Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting
Abstract
:1. Introduction
2. Enzymes
3. Other Bioactive Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Øvstedal, D.O.; Lewis Smith, R.I. Lichens of Antarctica and South Georgia; Cambridge University Press: Cambridge, UK, 2001; p. 424. [Google Scholar]
- Friedmann, E.I. Antarctic Microbiology; Wiley-Liss: New York, NY, USA, 1993; p. 634. [Google Scholar]
- Ruisi, S.; Barreca, D.; Selbmann, L.; Zucconi, L.; Onofri, S. Fungi in Antarctica. Rev. Environ. Sci. Biotechnol. 2007, 6, 127–141. [Google Scholar] [CrossRef]
- Onofri, S.; Zucconi, L.; Tosi, S. Continental Antarctic Fungi; IHW-Verlag: Eching, Germany, 2007; p. 247. [Google Scholar]
- Durán, P.; Barra, P.J.; Jorquera, M.A.; Viscardi, S.; Fernandez, C.; Paz, C.; Mora, M.L.; Bol, R. Occurrence of Soil Fungi in Antarctic Pristine Environments. Front. Bioeng. Biotechnol. 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Bridge, P.D.; Spooner, B.M. Non-lichenized Antarctic fungi: Transient visitors or members of a cryptic ecosystem? Fungal Ecol. 2012, 5, 381–394. [Google Scholar] [CrossRef]
- Rosa, L.H.; Zani, C.L.; Cantrell, C.L.; Duke, S.O.; Van Dijck, P.; Desideri, A.; Rosa, C.A. Fungi in Antarctica: Diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In Fungi of Antarctica. Diversity, Ecology and Biotechnological Application; Rosa, L.H., Ed.; Springer Nature: Basel, Switzerland, 2019; pp. 1–17. ISBN 978-3-030-18366-0. [Google Scholar]
- Kirby, B.M.; Barnard, D.; Marla Tuffin, I.; Cowan, D.A. Ecological Distribution of Microorganisms in Terrestrial, Psychrophilic Habitats. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer: Tokyo, Japan, 2011; pp. 839–863. [Google Scholar]
- Lambrechts, S.; Willems, A.; Tahon, G. Uncovering the uncultivated majority in antarctic soils: Toward a synergistic approach. Front. Microbiol. 2019, 10, 242. [Google Scholar] [CrossRef]
- Ferrari, B.C.; Zhang, C.; Van Dorst, J. Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front. Microbiol. 2011, 2, 217. [Google Scholar] [CrossRef] [Green Version]
- Godinho, V.M.; Gonçalves, V.N.; Santiago, I.F.; Figueredo, H.M.; Vitoreli, G.A.; Schaefer, C.E.; Barbosa, E.C.; Oliveira, J.G.; Alves, T.M.A.; Zani, C.L.; et al. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 2015, 19, 585–596. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; dos Santos, J.A.; Vianna, M.V.; Vieira, J.M.F.; Mallagutti, V.H.; Inforsato, F.J.; Wentzel, L.C.P.; Lario, L.D.; Rodrigues, A.; Pagnocca, F.C.; et al. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit. Rev. Biotechnol. 2018, 38, 600–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pascale, D.; De Santi, C.; Fu, J.; Landfald, B. The microbial diversity of Polar environments is a fertile ground for bioprospecting. Mar. Genom. 2012, 8, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Van Nostrand, J.D.; Zhou, J.; Pointing, S.B.; Farrell, R.L. Functional ecology of an Antarctic dry valley. Proc. Natl. Acad. Sci. USA 2013, 110, 8990–8995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef] [Green Version]
- Dennis, P.; Rushton, S.; Newsham, K.; Laudicina, V.; Ord, V.; Daniell, T.; O’Donnell, A.G.; Hopkins, D.W. Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic. Fungal Ecol. 2012, 5, 403–408. [Google Scholar] [CrossRef]
- Canini, F.; Geml, J.; D’Acqui, L.P.; Selbmann, L.; Onofri, S.; Ventura, S.; Zucconi, L. Exchangeable cations and pH drive diversity and functionality of fungal communities in biological soil crusts from coastal sites of Victoria Land, Antarctica. Fungal Ecol. 2020, 45, 100923. [Google Scholar] [CrossRef]
- Marx, J.C.; Collins, T.; D’Amico, S.; Feller, G.; Gerday, C. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. 2007, 9, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 2003, 1, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R.; Siddiqui, K.S.; Andrews, D.; Sowers, K.R. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 2002, 13, 253–261. [Google Scholar] [CrossRef]
- Martorell, M.M.; Ruberto, L.A.M.; de Figueroa, L.I.C.; Mac Cormack, W.P. Antarctic Yeasts as a Source of Enzymes for Biotechnological Applications. In Fungi of Antarctica. Diversity, Ecology and Biotechnological Application; Rosa, L.H., Ed.; Springer Nature: Basel, Switzerland, 2019; pp. 285–304. ISBN 978-3-030-18366-0. [Google Scholar]
- Fenice, M.; Selbmann, L.; Zucconi, L.; Onofri, S. Production of extracellular enzymes by Antarctic fungal strains. Polar Biol. 1997, 17, 275–280. [Google Scholar] [CrossRef]
- Fenice, M. The psychrotolerant Antarctic fungus Lecanicillium muscarium CCFEE 5003: A powerful producer of cold-tolerant chitinolytic enzymes. Molecules 2016, 21, 447. [Google Scholar] [CrossRef] [Green Version]
- Onofri, S.; Fenice, M.; Cicalini, A.R.; Tosi, S.; Magrino, A.; Pagano, S.; Selbmann, L.; Zucconi, L.; Vishniac, H.S.; Ocampo-Friedmann, R.; et al. Ecology and biology of microfungi from Antarctic rocks and soils. Ital. J. Zool. 2000, 67, 163–168. [Google Scholar] [CrossRef]
- Fenice, M.; Selbmann, L.; Di Giambattista, R.; Federici, F. Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res. Micobiol. 1998, 149, 289–300. [Google Scholar] [CrossRef]
- Hamid, R.; Khan, M.A.; Ahmad, M.; Ahmad, M.M.; Abdin, M.Z.; Musarrat, J.; Javed, S. Chitinases: An update. J. Pharm. Bioall. Sci. 2013, 5, 21–29. [Google Scholar] [CrossRef]
- Wang, N.; Zang, J.; Ming, K.; Liu, Y.; Wu, Z.; Ding, H. Production of cold-adapted cellulase by Verticillium sp. isolated from Antarctic soils. Electron. J. Biotechnol. 2013, 16, 10. [Google Scholar] [CrossRef]
- Wentzel, L.C.P.; Inforsato, F.J.; Montoya, Q.V.; Rossin, B.G.; Nascimento, N.R.; Rodrigues, A.; Sette, L.D. Fungi from Admiralty Bay (King George Island, Antarctica) soils and marine sediments. Microb. Ecol. 2019, 77, 12–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.; Convey, P.; Gonzalez-Rocha, G.; Alias, S.A. Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biol. 2016, 39, 65–76. [Google Scholar] [CrossRef]
- Hopkins, D.W.; Sparrow, A.D.; Shillam, L.L.; English, L.C.; Dennis, P.G.; Novis, P.; Elberling, B.; Gregorich, E.G.; Greenfield, L.G. Enzymatic activities and microbial communities in an Antarctic dry valley soil: Responses to C and N supplementation. Soil Biol. Biochem. 2008, 40, 2130–2136. [Google Scholar] [CrossRef]
- Vaz, A.B.; Rosa, L.H.; Vieira, M.L.; Garcia, V.D.; Brandão, L.R.; Teixeira, L.C.; Moliné, M.; Libkind, D.; von Broock, M.; Rosa, C.A. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz. J. Microbiol. 2011, 42, 937–947. [Google Scholar] [CrossRef]
- Panda, T.; Gowrishankar, B.S. Production and application of esterases. Appl. Microbiol. Biotechnol. 2005, 67, 160–169. [Google Scholar] [CrossRef]
- Magnin, A.; Pollet, E.; Perrin, R.; Ullmann, C.; Persillon, C.; Phalip, V.; Avérous, L. Enzymatic recycling of thermoplastic polyurethanes: Synergistic effect of an esterase and an amidase and recovery of building blocks. Waste Manag. 2019, 85, 141–150. [Google Scholar] [CrossRef]
- Tahir, L.; Ali, M.I.; Zia, M.; Atiq, M.; Hasan, F.; Ahmed, S. Production and Characterization of Esterase in Lantinus tigrinus for Degradation of Polystyrene. Pol. J. Microbiol. 2013, 62, 101–108. [Google Scholar] [CrossRef]
- McKelvey, S.M.; Murphy, R.A. Biotechnological Use of Fungal Enzymes. In Fungi Biology and Applications; Kavanagh, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 201–225. [Google Scholar] [CrossRef]
- Rani, K.; Datt, S.; Rana, R. Brief review on alkaline phosphatases- an overview. Int. J. Microbiol. Bioinf. 2012, 2, 1–4. [Google Scholar]
- Kulshrestha, S.; Tyagi, P.; Sindhi, V.; Yadavilli, K.S. Invertase and its applications—A brief review. J. Pharm. Res. 2013, 7, 792–797. [Google Scholar] [CrossRef]
- Troncoso, E.; Barahona, S.; Carrasco, M.; Villarreal, P.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol. 2016, 40, 649–658. [Google Scholar] [CrossRef]
- Carrasco, M.; Rozas, J.M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol. 2012, 12, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, M.K.; Devi, K.U.; Kumar, G.S.; Shivaji, S. Extracellular protease from the antarctic yeast Candida humicola. Appl. Environ. Microbiol. 1992, 58, 1918–1923. [Google Scholar] [CrossRef] [Green Version]
- Florczak, T.; Daroch, M.; Wilkinson, M.C.; Białkowska, A.; Bates, A.D.; Turkiewicz, M.; Iwanejko, L.A. Purification, characterization and expression in Saccharomyces cerevisiae of LipG7 an enantioselective, cold-adapted lipase from the Antarctic filamentous fungus Geomyces sp. P7 with unusual thermostability characteristics. Enzym. Microb. Technol. 2013, 53, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Kundys, A.; Białecka-Florjańczyk, E.; Fabiszewska, A.; Małajowicz, J. Candida antarctica lipase B as catalyst for cyclic esters synthesis, their polymerization and degradation of aliphatic polyesters. J. Polym. Environ. 2018, 26, 396–407. [Google Scholar] [CrossRef]
- Ashok, A.; Doriya, K.; Rao, J.V.; Qureshi, A.; Tiwari, A.K.; Kumar, D.S. Microbes Producing L-asparaginase free of glutaminase and urease isolated from extreme locations of antarctic soil and moss. Sci. Rep. 2019, 9, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, S.; Kostadinova, N.; Krumova, E.; Pashova, S.; Dishliiska, V.; Spassova, B.; Vassilev, S.; Angelova, M. Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Bol. 2010, 33, 1227–1237. [Google Scholar] [CrossRef]
- Snape, I.; Riddle, M.J.; Stark, J.S.; Cole, C.M.; King, C.K.; Duquesne, S.; Gore, D. Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec. 2001, 37, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.A.; Bridge, P.; Clark, M.S. Tolerance of Antarctic soil fungi to hydrocarbons. Sci. Total Environ. 2007, 372, 539–548. [Google Scholar] [CrossRef]
- Govarthanan, M.; Fuzisawa, S.; Hosogai, T.; Chang, Y.C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv. 2017, 7, 20716–20723. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, K.; Sterflinger, K.; Razzazi-Fazeli, E.; Noebauer, K.; Marzban, G. Global proteomics of the extremophile black fungus Cryomyces antarcticus using 2D-electrophoresis. Nat. Sci. 2014, 6, 978–995. [Google Scholar] [CrossRef] [Green Version]
- Pacelli, C.; Selbmann, L.; Moeller, R.; Zucconi, L.; Fujimori, A.; Onofri, S. Cryptoendolithic Antarctic black fungus Cryomyces antarcticus irradiated with accelerated helium ions: Survival and metabolic activity, DNA and ultrastructural damage. Front. Microbiol. 2017, 8, 2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onofri, S.; Selbmann, L.; Pacelli, C.; Zucconi, L.; Rabbow, E.; de Vera, J.P. Survival, DNA, and ultrastructural integrity of a cryptoendolithic Antarctic fungus in Mars and Lunar rock analogs exposed outside the International Space Station. Astrobiology 2019, 19, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Vaca, I.; Chávez, R. Bioactive compounds produced by Antarctic filamentous fungi. In Fungi of Antarctica. Diversity, Ecology and Biotechnological Application; Rosa, L.H., Ed.; Springer Nature: Basel, Switzerland, 2019; pp. 265–283. ISBN 978-3-030-18366-0. [Google Scholar]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Organization Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/?sequence=1 (accessed on 3 September 2020).
- Brunati, M.; Rojas, J.L.; Sponga, F.; Ciciliato, I.; Losi, D.; Göttlich, E.; Hoog, S.; Genilloud, O.; Marinelli, F. Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar. Genom. 2009, 2, 43–50. [Google Scholar] [CrossRef]
- Wu, G.W.; Ma, H.Y.; Zhu, T.J.; Li, J.; Gu, Q.Q.; Li, D.H. Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 2012, 689, 9745–9749. [Google Scholar] [CrossRef]
- Bratchkova, A.; Ivanova, V. Bioactive Metabolites Produced by Microorganisms Collected in Antarctica and the Arctic. Biotechnol. Biotechnol. Equip. 2011, 25, 1–7. [Google Scholar] [CrossRef]
- Svahn, K.S.; Chryssanthou, E.; Olsen, B.; Bohlin, L.; Göransson, U. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol. Biotechnol. 2015, 2, 1. [Google Scholar] [CrossRef]
- Abneuf, M.A.; Krishnan, A.; Aravena, M.G.; Pang, K.L.; Convey, P.; Mohamad-Fauzi, N.; Rizman-Idid, M.; Alias, S.A. Antimicrobial activity of microfungi from maritime Antarctic soil. Czech. Polar Rep. 2016, 6, 141–154. [Google Scholar] [CrossRef]
- Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T.; et al. Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod. 2016, 79, 59–65. [Google Scholar] [CrossRef]
- Houbraken, J.; Frisvad, J.C.; Seifert, K.A.; Overy, D.P.; Tuthill, D.M.; Valdez, J.G.; Samson, R.A. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 2012, 29, 78–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, I.F.; Alves, T.M.; Rabello, A.; Junior, P.A.S.; Romanha, A.J.; Zani, C.L.; Rosa, C.A.; Rosa, L.H. Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 2012, 16, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.N.; Carvalho, C.R.; Johann, S.; Mendes, G.; Alves, T.M.; Zani, C.L.; Junior, P.A.; Murta, S.M.; Romanha, A.J.; Cantrell, C.L.; et al. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol. 2015, 38, 1143–1152. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Luan, Y.; Gu, Q.; Zhu, T. Cytotoxic metabolites from the Antarctic psychrophilic fungus Oidiodendron truncatum. J. Nat. Prod. 2012, 75, 920–927. [Google Scholar] [CrossRef]
- Ding, Z.; Li, L.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 2016, 20, 425–435. [Google Scholar] [CrossRef]
- Alborés, S.; Sanguiñedo, P.; Held, B.H.; Cerdeiras, M.P.; Blanchette, R.A. Biodiversity and antimicrobial activity of Antarctic fungi from the Fildes Peninsula, King George Island. Sydowia 2018, 70, 185–192. [Google Scholar]
- Li, W.T.; Luo, D.; Huang, J.N.; Wang, L.L.; Zhang, F.G.; Xi, T.; Liao, J.M.; Lu, Y.Y. Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat. Prod. Res. 2018, 32, 662–667. [Google Scholar] [CrossRef]
- Li, Y.; Sun, B.; Liu, S.; Jiang, L.; Liu, X.; Zhang, H.; Che, Y. Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomycessp. J. Nat. Prod. 2008, 71, 1643–1646. [Google Scholar] [CrossRef]
- Wang, J.; He, W.; Qin, X.; Wei, X.; Tian, X.; Liao, L.; Liao, S.; Yang, B.; Tu, Z.; Chen, B.; et al. Three new indolyl diketopiperazine metabolites from the Antarctic soil-derived fungus Penicillium sp. SCSIO 05705. RSC Adv. 2015, 5, 68736–68742. [Google Scholar] [CrossRef]
- Maggi, O.; Tosi, S.; Angelova, M.; Lagostina, E.; Fabbri, A.A.; Pecoraro, L.; Altobelli, E.; Picco, A.M.; Savino, E.; Branda, E.; et al. Adaptation of fungi, including yeasts, to cold environments. Plant Biosyst. 2013, 147, 247–258. [Google Scholar] [CrossRef]
- Rusinova-Videva, S.; Kambourova, M.; Alipieva, K.; Nachkova, S.; Simova, S. Metabolic profiling of Antarctic yeasts by proton nuclear magnetic resonance-based spectroscopy. Biotechnol. Biotechnol. Equip. 2019, 33, 12–19. [Google Scholar] [CrossRef]
- Vishniac, H.S.; Hempfling, W.P. Cryptococcus vishniacii sp. nov., an Antarctic yeast. Int. J. Syst. Evol. Microbiol. 1979, 29, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Vishniac, H.S. Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 1985, 77, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Vishniac, H.S.; Kurtzman, C.P. Cryptococcus antarcticus sp. nov. and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from Antarctic soils. Int. J. Syst. Evol. Microbiol. 1992, 42, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Rusinova-Videva, S.; Pavlova, K.; Georgieva, K. Effect of different carbon sources on biosynthesis of exopolysaccharide from Antarctic strain Cryptococcus laurentii AL62. Biotechnol. Biotechnol. Equip. 2011, 25, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Ocampo-Friedmann, R.; Friedmann, E.I. Biologically active substances produced by Antarctic cryptoendolithic fungi. Antarct. J. U. S. 1993, 28, 252–254. [Google Scholar]
- Purić, J.; Vieira, G.; Cavalca, L.B.; Sette, L.D.; Ferreira, H.; Vieira, M.L.C.; Sass, D.C. Activity of Antarctic fungi extracts against phytopathogenic bacteria. Lett. Appl. Microbiol. 2018, 66, 530–536. [Google Scholar] [CrossRef]
- Ferrarezi, J.H.; dos Santos, J.A.; Sette, L.D.; Ferreira, H.; Sass, D.C. Anti-Xanthomonas activity of Antarctic fungi crude extracts. Afr. J. Biotechnol. 2019, 18, 713–718. [Google Scholar]
- Gomes, E.C.; Godinho, V.M.; Silva, D.A.; de Paula, M.T.; Vitoreli, G.A.; Zani, C.L.; Alves, T.M.A.; Junior, P.A.S.; Murta, S.M.F.; Barbosa, E.C.; et al. Cultivable fungi present in Antarctic soils: Taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 2018, 22, 381–393. [Google Scholar] [CrossRef]
- Melo, I.S.; Santos, S.N.; Rosa, L.H.; Parma, M.M.; Silva, L.J.; Queiroz, S.C.; Pellizari, V.H. Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 2014, 18, 15–23. [Google Scholar] [CrossRef]
- Ferreira, E.M.S.; Resende, D.A.; Vero, S.; Pimenta, R.S. The Use of Psychrophilic Antarctic Yeast in the Biological Control of Post-harvest Diseases of Fruits Stored at Low Temperatures. In Fungi of Antarctica. Diversity, Ecology and Biotechnological Application; Rosa, L.H., Ed.; Springer Nature: Basel, Switzerland, 2019; pp. 243–263. ISBN 978-3-030-18366-0. [Google Scholar]
- Vero, S.; Garmendia, G.; González, M.B.; Bentancur, O.; Wisniewski, M. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res. 2013, 13, 189–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol. Control 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Pacelli, C.; Cassaro, A.; Maturilli, A.; Timperio, A.M.; Gevi, F.; Cavalazzi, B.; Stefan, M.; Ghica, D.; Onofri, S. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl. Microbiol. Biotechnol. 2020, 104, 6385–6395. [Google Scholar] [CrossRef] [PubMed]
- Pombeiro-Sponchiado, S.R.; Sousa, G.S.; Andrade, J.C.R.; Lisboa, H.F.; Gonçalves, R.C. Production of melanin pigment by fungi and its biotechnological applications. In Melanin; Blumenberg, M., Ed.; IntechOpen: London, UK, 2017; Chapter 4. [Google Scholar] [CrossRef]
- Kuncheva, M.; Panchev, I.; Pavlova, K.; Russinova-Videva, S.; Georgieva, K.; Dimitrova, S. Functional Characteristics of an Exopolysaccharide from Antarctic Yeast Strain Cryptococcus Laurentii AL 62. Biotechnol. Biotechnol. Equip. 2013, 27, 4098–4102. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycol. Res. 1991, 95, 641–655. [Google Scholar] [CrossRef]
- Blackwell, M. The Fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
- Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019, 10, 127–140. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, J.R.; Gonçalves, V.N.; de Holanda, R.A.; Santos, D.A.; Bueloni, C.F.; Costa, A.O.; Petry, M.V.; Rosa, C.A.; Rosa, L.H. Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol. 2017, 121, 991–1000. [Google Scholar] [CrossRef]
- Lohan, D.; Johnston, S. Bioprospecting in Antarctica; United Nations University-Institute of Advanced Studies: Yokohama, Japan, 2005; p. 31. Available online: https://www.cbd.int/financial/bensharing/g-absantarctic.pdf (accessed on 3 September 2020).
Enzyme Category | Enzyme | Fungal Taxa | Collection Site | Temperature |
---|---|---|---|---|
Carbohydrate metabolism | PG1 | Akanthomyces lecanii (sub. Verticillium lecanii sp. 2) [22] | Mt Melbourne | 25 °C |
Aspergillus versicolor [22] | Lamplugh Island | |||
Chaetomium sp. [22] | Mt Melbourne | |||
Cladosporium cladosporioides [22] | Crater Cirque | |||
Dendryphiella salina [22] | Lake “Carezza”, Baker Rocks | |||
Phoma sorghina [22] | Kay Island | |||
Phoma sp. [22] | Lake “Carezza”, Gondwana Station, Crater Cirque | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Kay Island, Lake “Carezza” | |||
PG2 | Alternaria sp. [22] | Cape Washington | 25 °C | |
Chaetomium sp. [22] | Mt Melbourne | |||
Cladosporium cladosporioides [22] | Crater Cirque | |||
C. herbarum [22] | Crater Cirque, Whitmer Peninsula | |||
Phoma sorghina [22] | Kay Island | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Lake “Carezza” | |||
PEC | Alternaria sp. [22] | Cape Washington | 25 °C | |
Aspergillus versicolor [22] | Lamplugh Island | |||
Chaetomium sp. [22] | Mt Melbourne | 25, 35 °C | ||
Cladosporium herbarum [22] | Crater Cirque, Whitmer Peninsula | 25 °C | ||
Cryptococcus sp. [38] | Deception Island | 10 °C | ||
Cystobasidium laryngis (sub. Rhodotorula laryngis) [39] | King George Island | 30 °C | ||
Dioszegia fristingensis [39] | 22 °C | |||
Dioszegia sp. [39] | 15 °C | |||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Goffeauzyma gilvescens (sub. Cryptococcus gilvescens) [38] | Deception Island | 10 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Leuconeurospora sp. [31,39] | King George Island | 20 °C [31]; 15° C [39] | ||
Leucosporidium creatinivorum (sub. Leucosporidiella creatinivora) [31] | 4 °C | |||
L. fragarium (sub. Leucosporidiella fragaria) [39] | 22 °C | |||
L. muscorum (sub. Leucosporidiella muscorum) [31] | 4, 20 °C | |||
L. scottii [31] | 4, 20 °C | |||
Leucosporidium sp. [38] | Litchfield Island | 15 °C | ||
Metschnikowia sp. [39] | King George Island | 10 °C | ||
Mrakia frigida (sub. M. gelida) [38] | Litchfield Island | 10 °C | ||
M. psychrophila [39] | King George Island | 10 °C | ||
M. robertii [39] | 15 °C | |||
Naganishia antarctica (sub. Cryptococcus antarcticus) [31] | 20 °C | |||
Phenoliferia glacialis (sub. Rhodotorula glacialis) [39] | 10, 15 °C | |||
Phoma sorghina [22] | Kay Island | 25 °C | ||
Phoma sp. [22] | Lake “Carezza”, Gondwana Station, Crater Cirque | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Lake “Carezza” | |||
Sporidiobolus salmonicolor [39] | King George Island | 22 °C | ||
AMY | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp. 3) [22] | Kay Island | 25 °C | |
A. lecanii (sub. Verticillium lecanii sp. 1, sp. 2) [22] | Crater Cirque, Mt Melbourne | |||
Alternaria sp. [22] | Cape Washington | |||
Aspergillus versicolor [22] | Lamplugh Island | |||
Colletotrichum sp. (sub. Glomerella sp.) [29] | King George Island | 25 °C | ||
Cryptococcus sp. [38] | Deception Island | 10 °C | ||
Dendryphiella salina [22] | Lake “Carezza”, Baker Rocks | 25 °C | ||
Dioszegia fristingensis [39] | King George Island | 22 °C | ||
Dioszegia sp. [39] | 15 °C | |||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Geomyces spp. [29] | King George Island | 4, 25 °C | ||
Goffeauzyma gastrica (sub. Cryptococcus gastricus) [39] | 22 °C | |||
G. gilvescens (sub. Cryptococcus gilvescens) [39] | 22 °C | |||
Hamamotoa sp. [38] | Dee Island | 4–10 °C | ||
Holtermanniella wattica [39] | King George Island | 30 °C | ||
Hyphozyma sp. [38] | Nelson Island | 15 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Leuconeurospora sp. [31,39] | King George Island | 4, 20 °C [31]; 15° C [39] | ||
Mrakia blollopis [39] | 15 °C | |||
M. frigida (sub. M. gelida) [38,39] | Litchfield Island [38]; King George Island [39] | 10 °C | ||
M. robertii [39] | King George Island | 15 °C | ||
Mrakia sp. [39] | 15 °C | |||
Naganishia antarctica (sub. Cryptococcus antarcticus) [31] | 4, 20 °C | |||
Phenoliferia glacialis (sub. Rhodotorula glacialis) [39] | 10, 15 °C | |||
Phialemonium sp. [29] | 25 °C | |||
Podospora sp. [29] | 4, 25 °C | |||
Pseuderotium sp. [29] | 4 °C | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Kay Island, Lake “Carezza”, “Giardino”, “Campo Icaro” | 25 °C | ||
Sporothrix inflata [29] | King George Island | 25 °C | ||
S. pallida [29] | 25 °C | |||
S. schenckii [29] | 25 °C | |||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [38] | Deception Island | 22 °C | ||
Wardomyces inflatus [29] | King George Island | 4 °C | ||
CEL | Akanthomyces lecanii (sub. Verticillium lecanii sp. 1) [22] | Crater Cirque | 25 °C | |
Alternaria sp. [22] | Cape Washington | |||
Aspergillus versicolor [22] | Lamplugh Island | |||
Candida glaebosa [31] | King George Island | 4 °C | ||
C. sake [31] | 4 °C | |||
Colletotrichum sp. (sub. Glomerella sp.) [29] | 25 °C | |||
Cystobasidium sp. [38] | Dee Island | 15 °C | ||
Debaryomyces hansenii [31] | King George Island | 4 °C | ||
Dendryphiella salina [22] | Lake “Carezza” | 25 °C | ||
Dioszegia fristingensis [39] | King George Island | 22 °C | ||
Dioszegia sp. [31] | 4 °C | |||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Filobasidium sp. [31] | King George Island | 4, 20 °C | ||
Galerina fallax [29] | 25 °C | |||
Geomyces spp. [29] | 4, 25 °C | |||
Goffeauzyma gastrica (sub. Cryptococcus gastricus) [39] | 22 °C | |||
Holtermanniella wattica [39] | 30 °C | |||
Hyphozyma sp. [38] | Nelson Island | 15 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Leuconeurospora sp. [31,39] | King George Island | 4, 20 °C [31]; 15° C [39] | ||
Leucosporidium creatinivorum (sub. Leucosporidiella creatinivora) [31] | 4, 20 °C | |||
L. fragarium (sub. Leucosporidiella fragaria) [31,39] | 4, 20 °C [31]; 22 °C [39] | |||
L. scottii [31] | 4 °C | |||
Mrakia blollopis [39] | 15 °C | |||
M. frigida (sub. M.gelida) [38,39] | Litchfield Island [35]; King George Island [36] | 10 °C | ||
M. psychrophila [39] | King George Island | 10 °C | ||
M. robertii [39] | 15 °C | |||
Mrakia sp. [39] | 15 °C | |||
Nadsonia commutata [31] | 4, 20 °C | |||
Phialemonium sp. [29] | 25 °C | |||
Phoma sorghina [22] | Kay Island | 25 °C | ||
Phoma sp. [22] | Lake “Carezza”, Crater Cirque | |||
Podospora sp. [29] | King George Island | 4, 25 °C | ||
Pseuderotium sp. [29] | 4 °C | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Lake “Carezza” | 25 °C | ||
Queenslandipenidiella kurandae (sub. Penidiella kurandae) [29] | King George Island | 25 °C | ||
Sporothrix inflata [29] | 25 °C | |||
S. pallida [29] | 25 °C | |||
S. schenckii [29] | 25 °C | |||
Verticillium sp. [27] | Great Wall Station, King George Island | 38 °C | ||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [31,38,39] | King George Island [31,39]; Deception Island [38] | 4, 20 °C [31]; 22 °C [38]; 15 °C [39] | ||
Wardomyces inflatus [29] | King George Island | 4 °C | ||
INV | Cryptococcus sp. [38] | Deception Island | 10 °C | |
Cystobasidium sp. [38] | Dee Island | 15 °C | ||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Goffeauzyma gilvescens (sub. Cryptococcus gilvescens) [38] | Deception Island | 10 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Leucosporidium sp. [38] | 15 °C | |||
Mrakia frigida (sub. Mrakia gelida) [38] | 10 °C | |||
Rhodotorula mucilaginosa [38] | Snow Island | 30 °C | ||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [38] | 22 °C | |||
XYL | Dioszegia fristingensis [39] | King George Island | 22 °C | |
CHI | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp. 3) [22,23] | Kay Island | 25 °C | |
A. lecanii (sub. Verticillium lecanii sp. 1, sp. 2) [22] | Crater Cirque, Mt Melbourne | |||
Dioszegia fristingensis [39] | King George Island | 22 °C | ||
Leuconeurospora sp. [39] | 15° C | |||
Metschnikowia sp. [39] | 10 °C | |||
Mrakia psychrophila [39] | 10 °C | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Kay Island, Lake “Carezza”, “Giardino”, “Campo Icaro” | 25 °C | ||
Sporidiobolus salmonicolor [39] | King George Island | 22 °C | ||
GOD | Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Lake “Carezza”, “Campo Icaro” | 25 °C | |
Protein metabolism | URE | Alternaria sp. [22] | Cape Washington | 25 °C |
Cladosporium cladosporioides [22] | Crater Cirque | |||
Cystobasidium pallidum [38] | Deception Island | 30 °C | ||
Cystobasidium sp. [38] | Dee Island | 15 °C | ||
Dendryphiella salina [22] | Lake “Carezza” | 25 °C | ||
Goffeauzyma gilvescens (sub. Cryptococcus gilvescens) [38] | Deception Island | 10 °C | ||
Hamamotoa sp. [38] | Dee Island | 4, 10 °C | ||
Hyphozyma sp. [38] | Nelson Island | 15 °C | ||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Kay Island, Lake “Carezza”, “Giardino”, “Campo Icaro” | 15, 25 °C | ||
Rhodotorula mucilaginosa [38] | Snow Island | 30 °C | ||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [38] | 22 °C | |||
PRO | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp. 3) [22] | Kay Island | 20 °C | |
A. lecanii (sub. Verticillium lecanii sp. 1) [22] | Crater Cirque | |||
C. herbarum [22] | Whitmer Peninsula | |||
Cryptococcus sp. [39] | King George Island | 22 °C | ||
Goffeauzyma gilvescens (sub. Cryptococcus gilvescens) [39] | 22 °C | |||
Leuconeurospora sp. [31,39] | 4 °C [31]; 15 °C [39] | |||
Leucosporidium creatinivorum (sub. Leucosporidiella creatinivora) [31] | 4, 20 °C | |||
Leucosporidium fragarium (sub. Leucosporidiella fragaria) [31] | 4, 20 °C | |||
Leucosporidium muscorum (sub. Leucosporidiella muscorum) [31] | 4, 20 °C | |||
Leucosporidium scottii [31] | 4, 20 °C | |||
Mrakia frigida (sub. M. gelida) [39] | 10 °C | |||
Nadsonia commutata [31] | 4 °C | |||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
Sporidiobolus salmonicolor [39] | King George Island | 22 °C | ||
Vanrija humicola (sub. Candida humicola) [40] | Schirmacher Oasis | 4 °C | ||
GEL | Cystobasidium laryngis (sub. Rhodotorula laryngis) [38] | Litchfield Island | 15 °C | |
Cystobasidium sp. [38] | Dee Island | 15 °C | ||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Mrakia frigida (sub. M. gelida) [38] | 10 °C | |||
Rhodotorula mucilaginosa [38] | Snow Island | 30 °C | ||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
ASP | Aspergillus niger [43] | Schirmacher Hills | 30 °C | |
Aspergillus sp. [43] | ||||
Coprinopsis cinerea [43] | ||||
Coprinopsis sp. [43] | ||||
Trichosporon asahii [43] | ||||
Lipid metabolism | LIP | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp. 3) [22] | Kay Island | 25 °C |
A. lecanii (sub. Verticillium lecanii sp. 1, sp. 2) [22] | Crater Cirque, Mount Melbourne | |||
Alternaria sp. [22] | Cape Washington | |||
Aspergillus versicolor [22] | Lamplugh Island | |||
Chaetomium sp. [22] | Mt Melbourne | |||
Cladosporium cladosporioides [22] | Crater Cirque | |||
C. herbarum [22] | Crater Cirque, Whitmer Peninsula | |||
Cryptococcus sp. [38,39] | Deception Island [38]; King George Island [39] | 10 °C | ||
Cystobasidium laryngis (sub. Rhodotorula laryngis) [38,39] | Litchfield Island [38]; King George Island [39] | 15 °C [38]; 30 °C [39] | ||
C. pallidum [38] | Deception Island | 30 °C | ||
Cystobasidium sp. [38] | Dee Island | 15 °C | ||
Dendryphiella salina [22] | Lake “Carezza”, Baker Rocks | 25°C, 28°C | ||
Dioszegia fristingensis [39] | King George Island | 22 °C | ||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Geomyces sp. [41] | King George Island | 35 °C | ||
Goffeauzyma gastrica (sub. Cryptococcus gastricus) [39] | 22 °C | |||
Goffeauzyma gilvescens (sub. Cryptococcus gilvescens) [38,39] | Deception Island [38]; King George Island [39] | 10 °C [38]; 22 °C [39] | ||
Hamamotoa sp. [38] | Dee Island | 4–10 °C | ||
Hyphozyma sp. [38] | Nelson Island | 15 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Leuconeurospora sp. [39] | King George Island | 15 °C | ||
Leucosporidium creatinivorum (sub. Leucosporidiella creatinivora) [31,39] | 4 °C | |||
Leucosporidium fragarium (sub. Leucosporidiella fragaria) [39] | 22 °C | |||
Leucosporidium scottii [31] | 4, 20 °C | |||
Leucosporidium sp. [38] | Litchfield Island | 15 °C | ||
Metschnikowia sp. [39] | King George Island | 10 °C | ||
Mrakia frigida (sub. M. gelida) [38,39] | Litchfield Island [38]; King George Island [39] | 10 °C | ||
Mrakia robertii [39] | King George Island | 15 °C | ||
Mrakia sp. [39] | 15 °C | |||
Phenoliferia glacialis (sub. Rhodotorula glacialis) [39] | 10, 15 °C | |||
Phoma sorghina [22] | Kay Island | 25 °C | ||
Phoma sp. [22] | Lake “Carezza”, Gondwana Station, Crater Cirque | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | Kay Island, Lake “Carezza”, “Giardino”, “Campo Icaro” | |||
Rhodotorula mucilaginosa [38] | Snow Island | 30 °C | ||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
Sporidiobolus salmonicolor [39] | King George Island | 22 °C | ||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [31,38,39] | King Gerge Island [31,39]; Deception Island [38] | 4 °C [31]; 22 °C [38]; 15 °C [39] | ||
Nucleic acids metabolism | DNA | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp. 3) [22] | Kay Island | 25 °C |
Chaetomium sp. [22] | Mt Melbourne | 35 °C | ||
C. herbarum [22] | Whitmer Peninsula | 25 °C | ||
Dendryphiella salina [22] | Lake “Carezza” | |||
Phoma sp. [22] | Gondwana Station, Crater Cirque | |||
RNA | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp. 3) [22] | Kay Island | 25 °C | |
Aspergillus versicolor [22] | Lamplugh Island | |||
Chaetomium sp. [22] | Mt Melbourne | |||
Cladosporium cladosporioides [22] | Crater Cirque | |||
C. herbarum [22] | Crater Cirque, Whitmer Peninsula | |||
Phoma sp. [22] | Lake “Carezza” | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | “Campo Icaro” | |||
Antioxidant enzymes | SOD | Aspergillus glaucus [44] | Livingston Island | 20, 25 °C |
Aspergillus spp. [44] | 25 °C | |||
Cladosporium cladosporioides [44] | 15 °C | |||
C. herbarum [44] | 20 °C | |||
C. oxysporum [44] | 15 °C | |||
Epicoccum nigrum [44] | 15, 20 °C | |||
Monodictys austrina [44] | 20 °C | |||
Penicillium aurantiogriseum [44] | ||||
P. dierckxii [44] | ||||
P. italicum [44] | 25 °C | |||
P. olsonii [44] | 20 °C | |||
P. waksmanii [44] | ||||
Penicillium spp. [44] | 15, 20 °C | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [44] | 20, 25 °C | |||
Rhizopus sp. [44] | 25 °C | |||
CAT | Aspergillus glaucus [44] | Livingston Island | 20, 25 °C | |
Aspergillus spp. [44] | 25 °C | |||
Cladosporium cladosporioides [44] | 15 °C | |||
C. herbarum [44] | 20 °C | |||
C. oxysporum [44] | 15 °C | |||
Epicoccum nigrum [44] | 15, 20 °C | |||
Monodictys austrina [44] | 20 °C | |||
Penicillium aurantiogriseum [44] | 20 °C | |||
P. dierckxii [44] | 20 °C | |||
P. italicum [44] | 25 °C | |||
P. olsonii [44] | 20 °C | |||
P. waksmanii [44] | ||||
Penicillium spp. [44] | 15, 20 °C | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [44] | 20, 25 °C | |||
Rhizopus sp. [44] | 25 °C | |||
MP | Penicillium sp. [47] | Not specified Antarctic site | 20 °C | |
Other hydrolithic enzymes | PHO | Akanthomyces muscarius (sub. Lecanicillium muscarium, det. as Verticillium lecanii sp.3) [22] | Kay Island | 25 °C |
A. lecanii (sub. Verticillium lecanii sp. 1, sp. 2) [22] | Crater Cirque, Mount Melbourne | |||
Aspergillus versicolor [22] | Lamplugh Island | |||
Chaetomium sp. [22] | Mt Melbourne | |||
C. herbarum [22] | Crater Cirque, Whitmer Peninsula | |||
Phoma sorghina [22] | Kay Island | |||
Pseudogymnoascus pannorum (sub. Geomyces pannorum) [22] | “Giardino”, “Campo Icaro” | |||
EST | Cryptococcus sp. [38] | Deception Island | 10 °C | |
Cystobasidium laryngis (sub. Rhodotorula laryngis) [38,39] | Litchfield Island [38]; King George Island [39] | 15 °C [38]; 30 °C [39] | ||
C. pallidum [38] | Deception Island | 30 °C | ||
Dioszegia crocea [31] | King George Island | 4, 20 °C | ||
D. fristingensis [39] | 22 °C | |||
D. hungarica [31] | 4, 20 °C | |||
Dioszegia sp. [31,39] | 4, 20 °C [31]; 15 °C [39] | |||
Glaciozyma antarctica [39] | 10 °C | |||
Goffeauzyma gastrica (sub. Cryptococcus gastricus) [39] | 22 °C | |||
G. gilvescens (sub. Cryptococcus gilvescens) [38] | Deception Island | 10 °C | ||
Hyphozyma sp. [38] | Nelson Island | 15 °C | ||
Leuconeurospora sp. [31,39] | King George Island | 4 °C [31]; 15 °C [39] | ||
Leucosporidium creatinivorum (sub. Leucosporidiella creatinivora) [31,39] | 4, 20 °C [31]; 22 °C [39] | |||
L. fragarium (sub. Leucosporidiella fragaria) [31,39] | 4, 20 °C [31]; 22 °C [39] | |||
L. scottii [31] | 4, 20 °C | |||
Leucosporidium sp. [38] | Litchfield Island | 15 °C | ||
Mrakia blollopis [39] | King George Island | 15 °C | ||
M. psychrophila [39] | 10 °C | |||
Nadsonia commutata [31] | 4, 20 °C | |||
Phenoliferia glacialis (sub. Rhodotorula glacialis) [39] | 15 °C | |||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [31,38,39] | King George Island [31,39]; Deception Island [38] | 4, 20 °C [31]; 22 °C [38]; 15 °C [39] | ||
AP | Cryptococcus sp. [38] | Deception Island | 10 °C | |
Cystobasidium laryngis (sub. Rhodotorula laryngis) [38] | Litchfield Island | 15 °C | ||
Cystobasidium pallidum [38] | Deception Island | 30 °C | ||
Cystobasidium sp. [38] | Dee Island | 15 °C | ||
Fellozyma sp. [38] | Snow Island | 22 °C | ||
Goffeauzyma gilvescens (sub. Cryptococcus gilvescens) [38] | Deception Island | 10 °C | ||
Hamamotoa sp. [38] | Dee Island | 4–10 °C | ||
Kriegeria sp. [38] | Litchfield Island | 30 °C | ||
Leucosporidium sp. [38] | 15 °C | |||
Mrakia frigida (sub. M. gelida) [38] | 10 °C | |||
Rhodotorula mucilaginosa [38] | Snow Island | 30 °C | ||
Sporobolomyces roseus [38] | Deception Island | 22 °C | ||
Vishniacozyma victoriae (sub. Cryptococcus victoriae) [38] |
Activity | Chemical Category | Bioactive Secondary Metabolite | Fungal Taxa and Reference | Active against the Target Organism/Cell Line |
---|---|---|---|---|
Cytotoxic/antitumoral | Alkaloid | Neoxaline | Penicillium sp. [68] | K562, MCF-7, A549, U937, Hela, DU145, HL60, and HT29 cell lines |
Meleagrin | ||||
Questiomycin A | ||||
Chetracin | Oidiodendron truncatum [64] | P388 lymphocytic leukemic cell line | ||
Chetracin B, C (new epi-polythiodioxopiperazines) | HCT-8 (human colon cancer cell line), BEL-7402 (human hepatocellular carcinoma cell line), BGC-823 (human gastric carcinoma cell line), A-549 (human lung cancer cell line), A-2780 (human ovarian carcinoma cell line) | |||
Chetracin D (new diketopiperazine) | ||||
Melinacidin IV (epi-polythiodioxopiperazine) | ||||
T988 A | ||||
T988 C | ||||
Dimeric tetrahydro-xanthones (phenolic derivative) | Secalonic acid | Cladosporium sphaerospermum [64] | P388 lymphocytic leukemic cell line | |
Not Analyzed | Aspergillus aculeatus [64] | P388 lymphocytic leukemic cell line | ||
A. flavus [64] | ||||
A. terreus [64] | ||||
Microdochium phragmitis [61] | human cancer cell lines MCF-7 (breast) | |||
Microdochium sp. [61] | ||||
Mortierella antarctica [64] | P388 lymphocytic leukemic cell line | |||
Mortierella sp. [64] | ||||
Mycosphaerella tassiana (sub. Davidiella tassiana) [61] | human cancer cell lines MCF-7 (breast) | |||
Penicillium chrysogenum [64] | P388 lymphocytic leukemic cell line | |||
P. citrinum [64] | ||||
P. solitum (sub. P. crustosum) [64] | ||||
Pseudogymnoascus sp. [64] | ||||
Rhizoscyphus sp. [64] | ||||
Aspergillus sydowii [11] | cancer cell lines MCF-7 (breast) | |||
Penicillium allii-sativi [11] | ||||
P. brevicompactum [11] | ||||
Antibacterial | Alkaloid | Acremolin C (8-isopropyl-1, 5-dimethyl-1H-imidazo[2,1-b]purin-4(5H)-one) | Aspergillus sydowii [66] | methicillin-resistant Staphylococcus epidermidis (MRSE) and methicillin-resistant Staphylococcus aureus (MRSA), S. epidermidis (ATCC 040188), S. aureus (ATCC 25923) |
Cyclo-(L-Trp-L-Phe), cyclic dipeptide (new compound) | ||||
Questiomycin A | Penicillium sp. [68] | Mycobacterium tuberculosis | ||
Phenolic derivative | Geomycin C (new asterric acid derivative) | Geomyces sp. [67] | Staphylococcus aureus (ATCC 6538), Streptococcus pneumoniae (CGMCC 1.1692), Escherichia coli (CGMCC 1.2340) | |
Sesquiter-penoid and phenolic acid | (7S)-(+)-hydroxysydonic acid | Aspergillus sydowii [66] | methicillin-resistant Staphylococcus epidermidis (MRSE) and methicillin-resistant Staphylococcus aureus (MRSA), S. epidermidis (ATCC 040188), S. aureus (ATCC 25923) | |
(7S, 11S)-(+)-12-hydroxysydonic acid | ||||
Not Analyzed | Anamorphic fungi [58] | Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922) | ||
Aspergillus fumigatus [58] | Bacillus subtilis (ATCC 6051) | |||
Kabatiella zeae [58] | Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6051), Staphylococcus aureus, Pseudomonas aeruginosa (ATCC 27853) | |||
Mucor sp. [58] | Staphylococcus aureus | |||
Penicillium chrysogenum [58] | Staphylococcus aureus, Bacillus subtilis (ATCC 6051) | |||
Antarctomyces psychrotrophicus [58] | Escherichia coli (ATCC 25922) | |||
Geomyces sp. [58] | Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6051), Staphylococcus aureus | |||
Aspergillus sydowii [11] | Staphylococcus aureus (ATCC 12600) | |||
Penicillium allii-sativi [11] | ||||
Penicillium brevicompactum [11] | ||||
P chrysogenum [11] | ||||
Oidiodendron truncatum [64] | Mycobacterium phlei; Staphylococcus aureus | |||
Aspergillus terreus [64] | Escherichia coli; Proteus mirabilis; Mycobacterium phlei | |||
Cladosporium sphaerospermum [64] | Staphylococcus aureus | |||
Penicillium oxalicum [64] | Escherichia coli; Mycobacterium phlei; Proteus mirabilis; Staphylococcus aureus | |||
P. solitum (sub. P. crustosum) [64] | ||||
Pseudogymnoascus sp. [64] | Escherichia coli; Mycobacterium phlei; Proteus mirabilis | |||
Purpureocillium lilacinum [62] | Staphylococcus aureus | |||
Pyricularia sp. [64] | Escherichia coli | |||
Antifungal | Acyclic monoterpenoid | 3,7-Dimethyl-6-octen-1-ol (citronellol) one of the main constituents of the VOCs | Candida sake [82] | postharvest pathogens of apple during cold storage: Penicillium expansum, Botrytis cinerea, Alternaria alternata, A. tenuissima, and A. arborescens |
Aromatic compound and alcohol | phenylethyl alcohol, one of the main constituents of the VOCs | |||
Fatty acid ester | 3-methylbutyl hexanoate, the main constituents of VOCs | |||
Phenolic derivative | Geomycin B (new asterric acid derivative) | Geomyces sp. [67] | Aspergillus fumigatus (ATCC 10894) | |
Polyene macrolide | Amphotericin B | Penicillium nalgiovense [57] | Candida albicans (ATCC 90028) | |
Not Analyzed | Aspergillus sydowii [11] | Cladosporium sphaerospermum (CCT 1740) | ||
Penicillium allii-sativi [11] | ||||
P. brevicompactum [11] | ||||
P. chrysogenum [11] | Colletotrichum gloesporioides, Colletotrichum fragariae, Cladosporium sphaerospermum (CCT 1740) | |||
P. rubens [11] | Cladosporium sphaerospermum (CCT 1740) | |||
Aspergillus flavus [64] | Candida albicans | |||
A. terreus [64] | ||||
Beauveria bassiana [62] | Paracoccidioi-des brasiliensis | |||
Fusarium avenaceum (sub. Gibberella avenacea) [62] | Paracoccidioides brasiliensis | |||
Leucosporidium scottii [81] | Penicillium expansum, Botritys cinerea | |||
Oidiodendron truncatum [64] | Candida albicans | |||
Penicillium chrysogenum [64] | ||||
P. citrinum [64] | ||||
P. oxalicum [64] | ||||
P. solitum (sub. P. crustosum) [64] | ||||
Penicillium sp. [62] | Paracoccidioides brasiliensis | |||
Peniophora sp. [62] | ||||
Pestalotiopsis microspora [62] | ||||
Phanerochaete sp. [62] | ||||
Pseudeurotium sp. [62] | ||||
Pseudogymnoascus sp. [62] | ||||
Purpureocillium lilacinum [62] | ||||
Schizophyllum commune [62] | ||||
Simplicillium lamellicola [62] | ||||
Trichoderma longibrachiatum [62] | ||||
Trichosporon asteroides [62] | ||||
Anti-protozoal | Not Analyzed | Penicillium brevicompactum [11] | Trypanosoma cruzi | |
Alternaria sp. [61] | Leishmania amazonensis (strain IFLA/BR/196/PH-8) | |||
Antarctomyces psychrotrophicus [61] | ||||
Cadophora luteo-olivacea [61] | ||||
Helgardia sp. [61] | ||||
Herpotrichia sp. [61] | ||||
Oculimacula sp. [61] | ||||
Phaeosphaeria herpotrichoides [61] | ||||
Phaeosphaeria sp. [61] | ||||
Purpureocillium lilacinum [62] | Trypanosoma cruzi | |||
Mortierella amoeboidea [78] | Leishmania amazonensis (strain IFLA/BR/196/PH-8) | |||
M. parvispora [78] | Trypanosoma cruzi, Leishmania amazonensis (strain IFLA/BR/196/PH-8) | |||
Penicillium chrysogenum [78] | Leishmania amazonensis (strain IFLA/BR/196/PH-8) | |||
Pseudogymnoascus destructans [78] | ||||
Antiviral | Furofuran-triene α-pyrone | Asteltoxin | Aspergillus ochraceopetali-formis [59] | H1N1 and H3N2 influenza viruses |
Isoasteltoxin | ||||
α-Pyrone merosesqui-terpenoid | Ochraceopone A | |||
Not Analyzed | Penicillium allii-sativi [11] | Dengue virus 2 | ||
P. brevicompactum [11] | ||||
P. chrysogenum [11] | ||||
Herbicidal | Not Analyzed | Penicillium chrysogenum [11] | Lactuca sativa (lettuce) and Agrostis stolonifera (bentgrass) | |
Mortierella amoeboidea [78] | ||||
Mortierella sp. [78] | ||||
Penicillium tardochrysogenum [78] | ||||
Pseudogymnoascus destructans [78] | Agrostis stolonifera (bentgrass) | |||
Checked activity not significant | Alkaloid | Chetoseminudin C | Oidiodendron truncatum [63] | |
(E)-3-(1H-imidazole-4-ylmethylene)-6-(1H-indl-3-ylmethyl)-2,5-piperazinediol | Penicillium sp. [68] | |||
Isopenilline A (new indolyl diketopiperazine derivative) | Penicillium sp. [68] | |||
Oidioperazine A, B, C, D (new diketopiperazines) | Oidiodendron truncatum [63] | |||
Penilline A (new indolyl diketopiperazine derivative) | Penicillium sp. [68] | |||
Penilline B (new indolyl diketopiperazine derivative) | ||||
Penilloid A (new compound) | ||||
cyclo-L-Trp-Lser (cyclic dipeptid) | Oidiodendron truncatum [63] | |||
T988 B | ||||
Carboxylic acid and phenol | 4-hydroxyphenylacetic acid | Aspergillus sydowii [66] | ||
Phenolic derivative and ester | Ethyl asterrate (new diphenyl ether) | Geomyces sp. [67] | ||
Phenolic derivative and ester | n-butyl asterrate (new diphenyl ether) | |||
Phenolic derivative | asterric acid | |||
Phenolic derivative and acid | Methyl asterrate | |||
Phenolic derivative and acid | Geomycin A (new asterric acid derivative) | |||
Phenolic derivative (spiro compound) | Bisdechloro-geodin | |||
Merosesquiterpenoid | ochraceopone B, C, D, E (new highly oxygenated α-pyrone merosesquiter-penoids) | Aspergillus ochraceopetaliformis [59] | ||
Activity not evaluated | γ-Amino acid | γ-Aminobutyric acid (GABA) | Debaryomyces hansenii [70] | |
Beta-lactam derivatives | Penicillins | Penicillium tardochrysogenum [60] | ||
Carboxylic acid amide | N-(2-hydroxyphenyl)-acetamide | Penicillium sp. [68] | ||
Carboxylic acid | Acetic acid | Debaryomyces hansenii [70] | ||
Formic acid | ||||
Rhodotorula glutinis [70] | ||||
Dimeric tetrahydro-xanthones (phenolic derivative) | Secalonic acid D, F | Penicillium tardochrysogenum [60] | ||
Exopolysaccharides | Exopolysaccharides | Cryptococcus laurentii AL62 [85] | ||
Debaryomyces hansenii [70] | ||||
Rhodotorula glutinis [70] | ||||
Heterocyclic compound | 2-Benzoxazolinone | Penicillium sp. [68] | ||
Isocoumarins (phenolic derivatives) | Asperentins | P. tardochryso-genum [60] | ||
Primary alchool | Choline | Cryptococcus laurentii [70] | ||
Debaryomyces hansenii [70] | ||||
Leucosporidium scotii [70] | ||||
Rhodotorula glutinis [70] | ||||
Sporobolomyces salmonicolor [70] | ||||
partially characterized ‘met Ø’ | Penicillium tardochrysogenum [60] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucconi, L.; Canini, F.; Temporiti, M.E.; Tosi, S. Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. Int. J. Environ. Res. Public Health 2020, 17, 6459. https://doi.org/10.3390/ijerph17186459
Zucconi L, Canini F, Temporiti ME, Tosi S. Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. International Journal of Environmental Research and Public Health. 2020; 17(18):6459. https://doi.org/10.3390/ijerph17186459
Chicago/Turabian StyleZucconi, Laura, Fabiana Canini, Marta Elisabetta Temporiti, and Solveig Tosi. 2020. "Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting" International Journal of Environmental Research and Public Health 17, no. 18: 6459. https://doi.org/10.3390/ijerph17186459
APA StyleZucconi, L., Canini, F., Temporiti, M. E., & Tosi, S. (2020). Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. International Journal of Environmental Research and Public Health, 17(18), 6459. https://doi.org/10.3390/ijerph17186459