Diet Quality among Women with Previous Gestational Diabetes Mellitus in Rural Areas of Hunan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics Approval
2.2. Participants and Recruitment
2.3. Data Collection
2.3.1. Questionnaires Survey
2.3.2. Anthropometric Measurements
2.4. Dietary Assessment
2.5. Dietary Quality
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Population
3.2. Total CHEI and Components Scores
3.3. CHEI Component Foods Intake
3.4. Nutrition Intake and Its Association with Total CHEI Score
3.5. Association of Sociodemographic, Anthropometrics, and CHEI Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
CHEI-2017 | AHEI-2010 | ||||||
---|---|---|---|---|---|---|---|
Component | Maximum Points | Standard for Maximum Point | Standard for Zero Point | Component | Maximum Points | Standard for Maximum Point | Standard for Zero Point |
Adequacy | Adequacy | ||||||
Total grains | 5 | ≥2.5 SP/1000 kcal | No intake | Nuts and legumes | ≥1 serving/d | No intake | |
Whole Grains and mixed beans | 5 | ≥0.6 SP/1000 kcal | No intake | Whole grains | 10 | ≥75 g/d | No intake |
Tubers | 5 | ≥0.3 SP/1000 kcal | No intake | PUFA | 10 | ≥10% of energy | ≤2% of energy |
Total vegetables | 5 | ≥1.9 SP/1000 kcal | No intake | Vegetables | 10 | ≥5 servings/d | No intake |
Dark vegetables | 5 | ≥0.9 SP/1000 kcal | No intake | Long-chain (n − 3) fatty acids EPA + DHA | 10 | ≥250 mg/d | No intake |
Fruits | 10 | ≥1.1 SP/1000 kcal | No intake | Fruit | 10 | ≥4 servings/d | No intake |
Dairy | 5 | ≥0.5 SP/1000 kcal | No intake | ||||
Soybeans | 5 | ≥0.4 SP/1000 kcal | No intake | ||||
Fish and Seafood | 5 | ≥0.6 SP/1000 kcal | No intake | ||||
Poultry | 5 | ≥0.3 SP/1000 kcal | No intake | ||||
Eggs | 5 | ≥0.5 SP/1000 kcal | No intake | ||||
Seeds and Nuts | 5 | ≥0.4 SP/1000 kcal | No intake | ||||
Moderation | Moderation | ||||||
Added sugars | 5 | ≤10% of energy | ≥20% of energy | Sugar-sweetened beverages and fruit juice | 10 | No intake | ≥1 serving/d |
Sodium | 10 | ≤1000 mg/1000 kcal | ≥3608 mg/1000 kcal | Sodium | 10 | ≤1112 mg/d | ≥3337 mg/d |
Cooking oils | 10 | ≤15.6 g/1000 kcal | ≥32.6 g/1000 kcal | trans Fat | 10 | ≤0.5% of energy | ≥4% of energy |
Red meat | 5 | ≤0.4 SP/1000 kcal | ≥3.5 SP/1000 kcal | Red/processed meat | 10 | ≤1 serving/m | ≥1.5 servings/d |
Alcohol | 5 | ≤15 g | ≥40 g | Alcohol | 10 | 0.5–1.5 drinks/d | ≥2.5 drinks/d |
Variables | CHEI Score | Univariate Model | Multivariate Model | ||
---|---|---|---|---|---|
Mean (SD) | β (95%CI) | p Value | β (95%CI) | p Value | |
Age | |||||
≤30 | 53.9 (7.6) | Reference | Reference | ||
>30 | 56.1 (8.0) | 2.12 (0.59, 3.65) | 0.007 | 0.77 (−1.22, 2.76) | 0.028 |
Ethnicity | |||||
Han ethnic | 56.6 (8.4) | Reference | Reference | ||
Minority ethnic | 53.1 (6.8) | −3.51(−5.03, −2.00) | 0.000 | −3.17 (−4.69, −1.65) | 0.000 |
Education | |||||
≤9 years | 54.7 (7.3) | Reference | |||
10–12 years | 55.4 (7.9) | 0.76 (−1.15, 2.67) | 0.43 | ||
≥13 years | 54.1 (8.2) | −0.57 (−2.94, 1.79) | 0.65 | ||
Occupation | |||||
Unemployed | 55.5 (7.6) | Reference | |||
Employed | 54.5 (7.9) | −0.99 (−2.68, 0.70) | 0.25 | ||
Monthly family income ($) | |||||
≤420 | 55.5 (8.2) | Reference | |||
>420 | 54.8 (7.8) | −0.69 (−2.47, 1.08) | 0.443 | ||
Monthly family income ($) | |||||
≤420 | 54.7 (7.7) | Reference | |||
>420 | 55.2 (7.9) | 0.497(−1.263, 2.258) | 0.579 | ||
Applied diet regulation for GDM control | |||||
No | 53.8 (7.8) | Reference | Reference | ||
Yes | 55.9 (7.8) | 2.08 (0.52, 3.63) | 0.009 | 1.33 (−0.33, 2.99) | 0.117 |
Applied physical activity for GDM control | |||||
No | 54.6 (7.7) | Reference | Reference | ||
Yes | 56.6 (8.5) | 1.99 (0.11, 3.88) | 0.038 | 0.68 (−1.31, 2.67) | 0.686 |
Children number | |||||
1 | 53.9 (7.7) | Reference | Reference | ||
≥2 | 55.6 (7.9) | 1.87 (0.28, 3.40) | 0.021 | 0.645 (−1.01, 2.31) | 0.465 |
References
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Song, C.; Lyu, Y.; Li, C.; Liu, P.; Li, J.; Ma, R.C.; Yang, X. Long-term risk of diabetes in women at varying durations after gestational diabetes: A systematic review and meta-analysis with more than 2 million women. Obes. Rev. 2018, 19, 421–429. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2019. J. Clin. Appl. Res. Educ. 2019, 42, S1–S193. [Google Scholar]
- Chinese Diabetes Society. Standards of care for type 2 diabetes in China. Chin. J. Diabetes Mellit. 2018, 10, 4–67. [Google Scholar]
- Aroda, V.R.; Christophi, C.A.; Edelstein, S.L.; Zhang, P.; Herman, W.H.; Barrett-Connor, E.; Delahanty, L.M.; Montez, M.G.; Ackermann, R.T.; Zhuo, X.; et al. The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: The Diabetes Prevention Program outcomes study 10-year follow-up. J. Clin. Endocrinol. Metab. 2015, 100, 1646–1653. [Google Scholar] [CrossRef]
- Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef]
- Li, G.; Zhang, P.; Wang, J.; Gregg, E.W.; Yang, W.; Gong, Q.; Li, H.; Li, H.; Jiang, Y.; An, Y.; et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008, 371, 1783–1789. [Google Scholar] [CrossRef]
- Lindstrom, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemio, K.; Hamalainen, H.; Harkonen, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
- William, C.K.; Elizabeth, B.C.; Sarah, E.F.; Richard, F.H.; John, M.L.; Elizabeth, A.W.; David, M.N. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- Deirdre, K.T.; Zhang, C.; Jorge, C.; Sjurdur, O.; Wei, B.; Bjerregaard, A.A.; Fung, T.T.; Manson, J.E.; Hu, F.B. Healthful dietary patterns and long-term weight change among women with a history of gestational diabetes mellitus. Int. J. Obes. 2016, 40, 1748–1753. [Google Scholar]
- Tobias, D.K.; Hu, F.B.; Chavarro, J.; Rosner, B.; Mozaffarian, D.; Zhang, C. Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. Arch. Intern. Med. 2012, 172, 1566–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.Q.; Li, F.; Dong, R.H.; Chen, J.S.; He, G.S.; Li, S.G.; Chen, B. The Development of a Chinese Healthy Eating Index and Its Application in the General Population. Nutrients 2017, 9, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.X.; Wang, X.L.; Leong, P.M.; Zhang, H.M.; Yang, X.G.; Kong, L.Z.; Zhai, F.Y.; Cheng, Y.Y.; Guo, J.S.; Su, Y.X. New Chinese dietary guidelines: Healthy eating patterns and food-based dietary recommendations. Asia Pac. J. Clin. Nutr. 2018, 27, 908–913. [Google Scholar] [PubMed]
- Hailili, G. The Relationship between Dietary Index CHEI, DBI-16 and Metabolic Syndrome in Rural Yili, Xinjiang (Chinese). Master’s Thesis, Xinjiang Medical University, Urumqi, China, 2020. [Google Scholar]
- Zhang, N.; Du, S.M.; Ma, G.S. Current lifestyle factors that increase risk of T2DM in China. Eur. J. Clin. Nutr. 2017, 71, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yang, H.; Zhu, W.; Yang, H.; Li, H.; Yan, J.; Zhang, C. International Association of Diabetes and Pregnancy Study Group criteria is suitable for gestational diabetes mellitus diagnosis: Further evidence from China. Chin. Med. J. Engl. 2014, 127, 3553–3556. [Google Scholar]
- Renna, Q.M.G.; Li, D.M.; Mi, L.X.; Liang, H.W. Prevalence rate of gestational diabetes mellitus in China: Meta-analysis (Chinese). Chin. J. Evid. Based Med. 2018, 18, 280–286. [Google Scholar]
- Guo, J.; Tang, Y.; Wiley, J.; Whittemore, R.; Chen, J.L. Effectiveness of a diabetes prevention program for rural women with prior gestational diabetes mellitus: Study protocol of a multi-site randomized clinical trial. BMC Public Health 2018, 18, 809. [Google Scholar] [CrossRef]
- Department of Disease Control, Ministry of Health of the People’s Republic of China. Guidelines for Prevention and Control of Overweight and Obesity in Chinese Adults; People’s Medical Publishing House: Beijing, China, 2006. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Tables, 6th ed.; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- The Average Disposable Income of Chinese Residents, National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/english/ (accessed on 20 March 2020).
- Rauber, F.; da Costa Louzada, M.L.; Vitolo, M.R. Healthy eating index measures diet quality of Brazilian children of low socioeconomic status. J. Am. Coll. Nutr. 2014, 33, 26–31. [Google Scholar] [CrossRef]
- Kaiser, B.; Razurel, C. Determinants of postpartum physical activity, dietary habits and weight loss after gestational diabetes mellitus. J. Nurs. Manag. 2013, 21, 58–69. [Google Scholar] [CrossRef]
- Nicklas, J.M.; Zera, C.A.; Seely, E.W.; Abdul-Rahim, Z.S.; Rudloff, N.D.; Levkoff, S.E. Identifying postpartum intervention approaches to prevent type 2 diabetes in women with a history of gestational diabetes. BMC Pregnancy Childbirth 2011, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Villegas, R.; Liu, S.; Gao, Y.T.; Yang, G.; Li, H.; Zheng, W.; Shu, X.O. Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch. Intern. Med. 2007, 167, 2310–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Rice intake and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1468–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granfeldt, Y.; Björck, I. Glycemic response to starch in pasta: A study of mechanisms of limited enzyme availability. J. Cereal Sci. 1991, 14, 47–61. [Google Scholar] [CrossRef]
- Katri, S.; Leo, K.; Kirsi, H.; Kaisa, S.; Jens, J.; Hannu, M. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am. J. Clin. Nutr. 2002, 75, 254–262. [Google Scholar]
- Martin, O.W.; Matthias, M.; Christof, S.; Ayman, M.A.; Bärbel, O.; Hannanh, V.; Corinna, K.; Kohl, A.; Spranger, J.; Pfeiffer, A.F.H. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 2006, 29, 775–780. [Google Scholar]
- Matthias, B.; Mandy, S.; Christin, H.; Anja, S.; Kurt, H.; Heiner, B. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.D.; Ley, S.H.; Vasanti, M.; Howard, A.G.; He, Y.; Hu, F.B. Time Trends of Dietary and Lifestyle Factors and Their Potential Impact on Diabetes Burden in China. Diabetes Care 2017, 40, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, C. Current situation and problems of processing and utilization of whole-wheat food in China. Sci. Technol. Cereals Oils Foods 2019, 27, 62–66. [Google Scholar]
- Tan, B.; Qiao, C. Dilemma, opportunity and thoughts on development of China’s whole grain food industry. Biotechnol. Bus. 2019, 6, 64–74. [Google Scholar]
- Zemel, M.B. Nutritional and endocrine modulation of intracellular calcium: Implications in obesity, insulin resistance and hypertension. Mol. Cell Biochem. 1998, 188, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Oh, S.Y.; Hong, Y.C. Associations of serum calcium levels and dietary calcium intake with incident type 2 diabetes over 10 years: The Korean Genome and Epidemiology Study (KoGES). Diabetol. Metab. Syndr. 2018, 19, 10–50. [Google Scholar] [CrossRef] [PubMed]
- Daniela, J.; Oren, F. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 Diabetes. J. Nutr. Biochem. 2013, 24, 1–5. [Google Scholar]
- Lígia, A.M.; Antonela, S.C.; Sandra, R.G. Role of Vitamins and Minerals in Prevention and Management of Type 2 Diabetes Mellitus. Nutr. Rev. 2010, 68, 341–354. [Google Scholar]
- Kevin, B.C.; Gonca, P. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016, 8, 446. [Google Scholar]
- Alvarez-Bueno, C.; Cavero-Redondo, I.; Martinez-Vizcaino, V.; Sotos-Prieto, M.; Ruiz, J.R.; Gil, A. Effects of Milk and Dairy Product Consumption on Type 2 Diabetes: Overview of Systematic Reviews and Meta-Analyses. Adv. Nutr. 2019, 10, S154–S163. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, S. Worldwide trends in dairy production and consumption and calcium intake: Is promoting consumption of dairy products a sustainable solution for inadequate calcium intake? Food Nutr. Bull. 2008, 29, 172–185. [Google Scholar] [CrossRef]
- Ma, G.S.; Cui, Z.Q.; Zhou, Q.; Hu, X.Q.; Li, Y.P.; Zhai, F.Y.; Yang, X.G. Current status of consumption on milk and dairy product of Chinese residents (Chinese). Food Nutr. China 2007, 11, 36–39. [Google Scholar]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [Green Version]
- Carter, P.; Gray, L.J.; Troughton, J.; Khunti, K.; Davies, M.J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis. BMJ 2010, 341, c4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.C.; Koh, W.P.; Yuan, J.M.; Qin, L.Q.; van Dam, R.M. Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: Results from the Singapore Chinese Health Study and meta-analysis. Br. J. Nutr. 2018, 119, 1057–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, R.; Shu, X.O.; Gao, Y.T.; Yang, G.; Elasy, T.; Li, H.; Zheng, W. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. J. Nutr. 2008, 138, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012, 3, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Mursu, J.; Virtanen, J.K.; Tuomainen, T.P.; Nurmi, T.; Voutilainen, S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2014, 99, 328–333. [Google Scholar] [CrossRef]
- Carolyn, R.H.; Limin, F.; Dominique, Z.; Arnold, J.S.; Bernhard, H.; Lisa, M.G. Fruit and vegetable intake, as reflected by serum carotenoid concentrations, predicts reduced probability of PCB-associated risk for type 2 diabetes: NHANES 2003–2004. Nutr. Res. 2014, 34, 285–293. [Google Scholar]
- Anouk, K.; Torsten, B. Carotenoids, inflammation, and oxidative stress—Implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 2014, 34, 907–929. [Google Scholar]
- Renée, W.; Jinny, W.; Richard, G.; Paula, S.; Elizabeth, F.; Chris, F.; Anitra, C. Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: Associations with glycaemic control, obesity and smoking. Nutrients 2017, 9, 997. [Google Scholar]
- Zheng, J.S.; Stephen, J.S.; Fumiaki, I.; Rajiv, C.; Thomas, E.G.; Marinka, S.; Ivonne, S. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ 2020, 8, 370. [Google Scholar]
- Shen, X.; Fang, A.; He, J.; Liu, Z.; Guo, M.; Gao, R.; Li, K. Trends in dietary fat and fatty acid intakes and related food sources among Chinese adults: A longitudinal study from the China Health and Nutrition Survey (1997–2011). Public Health Nutr. 2017, 20, 2927–2936. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, J.C.; Smith, S.R.; Champagne, C.M.; Most, M.M.; Lefevre, M.; DeLany, J.P.; Denkins, Y.M.; Rood, J.C.; Veldhuis, J.; Bray, G.A. Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 2002, 25, 1283–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, D.R.; Weiss, S.T.; Troisi, R.; Cassano, P.A.; Vokonas, P.S.; Landsberg, L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: The Normative Aging Study. Am. J. Clin. Nutr. 1993, 58, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Lee, J.Y.; Kang, S.B.; Park, J.S.; Lee, B.W.; Kang, E.S.; Ahn, C.W.; Lee, H.C.; Cha, B.S. Dietary monounsaturated fatty acids but not saturated fatty acids preserve the insulin signaling pathway via IRS-1/PI3K in rat skeletal muscle. Lipids 2010, 45, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes. Am. J. Clin. Nutr. 2003, 78, 617S–625S. [Google Scholar] [CrossRef] [Green Version]
- Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nalsen, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M.; et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys. 2016, 611, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Scherpbier, R.W.; Huang, X.; Guo, S.; Yang, Y.; Josephs-Spaulding, J.; Ma, C.; Zhou, H.; Wang, Y. The dietary diversity and stunting prevalence in minority children under 3 years old: A cross-sectional study in forty-two counties of Western China. Br. J. Nutr. 2017, 118, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Liu, C.; Li, S.; He, Z.; Chen, K.; Luo, R.; Wang, Z.; Yu, Y.; Xu, H. Dietary Diversity among Preschoolers: A Cross-Sectional Study in Poor, Rural, and Ethnic Minority Areas of Central South China. Nutrients 2019, 11, 558. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S.I.; Dodd, K.W.; Reedy, J.; Krebs-Smith, S.M. Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J. Acad. Nutr. Diet 2012, 112, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Yau, A.; Adams, J.; White, M.; Nicolaou, M. Differences in diet quality and socioeconomic patterning of diet quality across ethnic groups: Cross-sectional data from the HELIUS Dietary Patterns study. Eur. J. Clin. Nutr. 2020, 74, 387–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, C.; Sletner, L.; Jenum, A.K.; Morkrid, K.; Andersen, L.F.; Birkeland, K.I.; Mosdol, A. Ethnic differences in maternal dietary patterns are largely explained by socio-economic score and integration score: A population-based study. Food Nutr. Res. 2013, 57, 21164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, V.; Engberink, M.F.; van Eijsden, M.; Nicolaou, M.; Dekker, L.H.; Verhoeff, A.P.; Weijs, P.J.M. Ethnicity and socioeconomic status are related to dietary patterns at age 5 in the Amsterdam born children and their development (ABCD) cohort. BMC Public Health 2018, 18, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, L.H.; Nicolaou, M.; van Dam, R.M.; de Vries, J.H.; de Boer, E.J.; Brants, H.A.; Beukers, M.H.; Snijder, M.B.; Stronks, K. Socio-economic status and ethnicity are independently associated with dietary patterns: The HELIUS-Dietary Patterns study. Food Nutr. Res. 2015, 59, 26317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunan Provincial Bureau of Statistics. Available online: http://tjj.hunan.gov.cn/hntj/ttxw/201507/t20150717_3764767.html (accessed on 2 April 2020).
- Zhang, N.; Peng, Q.; Wang, S.L.; Zuo, Q. The lifestyle and dietary habits in middle-aged and elderly hypertensive patients and their interactions with homocysteine in Tujia minority of western Hunan. Chin. J. Hypertens. 2015, 23, 1166–1170. [Google Scholar]
- Chong, S.P.; Appannah, G.; Sulaiman, N. Predictors of Diet Quality as Measured by Malaysian Healthy Eating Index among Aboriginal Women (Mah Meri) in Malaysia. Nutrients 2019, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Mayen, A.L.; Marques-Vidal, P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic determinants of dietary patterns in low- and middle-income countries: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [Green Version]
- He, F.Y.; You, L.L.; Liang, P.; Chen, C.G. Association between Chinese Healthy Eating Index (CHEI) and metabolic syndrome (MetS) in middle-aged and elderly Chinese adults: A cross-sectional study (poster). In Proceedings of the 14th China Nutrition Science Congress, Nanjing, China, 19–22 September 2019; pp. 20–22. [Google Scholar]
- Cespedes, E.M.; Hu, F.B.; Tinker, L.; Rosner, B.; Redline, S.; Garcia, L.; Hingle, M.; Van Horn, L.; Howard, B.V.; Levitan, E.B.; et al. Multiple Healthful Dietary Patterns and Type 2 Diabetes in the Women’s Health Initiative. Am. J. Epidemiol. 2016, 183, 622–633. [Google Scholar] [CrossRef] [Green Version]
Component | Maximum Points | Standard for Maximum Point | Standard for Zero Point |
---|---|---|---|
Adequacy | |||
Total grains | 5 | ≥2.5 SP/1000 kcal | No intake |
Whole Grains and mixed beans | 5 | ≥0.6 SP/1000 kcal | No intake |
Tubers | 5 | ≥0.3 SP/1000 kcal | No intake |
Total vegetables | 5 | ≥1.9 SP/1000 kcal | No intake |
Dark vegetables | 5 | ≥0.9 SP/1000 kcal | No intake |
Fruits | 10 | ≥1.1 SP/1000 kcal | No intake |
Dairy | 5 | ≥0.5 SP/1000 kcal | No intake |
Soybeans | 5 | ≥0.4 SP/1000 kcal | No intake |
Fish and Seafood | 5 | ≥0.6 SP/1000 kcal | No intake |
Poultry | 5 | ≥0.3 SP/1000 kcal | No intake |
Eggs | 5 | ≥0.5 SP/1000 kcal | No intake |
Seeds and Nuts | 5 | ≥0.4 SP/1000 kcal | No intake |
Moderation | |||
Added sugars | 5 | ≤10% of energy | ≥20% of energy |
Sodium | 10 | ≤1000 mg/1000 kcal | ≥3608 mg/1000 kcal |
Cooking oils | 10 | ≤15.6 g/1000 kcal | ≥32.6 g/1000 kcal |
Red meat | 5 | ≤0.4 SP/1000 kcal | ≥3.5 SP/1000 kcal |
Alcohol | 5 | ≤15 g | ≥40 g |
Variables | Total (N = 404) Mean (SD) or % |
---|---|
Age (years) | 31.3 (5.1) |
Ethnicity (%) | |
Han ethnicity | 54.3 |
Other ethnicities | 45.7 |
Education (%) | |
Junior high school or primary school (≤9 years) | 22.8 |
Senior high school or junior college (9–12 years) | 57.4 |
University (≥12 years) | 19.8 |
Occupation (%) | |
Unemployed | 34.1 |
Employed | 65.9 |
Marriage status (%) | |
Married | 99.3 |
Divorced | 0.7 |
Monthly family income ($) (%) | |
≤420 | 27.3 |
>420 | 72.7 |
BMI (%) | |
<24 | 53.8 |
24–27.9 | 32.4 |
≥28 | 13.8 |
Age at GDM diagnosis (years) | 30.3 (4.9) |
Controlled GDM by diet regulation (%) | |
Yes | 62.8 |
No | 37.2 |
Children Number (%) | |
1 | 37.6 |
≥2 | 62.4 |
Food Groups | Median | 95% CI |
---|---|---|
Total grains | 4.7 | 4.5, 4.9 |
Whole grains and mixed beans | 0.0 | 0.0, 0.0 |
Tubers | 0.0 | 0.0, 0.0 |
Total vegetables | 2.2 | 2.1, 2.4 |
Dark vegetables | 1.7 | 1.5, 1.9 |
Fruits | 1.6 | 0.9, 2.1 |
Eggs | 2.1 | 1.7, 2.3 |
Soybeans | 1.5 | 1.3, 2.0 |
Dairy | 0.0 | 0.0, 0.0 |
Seeds and nuts | 0.0 | 0.0, 0.0 |
Fish and seafood | 0.9 | 0.2, 1.4 |
Poultry | 0.0 | 0.0, 0.0 |
Red meat | 3.9 | 3.8, 4.1 |
Added sugars | 5.0 | 5.0, 5.0 |
Cooking oils | 10.0 | 10.0, 10.0 |
Alcohol | 5.0 | 5.0, 5.0 |
Sodium | 9.9 | 9.5, 10.0 |
Total CHEI | 54.9 * | 7.9+ |
Food Groups | Low CHEI Mean (SD) | Intermediate CHEI Mean (SD) | High CHEI Mean (SD) | CDG Recommendation (RNI/EER, AMDR) [13] |
---|---|---|---|---|
Total grains (g/d) * | 228.9 (93.1) | 259.1 (90.3) | 228.5 (86.4) | 250–400 |
Whole grains and mixed beans (g/d) | 1.1 (4.9) | 2.8 (9.5) | 1.877 (6.5) | 50–150 |
Tubers (g/d) * | 9.6 (22.0) | 18.8 (32.7) | 34.0 (45.6) | 50–150 |
Total vegetables (g/d) * | 175.9 (127.8) | 188.3 (119.4) | 225.0 (128.3) | 300–500 |
Dark vegetables (g/d) * | 59.5 (57.7) | 78.9 (80.9) | 98.2 (8.5) | 150–250 |
Fruits (g/d) * | 32.8 (50.5) | 57.2 (80.9) | 115.4 (130.3) | 200–350 |
Dairy (g/d) * | 10.9 (38.2) | 16.7 (46.7) | 57.8 (99.9) | 300 |
Soybeans (g/d) * | 5.9 (8.8) | 9.5 (12.9) | 11.4 (13.8) | 15–25 |
Eggs (g/d) * | 21.2 (30.7) | 28.3 (37.3) | 33.3 (35.6) | 40–50 |
Seeds and nuts (g/d) * | 4.5 (10.9) | 7.1 (16.3) | 9.6 (16.1) | 10 |
Fish and seafood (g/d) * | 12.8 (29.9) | 22.3 (29.9) | 56.2 (150.6) | 40–75 |
Poultry (g/d) * | 8.4 (23.9) | 18.1 (34.6) | 24.9 (41.1) | 40–75 |
Red meat (g/d) * | 119.9 (84.1) | 106.6 (66.6) | 90.4 (61.8) | |
Added sugars (g/d) | 12.9 (1.1) | 6.1 (5.2) | 4.5 (7.4) | <=25 |
Cooking oils (g/d) | 26.9 (7.1) | 27.5 (8.6) | 27.4 (6.3) | 25–30 |
Alcohol (g/d) | 1.4 (1.1) | 0.3 (0.4) | 0.1 (0.6) | <15 g |
Sodium (mg/d) * | 3081.3 (2216.6) | 2503.0 (2186.1) | 2304.6 (1373.2) | 1500 |
Dietary Parameter | Mean (SD)/ Median (IQR) | Prevalence (%) | CDG Recommendation (RNI/EER, AMDR) [13] | ||
---|---|---|---|---|---|
Insufficient | Adequate | Excessive | |||
Energy (kcal) | 1997.2 (727.0) | 36.0 | 30.3 | 33.7 | 1800/2100/2400 |
Carbohydrate (%E) | 51.8 (8.9) | 39.0 | 54.1 | 6.9 | 50~65 |
Protein (g) | 63.5 (29.4) | 25.6 | 16.9 | 57.6 | 55 |
Fat (%E) | 35.8 (8.2) | 2.2 | 22.1 | 75.7 | 20~30 |
Saturated fat (%E) | 16.2 (12.0) | 13.6 | 86.4 | <8 | |
Calcium (mg) | 346.7 (207.1) | 96.0 | 2.0 | 2.0 | 800 |
Iron (mg) | 19.2 (8.9) | 42.7 | 22.8 | 34.5 | 20 |
Zinc (mg) | 12.2 (5.0) | 6.5 | 5.5 | 88.1 | 7.5 |
Vitamin A (mg) | 394.8 (416.8) | 73.7 | 9.9 | 16.4 | 700 |
Vitamin E (mg) | 23.5 (7.9) | 1.5 | 4.7 | 93.8 | 14 |
Thiamine (mg) | 0.70 (0.4) | 87.8 | 7.9 | 4.2 | 1.2 |
Riboflavin (mg) | 0.70 (0.3) | 83.9 | 10.9 | 5.2 | 1.2 |
Niacin (mg) | 18.8 (9.0) | 6.9 | 10.4 | 82.6 | 12 |
Vitamin C (mg) | 73.8 (63.6) | 61.5 | 13.2 | 25.3 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Shi, J.; Luo, J.; Long, Q.; Yang, Q.; OuYang, Y.; Liu, H.; Lin, Q.; Guo, J. Diet Quality among Women with Previous Gestational Diabetes Mellitus in Rural Areas of Hunan Province. Int. J. Environ. Res. Public Health 2020, 17, 5942. https://doi.org/10.3390/ijerph17165942
Li M, Shi J, Luo J, Long Q, Yang Q, OuYang Y, Liu H, Lin Q, Guo J. Diet Quality among Women with Previous Gestational Diabetes Mellitus in Rural Areas of Hunan Province. International Journal of Environmental Research and Public Health. 2020; 17(16):5942. https://doi.org/10.3390/ijerph17165942
Chicago/Turabian StyleLi, Mingshu, Jingcheng Shi, Jing Luo, Qing Long, Qiping Yang, Yufeng OuYang, Hanmei Liu, Qian Lin, and Jia Guo. 2020. "Diet Quality among Women with Previous Gestational Diabetes Mellitus in Rural Areas of Hunan Province" International Journal of Environmental Research and Public Health 17, no. 16: 5942. https://doi.org/10.3390/ijerph17165942
APA StyleLi, M., Shi, J., Luo, J., Long, Q., Yang, Q., OuYang, Y., Liu, H., Lin, Q., & Guo, J. (2020). Diet Quality among Women with Previous Gestational Diabetes Mellitus in Rural Areas of Hunan Province. International Journal of Environmental Research and Public Health, 17(16), 5942. https://doi.org/10.3390/ijerph17165942