Big Data Analysis of Sports and Physical Activities among Korean Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Results of Data Collection
3.2. Text Mining Analysis
3.3. Social Network Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Korea Ministry of Education. 2018 Sample Survey of Student Health; Korea Ministry of Education: Sejong Special Self-Governing City, Korea, 2019. Available online: https://www.moe.go.kr/boardCnts/view.do?boardID=294&boardSeq=77144&lev=0&searchType=null&statusYN=W&page=1&s=moe&m=020402&opType=N (accessed on 14 June 2020).
- Kvaavik, E.; Tell, G.S.; Klepp, K.I. Predictors and tracking of body mass index from adolescence into adulthood: Follow-up of 18 to 20 years in the Oslo Youth Study. Arch. Pediatr. Adolesc. Med. 2003, 157, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Daniels, S.; Arnett, D.; Eckel, R.; Gidding, S.; Hayman, L.; Kumanyika, S.; Robinson, T.; Scott, B.; Jeor, S.; Williams, C. Overweight in children and adolescents: Pathophysiology, consequences, prevention, and treatment. Circulation 2005, 111, 1999–2012. [Google Scholar] [CrossRef] [Green Version]
- So, W.Y. Association between physical activity and academic performance in Korean adolescent students. BMC Public Health 2012, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, H.J.; So, W.-Y. The relationship of exercise frequency to body composition and physical fitness in dormitory-dwelling university students. J. Mens Health 2018, 14, e32–e43. [Google Scholar] [CrossRef] [Green Version]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: Seattle, WA, USA, 2011. [Google Scholar]
- Beyer, M.A.; Laney, D. The Importance of “Big Data”: A Definition; Gartner: Stamford, CT, USA, 2012. [Google Scholar]
- Daniel, B. Big data and analytics in higher education: Opportunities and challenges. Br. J. Educ. Tech. 2015, 46, 904–920. [Google Scholar] [CrossRef]
- Gan, Q.; Zhu, M.; Li, M.; Liang, T.; Cao, Y.; Zhou, B. Document visualization: An overview of current research. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 19–23. [Google Scholar] [CrossRef]
- Priya, A.R.M.; Gupta, D. Two-phase machine learning approach for extractive single document summarization. In Computational Vision and Bio Inspired Computing; Smys, S., Tavares, J.M.R.S., Balas, V.E., Iliyasu, A.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 871–881. [Google Scholar]
- George, G.; Haas, M.R.; Pentland, A. From the editors—Big data and management [Editorial]. Acad. Manag. J. 2014, 57, 321–326. [Google Scholar] [CrossRef]
- Roski, J.; Bo-Linn, G.W.; Andrews, T.A. Creating value in health care through big data: Opportunities and policy implications. Health Aff. 2014, 33, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.H. Demystifying big data: Anatomy of big data developmental process. Telecommun. Policy 2016, 40, 837–854. [Google Scholar] [CrossRef]
- Mayer-Schönberger, V.; Cukier, K. Big Data: A Revolution That Will Transform How We Live, Work, and Think.; Houghton Mifflin Harcourt: Boston, MA, USA, 2014. [Google Scholar]
- Shin, D. A socio-technical framework for internet-of-things design. Telemat. Inform. 2014, 31, 519–531. [Google Scholar] [CrossRef]
- Brown, B.; Chui, M.; Manyika, J. Are you ready for the era of big data. McKinsey Q. 2011, 4, 24–35. [Google Scholar]
- Jang, H.; Park, M. Social media, media and urban transformation in the context of overtourism. Int. J. Tour. Cities 2020, 6, 233–260. [Google Scholar] [CrossRef]
- Nielsen Korea. Top 10 Trends; Nielsen Korea: New York, NY, USA, 2020; Available online: https://www.nielsen.com/kr/ko/top-ten/ (accessed on 14 June 2020).
- TEXTOM. Manual. TEXTOM. 2020. Available online: http//http://www.textom.co.kr/home/sub/manual_collecting.php?pnm=3 (accessed on 25 July 2020).
- Hwang, Y.S.; Shin, D.H.; KIM, Y. Structural change in search engine news service: A social network perspective. Asian J. Commun. 2012, 22, 160–178. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, H.J.; Yu, D.S.; Lee, Y.B.; Hahn, H.J.; Kim, J.W. Current status of atopic dermatitis-related information available on the Internet in South Korea. Ann. Dermatol. 2016, 28, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hearst, M.A. What Is Data Mining? 2003. Available online: http://www.ischool.berkeley.edu/~hearstr/text_mining.html (accessed on 14 June 2020).
- Korea Data Agency. 2013 Data Industry White Paper; Korea Data Agency: Seoul, Korea, 2014; Available online: https://www.kdata.or.kr/info/info_02.html?pubyear=2014 (accessed on 14 June 2020).
- Zhang, Y.; Gong, L.; Wang, Y. An improved TF-IDF approach for text classification. J. ZheJiang Univ. Sci. 2005, 6, 49–55. [Google Scholar] [CrossRef]
- Scott, N.; Baggio, R.; Cooper, C. Network Analysis and Tourism from Theory to Practice; Cromwell Press: Trowbridge, UK, 2008. [Google Scholar]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications, Structural Analysis in the Social Sciences. 1994. Available online: http://www.loc.gov/catdir/description/cam026/94020602.html (accessed on 14 June 2020).
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Koschutzki, D.; Schreiber, F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2008, 2, 193–201. [Google Scholar] [CrossRef]
- Kim, H.S. A semantic network analysis of big data regarding food exhibition at convention center. Culin. Sci. Hosp. Res. 2017, 23, 257–270. [Google Scholar]
- Ban, H.J.; Choi, H.; Choi, E.K.; Lee, S.; Kim, H.S. Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability 2019, 11, 6570. [Google Scholar] [CrossRef] [Green Version]
- Bonacich, P. Power and centrality: A family of measures. Am. J. Sociol. 1987, 92, 1170–1182. [Google Scholar] [CrossRef]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Freeman, L.C. Social Network Analysis; Sage: London, UK, 2008. [Google Scholar]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet 6 for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Irfan, S.; Ghosh, S. Efficient Ranking Framework for Information Retrieval Using Similarity Measure. In Computational Vision and Bio Inspired Computing; Smys, S., Tavares, J.M.R.S., Balas, V.E., Iliyasu, A.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 1344–1354. [Google Scholar]
- Abbasi, A.; Altmann, J. On the correlation between research performance and social network analysis measures applied to research collaboration networks. In Proceedings of the 2011 44th Hawaii International Conference on System Sciences, Kauai, HI, USA, 4–7 January 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–8. [Google Scholar]
- Baker, P.R.A.; Francis, D.P.; Soares, J.; Weightman, A.L.; Foster, C. Community wide interventions for increasing physical activity. Cochrane Database Syst. Rev. 2015, 1, CD008366. [Google Scholar] [CrossRef] [PubMed]
- Keteyian, S.J. Exercise training in congestive heart failure: Risks and benefits. Prog. Cardiovasc. Dis. 2011, 53, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Min, J.H.; Lee, E.Y.; Spence, J.C.; Jeon, J.Y. Physical activity, weight status and psychological well-being among a large national sample of South Korean adolescents. Ment. Health Phys. Act. 2017, 12, 44–49. [Google Scholar] [CrossRef]
- Parfitt, G.; Eston, R.G. The relationship between children’s habitual activity level and psychological well-being. Acta Paediatr. 2005, 94, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Gorber, S.C.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef]
- Aubert, S.; Barnes, J.D.; Abdeta, C.; Abi Nader, P.; Adeniyi, A.F.; Aguilar-Farias, N.; Chang, C.K. Global matrix 3.0 physical activity report card grades for children and youth: Results and analysis from 49 countries. J. Phys. Act. Health 2018, 15, S251–S273. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.W.; Lee, E.Y.; Lim, J.; Lee, S.H.; Jin, Y.S.; Song, B.K.; Oh, B.; Lee, C.G.; Lee, D.H.; Lee, H.J.; et al. Results from South Korea’s 2018 Report Card on physical activity for children and youth. J. Exerc. Sci. Fit. 2019, 17, 26–33. [Google Scholar] [CrossRef]
- Manna, I. Growth development and maturity in children and adolescent: Relation to sports and physical activity. Am. J. Sport Sci. Med. 2014, 2, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Tammelin, T.; Näyhä, S.; Hills, A.P.; Järvelin, M.R. Adolescent participation in sports and adult physical activity. Am. J. Prev. Med. 2003, 24, 22–28. [Google Scholar] [CrossRef]
- Lindquist, C.H.; Reynolds, K.D.; Goran, M.I. Sociocultural determinants of physical activity among children. Prev. Med. 1999, 29, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, R.J.; Lowder, T.W.; Spielmann, G.; Bigley, A.B.; LaVoy, E.C.; Kunz, H. Exercise and the aging immune system. Ageing Res. Rev. 2012, 11, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Korea Ministry of Health and Welfare. Children and Adolescent Physical Activity Policy Evaluation and Activation Plan Research; Korea Ministry of Health and Welfare: Sejong, Korea, 2019. Available online: http://www.prism.go.kr/homepage/entire/retrieveEntireDetail.do?pageIndex=1&research_id=1351000-201800435&leftMenuLevel=160&cond_research_name=%EC%B2%AD%EC%86%8C%EB%85%84&cond_research_start_date=&cond_research_end_date=&pageUnit=10&cond_order=3 (accessed on 26 July 2020).
Category | Content |
---|---|
Collection channel | Naver, Daum, Google |
Collection period | 1 January 2010 to 31 December 2019 |
Collection tool | TEXTOM 4.0 big data analysis solution (The Imc Inc., Daegu, Korea) (http://textom.co.kr) |
Analysis keyword | Adolescents, Sports, Physical activities |
Analysis tool | TEXTOM 4.0 big data analysis solution (The Imc Inc., Daegu, Korea) (http://textom.co.kr), UCINET 6 social network analysis software (Analytic Technologies Corp., Lexington, KY, USA) (http://www.analytictech.com) |
Collection Channel | Number of Data Points | Volume |
---|---|---|
Naver | 5343 | 2.18 MB |
Daum | 3401 | 1.19 MB |
534 | 6.99 MB | |
Total | 9278 | 10.36 MB |
Rank | Term | Freq. | Rank | Term | Freq. |
---|---|---|---|---|---|
1 | Exercise | 872 | 26 | Stress | 257 |
2 | Mind | 851 | 27 | Physical education | 256 |
3 | Health | 824 | 28 | Skin | 251 |
4 | Program | 782 | 29 | Adult | 232 |
5 | Burden | 744 | 30 | Improve | 230 |
6 | Vitamin D | 737 | 31 | Physical activity | 229 |
7 | Outdoor activity | 734 | 32 | Dream | 228 |
8 | Immunity | 729 | 33 | Female | 227 |
9 | Sunbathing | 719 | 34 | Experience | 226 |
10 | Activity | 633 | 35 | Soccer | 221 |
11 | Management | 538 | 36 | Physical strength | 213 |
12 | School | 520 | 37 | Person | 211 |
13 | Children | 488 | 38 | Treatment | 209 |
14 | Participation | 429 | 39 | Help | 203 |
15 | Education | 415 | 40 | Camp | 197 |
16 | Student | 401 | 41 | Culture | 196 |
17 | Society | 354 | 42 | Time | 196 |
18 | Growth | 349 | 43 | Sports activity | 187 |
19 | Mental | 336 | 44 | World | 183 |
20 | Child | 321 | 45 | Obesity | 182 |
21 | Development | 305 | 46 | Wholesome | 175 |
22 | Kid | 279 | 47 | Emotion | 174 |
23 | Body | 273 | 48 | Problem | 173 |
24 | Game | 260 | 49 | Enhancement | 171 |
25 | Opportunity | 258 | 50 | Sport for all | 166 |
Rank | Term | Freq. | Rank | Term | Freq. |
---|---|---|---|---|---|
1 | Exercise | 2108.070 | 26 | Physical education | 906.315 |
2 | Health | 1961.843 | 27 | Female | 896.207 |
3 | Program | 1928.765 | 28 | Stress | 894.970 |
4 | Mind | 1861.837 | 29 | Opportunity | 878.059 |
5 | Burden | 1722.687 | 30 | Adult | 824.563 |
6 | Vitamin D | 1718.496 | 31 | Physical activity | 822.584 |
7 | Outdoor activity | 1707.490 | 32 | Soccer | 822.293 |
8 | Immunity | 1702.844 | 33 | Treatment | 820.864 |
9 | Sunbathing | 1687.441 | 34 | Improve | 819.604 |
10 | Activity | 1599.081 | 35 | Dream | 812.477 |
11 | Management | 1507.636 | 36 | Experience | 811.808 |
12 | School | 1490.146 | 37 | Physical strength | 787.896 |
13 | Children | 1431.463 | 38 | Person | 773.799 |
14 | Participation | 1255.191 | 39 | Camp | 769.779 |
15 | Education | 1251.933 | 40 | Help | 738.214 |
16 | Student | 1218.513 | 41 | Culture | 731.439 |
17 | Society | 1112.992 | 42 | World | 727.613 |
18 | Growth | 1086.663 | 43 | Sport for all | 727.328 |
19 | Child | 1068.955 | 44 | Time | 726.069 |
20 | Mental | 1056.399 | 45 | Obesity | 707.586 |
21 | Development | 1019.094 | 46 | Sports activity | 693.743 |
22 | Kid | 964.428 | 47 | Problem | 677.149 |
23 | Skin | 963.135 | 48 | Emotion | 663.428 |
24 | Game | 937.734 | 49 | Wholesome | 658.000 |
25 | Body | 933.512 | 50 | Enhancement | 655.108 |
Rank | Term | Freq. | Rank | Term | Freq. |
---|---|---|---|---|---|
1 | Exercise | 0.02857 | 26 | Adult | 0.008077 |
2 | Program | 0.02406 | 27 | Treatment | 0.008010 |
3 | Mind | 0.02079 | 28 | Start | 0.007877 |
4 | Health | 0.02062 | 29 | Problem | 0.007576 |
5 | Activity | 0.01872 | 30 | Skin | 0.007376 |
6 | Management | 0.01545 | 31 | Effect | 0.007309 |
7 | Student | 0.01525 | 32 | Improve | 0.007109 |
8 | Participation | 0.01491 | 33 | Culture | 0.007076 |
9 | School | 0.01475 | 34 | Help | 0.007009 |
10 | Education | 0.01375 | 35 | Sports activity | 0.006909 |
11 | Children | 0.01305 | 36 | Experience | 0.006909 |
12 | Child | 0.01184 | 37 | Physical strength | 0.006809 |
13 | Kid | 0.01094 | 38 | Soccer | 0.006742 |
14 | Society | 0.01064 | 39 | Stability | 0.006508 |
15 | Mental | 0.00964 | 40 | Method | 0.006441 |
16 | Development | 0.00924 | 41 | Increase | 0.006308 |
17 | Person | 0.00921 | 42 | Camp | 0.006275 |
18 | Physical education | 0.00917 | 43 | Perform | 0.006041 |
19 | Growth | 0.00911 | 44 | Practice | 0.006041 |
20 | Physical activity | 0.00857 | 45 | Obesity | 0.006041 |
21 | Opportunity | 0.00851 | 46 | Think | 0.005874 |
22 | Body | 0.00831 | 47 | Dream | 0.005741 |
23 | Time | 0.00831 | 48 | Athlete | 0.005741 |
24 | Game | 0.00821 | 49 | Prevent | 0.005674 |
25 | Stress | 0.00807 | 50 | Develop | 0.005640 |
Cluster | Term | |
---|---|---|
1 | Exercise and health | Exercise, health, activity, mental, growth, physical strength, help |
2 | Child to adult | Child, kid, physical education, adult, world, time, problem, person, obese |
3 | Sociocultural development | Children, education, social, culture, development, improvement, soccer, game, emotion, enhancement |
4 | Therapy | Mind, immunity, vitamin D, outdoor activity, burden, sunbathing, body, skin |
5 | Program | Program, management, school, student, participation, opportunity, dream, experience, physical activity, sports activity |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-U.; Ahn, H.; Kim, D.-K.; So, W.-Y. Big Data Analysis of Sports and Physical Activities among Korean Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 5577. https://doi.org/10.3390/ijerph17155577
Park S-U, Ahn H, Kim D-K, So W-Y. Big Data Analysis of Sports and Physical Activities among Korean Adolescents. International Journal of Environmental Research and Public Health. 2020; 17(15):5577. https://doi.org/10.3390/ijerph17155577
Chicago/Turabian StylePark, Sung-Un, Hyunkyun Ahn, Dong-Kyu Kim, and Wi-Young So. 2020. "Big Data Analysis of Sports and Physical Activities among Korean Adolescents" International Journal of Environmental Research and Public Health 17, no. 15: 5577. https://doi.org/10.3390/ijerph17155577
APA StylePark, S. -U., Ahn, H., Kim, D. -K., & So, W. -Y. (2020). Big Data Analysis of Sports and Physical Activities among Korean Adolescents. International Journal of Environmental Research and Public Health, 17(15), 5577. https://doi.org/10.3390/ijerph17155577