High-Sensitivity C-Reactive Protein Elevation Is Independently Associated with Subclinical Renal Impairment in the Middle-Aged and Elderly Population—A Community-Based Study in Northern Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Data Collection and Parameter Measurements
2.3. Definition of Renal Impairment (RI)
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Population According to Tertiles of hs-CRP Levels
3.2. Correlations Between hs-CRP and Cardiometabolic Risk Factors
3.3. Associations between Tertiles of hs-CRP and RI
4. Discussion
4.1. Biology of hs-CRP as a Biomarker of Inflammation
4.2. Role of Chronic Inflammation in Subclinical RI
4.3. Possibility of Using hs-CRP in Risk Stratification for RI
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mazidi, M.; Toth, P.P.; Banach, M. C-reactive Protein is associated with prevalence of the metabolic syndrome, hypertension, and diabetes mellitus in US adults. Angiology 2017, 69, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Abu-Farha, M.; Behbehani, K.; Elkum, N. Comprehensive analysis of circulating adipokines and hsCRP association with cardiovascular disease risk factors and metabolic syndrome in Arabs. Cardiovasc. Diabetol. 2014, 13, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Tonelli, M.; Bonventre, J.; Coresh, J.; Donner, J.-A.; Fogo, A.B.; Fox, C.S.; Gansevoort, R.T.; Heerspink, H.J.L.; Jardine, M.J.; et al. Global kidney health 2017 and beyond: A roadmap for closing gaps in care, research, and policy. Lancet 2017, 390, 1888–1917. [Google Scholar] [CrossRef]
- Banerjee, D.; Recio-Mayoral, A.; Chitalia, N.; Kaski, J.C. insulin resistance, inflammation, and vascular disease in nondiabetic predialysis chronic kidney disease patients. Clin. Cardiol. 2011, 34, 360–365. [Google Scholar] [CrossRef]
- Lin, L.; Peng, K.; Du, R.; Huang, X.; Lu, J.; Xu, Y.; Xu, M.; Chen, Y.; Bi, Y.; Wang, W. Metabolically healthy obesity and incident chronic kidney disease: The role of systemic inflammation in a prospective study. Obesity 2017, 25, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Schei, J.; Stefansson, V.; Eriksen, B.O.; Jenssen, T.G.; Solbu, M.D.; Wilsgaard, T.; Melsom, T. Association of TNF receptor 2 and CRP with GFR decline in the general nondiabetic population. Clin. J. Am. Soc. Nephrol. 2017, 12, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Schei, J.; Stefansson, V.T.; Mathisen, U.D.; Eriksen, B.O.; Solbu, M.D.; Jenssen, T.G.; Melsom, T. Residual associations of inflammatory markers with eGFR after accounting for measured GFR in a community-based cohort without CKD. Clin. J. Am. Soc. Nephrol. 2015, 11, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, J.R.; Salerno, M. New blood test to measure heart attack risk: C-reactive protein. J. Cardiovasc. Nurs. 2004, 19, 425–429. [Google Scholar] [CrossRef]
- Sigdel, M.; Kumar, A.; Gyawali, P.; Shrestha, R.; Tuladhar, E.T.; Jha, B. Association of high sensitivity C-reactive protein with the components of metabolic syndrome in diabetic and non-diabetic individuals. J. Clin. Diagn. Res. 2014, 8, CC11–CC13. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, O.; Mohanty, B.D.; Martin, S.S.; Joshi, P.H.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Budoff, M.J. High-sensitivity C-reactive protein and cardiovascular disease. J. Am. Coll. Cardiol. 2013, 62, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffrin, E.L.; Lipman, M.L.; Mann, J.F. Chronic kidney disease. Circulation 2007, 116, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Zammit, A.; Katz, M.J.; Derby, C.; Bitzer, M.; Lipton, R.B. Chronic kidney disease in non-diabetic older adults: Associated roles of the metabolic syndrome, inflammation, and insulin resistance. PLoS ONE 2015, 10, e0139369. [Google Scholar] [CrossRef]
- Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 169–177. [Google Scholar] [CrossRef]
- Bray, C.; Bell, L.N.; Liang, H.; Haykal, R.; Kaiksow, F.; Mazza, J.J.; Yale, S.H. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ Off. Publ. State Med. Soc. Wis. 2016, 115, 317–321. [Google Scholar]
- Scrivo, R.; Vasile, M.; Bartosiewicz, I.; Valesini, G. Inflammation as “common soil” of the multifactorial diseases. Autoimmun. Rev. 2011, 10, 369–374. [Google Scholar] [CrossRef]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrology, dialysis, transplantation. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2018, 33, iii35–iii40. [Google Scholar]
- Kooman, J.P.; Dekker, M.J.; Usvyat, L.; Kotanko, P.; Van Der Sande, F.M.; Schalkwijk, C.G.; Shiels, P.; Stenvinkel, P. Inflammation and premature aging in advanced chronic kidney disease. Am. J. Physiol. Physiol. 2017, 313, F938–F950. [Google Scholar] [CrossRef] [Green Version]
- Storey, R.H.; Vilahur, G.; Badimon, L. Update on lipids, inflammation and atherothrombosis. Thromb. Haemost. 2011, 105, S34–S42. [Google Scholar] [CrossRef]
- Wong, B.W.; Meredith, A.; Lin, D.; McManus, B.M. The Biological role of inflammation in atherosclerosis. Can. J. Cardiol. 2012, 28, 631–641. [Google Scholar] [CrossRef]
- Gisterå, A.; Hansson, G.K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 2017, 13, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Jara, A.; Mezzano, S. Vascular damage in chronic kidney disease. Rev. Med. Chile 2008, 136, 1476–1484. [Google Scholar] [PubMed] [Green Version]
- Chen, T.; Hassan, H.I.C.; Qian, P.; Vu, M.; Makris, A. High-sensitivity troponin T and C-reactive protein have different prognostic values in hemo and peritoneal dialysis populations: A cohort study. J. Am. Heart Assoc. 2018, 7, e007876. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-J.; Yen, C.-H.; Hsu, K.-H.; Wu, I.-W.; Lee, C.-C.; Sun, C.-Y.; Chou, C.-C.; Chen, C.-Y.; Yang, S.-Y.; Tsai, C.-J.; et al. chronic kidney disease stage is a modulator on the association between high-sensitivity C-reactive protein and coronary vasospastic angina. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Golembiewska, E.; Lindholm, B.; Stenvinkel, P. End-stage renal disease, inflammation and cardiovascular outcomes. Contrib. Nephrol. 2017, 191, 32–43. [Google Scholar] [CrossRef]
- D’marco, L.; Bellasi, A.; Raggi, P. Cardiovascular biomarkers in chronic kidney disease: State of current research and clinical applicability. Dis. Mark. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, M.; Andreucci, M.; Garofalo, C.; Faga, T.; Ashour, M.; Ielapi, N.; Grande, R.; Sapienza, P.; De Franciscis, S.; Mastroroberto, P.; et al. The association of matrix metalloproteinases with chronic kidney disease and peripheral vascular disease: A light at the end of the tunnel? Biomolecules 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Amin, H.K.; El-Sayed, M.-I.K.; Leheta, O.F. Homocysteine as a predictive biomarker in early diagnosis of renal failure susceptibility and prognostic diagnosis for end stages renal disease. Ren. Fail. 2016, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Adejumo, O.A.; Okaka, E.I.; Okwuonu, C.G.; Iyawe, I.O.; Odujoko, O.O. Serum C-reactive protein levels in pre-dialysis chronic kidney disease patientsin southern Nigeria. Ghana Med. J. 2016, 50, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Zhang, L.; Gu, H.; Wang, S.; Liu, X. The Association of serum hsCRP and urinary Alpha1-microglobulin in patients with type 2 diabetes mellitus. BioMed Res. Int. 2019, 2019, 6364390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
hs-CRP Levels (mg/dL) | |||||
---|---|---|---|---|---|
Variables | Total | Low | Middle | High | p-Value |
(≤0.80 mg/L) | (0.81–1.76 mg/L) | (>1.77 mg/L) | |||
(n = 381) | (n = 131) | (n = 125) | (n = 125) | ||
Age (years) | 64.55 ± 8.48 | 64.47 ± 7.56 | 64.18 ± 8.20 | 65.02 ± 9.63 | 0.73 |
Middle-aged people, n (%) | 219 (57.5) | 71 (54.2) | 73 (58.4) | 75 (60.0) | 0.62 |
Men, n (%) | 134 (35.2) | 51 (38.9) | 41 (32.8) | 42 (33.6) | 0.53 |
Marital status (single), n (%) | 74 (19.4) | 29 (22.1) | 19 (15.2) | 26 (20.8) | 0.33 |
Current smoking, n (%) | 39 (10.2) | 11 (8.4) | 12 (9.6) | 16 (12.8) | 0.49 |
BMI (kg/m2) | 24.53 ± 3.52 | 23.45 ± 3.38 | 24.62 ± 3.11 a | 25.57 ± 3.75 a | <0.001 *** |
Waist circumference (cm) | 85.04 ± 9.59 | 81.91 ± 8.98 | 85.39 ± 9.09 a | 87.98 ± 9.78 a | <0.001 *** |
SBP (mmHg) | 129.60 ± 16.57 | 126.22 ± 16.20 | 131.08 ± 16.26 | 131.66 ± 16.85 a | 0.02 * |
DBP (mmHg) | 77.00 ± 11.44 | 76.26 ± 10.65 | 77.31 ± 11.13 | 77.46 ± 12.54 | 0.66 |
hs-CRP (mg/L) | 1.76 ± 1.72 | 0.52 ± 0.17 | 1.25 ± 0.29 a | 3.57 ± 1.93 a,b | <0.001 *** |
HDL-C (mg/dL) | 54.83 ± 13.85 | 57.92 ± 15.33 | 55.34 ± 13.25 a | 51.09 ± 11.92 a | <0.001 *** |
LDL-C (mg/dL) | 118.94 ± 32.04 | 111.77 ± 28.80 | 121.75 ± 32.69 a | 123.64 ± 33.51 a | 0.01 * |
TG (mg/dL) | 121.60 ± 65.96 | 112.76 ± 65.70 | 116.11 ± 61.72 | 136.34 ± 68.32 a,b | 0.01 * |
FPG (mg/dL) | 95.94 ± 24.98 | 92.26 ± 15.02 | 97.97 ± 33.45 | 97.77 ± 23.13 | 0.11 |
Creatinine (mg/dL) | 0.77 ± 0.34 | 0.75 ± 0.31 | 0.77 ± 0.36 | 0.79 ± 0.35 | 0.63 |
eGFR (mL/min/1.73 m2) | 112.76 ± 32.90 | 115.44 ± 31.42 | 112.71 ± 32.58 | 110.00 ± 34.71 | 0.42 |
ACR ≥ 30 mg/g, n (%) | 69 (18.1) | 16 (12.2) | 23 (18.4) | 30 (24.0) a | 0.05 |
RI, n (%) | 75 (19.7) | 18 (13.7) | 24 (19.2) | 33 (26.4) a | 0.04 * |
Chinese herb use, n (%) | 31 (8.14) | 14 (10.69) | 7 (5.60) | 10 (8.00) | 0.33 |
NSAID use, n (%) | 29 (7.61) | 13 (9.92) | 7 (5.60) | 9 (7.20) | 0.42 |
HTN, n (%) | 192 (50.39) | 62 (47.33) | 59 (47.20) | 71 (56.80) | 0.22 |
DM, n (%) | 75 (19.69) | 18 (13.74) | 25 (20.00) | 32 (25.60) | 0.06 |
Hyperlipidemia, n (%) | 249 (65.35) | 77 (58.78) | 83 (66.40) | 89 (71.20) | 0.11 |
hs-CRP (n = 381) | ||||
---|---|---|---|---|
Variables | Unadjusted | Adjusted for Age | ||
Spearman’s Coefficient | p-Value | Spearman ‘s Coefficient | p-Value | |
Age (years) | −0.02 | 0.74 | NA | NA |
BMI (kg/m2) | 0.28 | <0.001 *** | 0.23 | <0.001 *** |
Waist circumference (cm) | 0.30 | <0.001 *** | 0.23 | <0.001 *** |
SBP (mmHg) | 0.18 | <0.001 *** | 0.12 | 0.03 |
DBP (mmHg) | 0.06 | 0.22 | 0.06 | 0.26 |
FPG (mg/dL) | 0.12 | 0.02 * | 0.15 | 0.004 |
HDL-C (mg/dL) | −0.20 | <0.001 *** | −0.16 | 0.002 |
LDL-C (mg/dL) | 0.17 | <0.001 *** | 0.10 | 0.05 |
TG (mg/dL) | 0.25 | <0.001 *** | 0.17 | 0.001 |
eGFR (mL/min/1.73 m2) | −0.06 | 0.24 | −0.03 | 0.53 |
ACR (mg/g) | 0.16 | 0.001 ** | 0.11 | 0.03 * |
Tertiles of hs-CRP | Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | (95% CI) | p-Value | OR | (95% CI) | p-Value | OR | (95% CI) | p-Value | ||
Tertiles of hs-CRP | ||||||||||
Low | 1 | – | – | 1 | – | – | 1 | – | – | |
Middle | 1.49 | (0.77–2.91) | 0.24 | 1.52 | (0.78–2.98) | 0.22 | 1.42 | (0.70–2.90) | 0.33 | |
High | 2.25 | (1.19–4.26) | 0.01 * | 2.22 | (1.17–4.23) | 0.02 * | 2.16 | (1.07–4.93) | 0.03 * | |
p-Value for trend | 0.01 * | 0.02 * | 0.03 * |
Variables | AUC (95% CI) | p-Value | Cutoff Point | Sensitivity | Specificity |
---|---|---|---|---|---|
Total study population (n = 381) | |||||
hs-CRP | 0.60 (0.53–0.67) | 0.01 * | 1.61 mg/dL | 0.56 | 0.66 |
Middle-aged group (<65 years, n = 219) | |||||
hs-CRP | 0.59 (0.49–0.69) | 0.09 | 1.61 mg/dL | 0.58 | 0.63 |
Elderly group (≥65 years, n = 162) | |||||
hs-CRP | 0.62 (0.51–0.72) | 0.03 * | 2.03 mg/dL | 0.46 | 0.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, H.-H.; Lin, R.-H.; Li, W.-C.; Yeh, W.-C.; Lin, Y.-A.; Chen, J.-Y. High-Sensitivity C-Reactive Protein Elevation Is Independently Associated with Subclinical Renal Impairment in the Middle-Aged and Elderly Population—A Community-Based Study in Northern Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 5878. https://doi.org/10.3390/ijerph17165878
Chuang H-H, Lin R-H, Li W-C, Yeh W-C, Lin Y-A, Chen J-Y. High-Sensitivity C-Reactive Protein Elevation Is Independently Associated with Subclinical Renal Impairment in the Middle-Aged and Elderly Population—A Community-Based Study in Northern Taiwan. International Journal of Environmental Research and Public Health. 2020; 17(16):5878. https://doi.org/10.3390/ijerph17165878
Chicago/Turabian StyleChuang, Hai-Hua, Rong-Ho Lin, Wen-Cheng Li, Wei-Chung Yeh, Yen-An Lin, and Jau-Yuan Chen. 2020. "High-Sensitivity C-Reactive Protein Elevation Is Independently Associated with Subclinical Renal Impairment in the Middle-Aged and Elderly Population—A Community-Based Study in Northern Taiwan" International Journal of Environmental Research and Public Health 17, no. 16: 5878. https://doi.org/10.3390/ijerph17165878
APA StyleChuang, H. -H., Lin, R. -H., Li, W. -C., Yeh, W. -C., Lin, Y. -A., & Chen, J. -Y. (2020). High-Sensitivity C-Reactive Protein Elevation Is Independently Associated with Subclinical Renal Impairment in the Middle-Aged and Elderly Population—A Community-Based Study in Northern Taiwan. International Journal of Environmental Research and Public Health, 17(16), 5878. https://doi.org/10.3390/ijerph17165878