | 96 (86.49) | 49 (100.00) | 16 (100.00) | 31 (67.39) | - |
Characteristics | Method # | Total Group (n = 111) | Elective Caesarean Section (n = 49) | Intrapartum Caesarean Section (n = 16) | Vaginal Delivery (n = 46) | ||||
---|---|---|---|---|---|---|---|---|---|
Test | p | Test | p | Test | p | Test | p | ||
Maternal age (years) | r | −0.073 | 0.447 | −0.119 | 0.415 | 0.251 | 0.348 | −0.085 | 0.575 |
Gestational age (weeks) | r | 0.193 | 0.042 | 0.099 | 0.499 | 0.322 | 0.224 | 0.187 | 0.214 |
Parity | r | 0.036 | 0.710 | 0.047 | 0.749 | 0.122 | 0.654 | 0.042 | 0.781 |
Pre-pregnancy BMI (kg/m2) | r | −0.091 | 0.343 | −0.168 | 0.248 | 0.107 | 0.692 | −0.004 | 0.981 |
Pregnancy BMI (kg/m) | r | −0.198 | 0.037 | −0.361 | 0.011 | −0.031 | 0.910 | −0.079 | 0.600 |
Weight gain during pregnancy (kg) | r | −0.155 | 0.105 | −0.160 | 0.273 | −0.243 | 0.365 | −0.113 | 0.155 |
Weight gain during pregnancy (%) | r | −0.117 | 0.220 | −0.061 | 0.679 | −0.311 | 0.242 | −0.124 | 0.411 |
Newborn weight (kg) | r | −0.059 | 0.592 | −0.008 | 0.956 | 0.015 | 0.957 | −0.073 | 0.628 |
Newborn gender | Z | 2.358 | 0.018 | 1.606 | 0.108 | 1.030 | 0.303 | 1.185 | 0.236 |
Apgar at 1st minute | r | −0.006 | 0.951 | −0.170 | 0.243 | −0.188 | 0.486 | 0.175 | 0.245 |
Apgar at 5th minute | r | −0.086 | 0.367 | −0.336 | 0.018 | na | - | 0.195 | 0.195 |
Epidural analgesia * | Z | - | - | - | - | - | - | 0.047 | 0.963 |
Duration of uterine contraction (hours) * | r | - | - | - | - | - | - | −0.228 | 0.127 |
Characteristics | Method # | Total Group (n = 111) | Elective Caesarean Section (n = 49) | Intrapartum Caesarean Section (n = 16) | Vaginal Delivery (n = 46) | ||||
---|---|---|---|---|---|---|---|---|---|
Test | p | Test | p | Test | p | Test | p | ||
Maternal age (years) | r | −0.176 | 0.065 | −0.178 | 0.222 | −0.227 | 0.397 | 0.160 | 0.288 |
Gestational age (weeks) | r | 0.192 | 0.044 | 0.123 | 0.400 | 0.490 | 0.054 | −0.080 | 0.597 |
Parity | r | −0.145 | 0.129 | 0.177 | 0.222 | −0.052 | 0.848 | −0.105 | 0.489 |
Pre-pregnancy BMI (kg/m2) | r | −0.198 | 0.037 | −0.155 | 0.288 | 0.025 | 0.927 | −0.015 | 0.922 |
Pregnancy BMI (kg/m) | r | −0.116 | 0.227 | −0.194 | 0.181 | 0.102 | 0.708 | 0.069 | 0.650 |
Weight gain during pregnancy (kg) | r | 0.131 | 0.172 | 0.094 | 0.520 | 0.083 | 0.759 | 0.156 | 0.300 |
Weight gain during pregnancy (%) | r | 0.207 | 0.029 | 0.117 | 0.425 | 0.255 | 0.341 | 0.205 | 0.171 |
Newborn weight (kg) | r | −0.005 | 0.955 | −0.003 | 0.065 | −0.239 | 0.374 | 0.119 | 0.430 |
Newborn gender | Z | −1.565 | 0.118 | −0.182 | 0.237 | −0.380 | 0.704 | −0.543 | 0.587 |
Apgar at 1st minute | r | 0.031 | 0.749 | −0.246 | 0.089 | −0.071 | 0.793 | −0.066 | 0.664 |
Apgar at 5th minute | r | −0.058 | 0.543 | −0.342 | 0.016 | na | - | −0.125 | 0.408 |
Epidural analgesia * | Z | - | - | - | - | - | - | 1.265 | 0.206 |
Duration of uterine contraction (hours) * | r | - | - | - | - | - | - | 0.369 | 0.012 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słabuszewska-Jóżwiak, A.; Włodarczyk, M.; Kilian, K.; Rogulski, Z.; Ciebiera, M.; Szymańska-Majchrzak, J.; Zaręba, K.; Szymański, J.K.; Raczkiewicz, D.; Nowicka, G.; et al. Does the Caesarean Section Impact on 11β HSD2 and Fetal Cortisol? Int. J. Environ. Res. Public Health 2020, 17, 5566. https://doi.org/10.3390/ijerph17155566
Słabuszewska-Jóżwiak A, Włodarczyk M, Kilian K, Rogulski Z, Ciebiera M, Szymańska-Majchrzak J, Zaręba K, Szymański JK, Raczkiewicz D, Nowicka G, et al. Does the Caesarean Section Impact on 11β HSD2 and Fetal Cortisol? International Journal of Environmental Research and Public Health. 2020; 17(15):5566. https://doi.org/10.3390/ijerph17155566
Chicago/Turabian StyleSłabuszewska-Jóżwiak, Aneta, Marta Włodarczyk, Krzysztof Kilian, Zbigniew Rogulski, Michał Ciebiera, Jolanta Szymańska-Majchrzak, Kornelia Zaręba, Jacek Krzysztof Szymański, Dorota Raczkiewicz, Grażyna Nowicka, and et al. 2020. "Does the Caesarean Section Impact on 11β HSD2 and Fetal Cortisol?" International Journal of Environmental Research and Public Health 17, no. 15: 5566. https://doi.org/10.3390/ijerph17155566
APA StyleSłabuszewska-Jóżwiak, A., Włodarczyk, M., Kilian, K., Rogulski, Z., Ciebiera, M., Szymańska-Majchrzak, J., Zaręba, K., Szymański, J. K., Raczkiewicz, D., Nowicka, G., & Jakiel, G. (2020). Does the Caesarean Section Impact on 11β HSD2 and Fetal Cortisol? International Journal of Environmental Research and Public Health, 17(15), 5566. https://doi.org/10.3390/ijerph17155566