Psychometric Proprieties of a Mobile Application to Measure the Craniovertebral Angle a Validation and Reliability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
FHPapp
2.3. Measurement Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shumway-Cook, A.; Woollacott, M.H. Control Motor: Teoría y Aplicaciones Practices, 3rd ed.; Lippincott Williams and Wilkins: Baltimore, MD, USA, 2007. [Google Scholar]
- Ruivo, R.M.; Pezarat-Correia, P.; Carita, A.I. Intrarater and Interrater Reliability of Photographic Measurement of Upper-Body Standing Posture of Adolescents. J. Manip. Physiol. Ther. 2015, 38, 74–80. [Google Scholar] [CrossRef]
- Gadotti, I.C.; Biasotto-González, D.A. Sensitivity of clinical assessments of sagittal head posture. J. Eval. Clin. Pract. 2010, 16, 141–144. [Google Scholar] [CrossRef]
- Bosso, L.R.; Campos Golias, A.R. Rhythmic gymnastics athletes posture: Analysis through photometry. Rev. Bras. Med. Esporte. 2012, 18, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Hospital Da Costa Burela, España, 2005. Cervicalgias y Cervicobraquialgias. Servicio de Traumatología y Cirugía Ortopédica. España. Available online: https://sogacot.org/Documentos/Montero_Cervical.pdf (accessed on 21 July 2020).
- ShaghayeghFard, B.; Ahmadi, A.; Maroufi, N.; Sarrafzadeh, J. Evaluation of forward head posture in sitting and standing positions. Eur. Spine J. 2016, 25, 3577–3582. [Google Scholar] [CrossRef]
- Boland, D.M.; Neufeld, E.V.; Ruddell, J.; Dolezal, B.A.; Cooper, C.B. Inter- and intra-rater agreement of static posture analysis using a mobile application. J. Phys. Ther. Sci. 2016, 28, 3398–3402. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Lee, S.; Shin, G. Reliability of forward head posture evaluation while sitting, standing, walking and running. Hum. Mov. Sci. 2017, 55, 81–86. [Google Scholar] [CrossRef]
- Yong, M.; Lee, H.; Lee, M. Correlation between head posture and proprioceptive function in the cervical region. J. Phys. Ther. Sci. 2016, 28, 857–860. [Google Scholar] [CrossRef] [Green Version]
- Dunleavy, K.; Neil, J.; Tallon, A.; Adamo, D.E. Reliability and validity of cervical position measurements in individuals with and without chronic neck pain. J. Man. Manip. Ther. 2015, 23, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Pinzón Ríos, I.D. Cabeza hacia adelante: Una mirada desde la biomecánica y sus implicaciones sobre el movimiento corporal humano. Rev. Univ. Ind. Santander. Salud. 2015, 47, 75–83. [Google Scholar]
- Nam, S.H.; Son, S.M.; Kwon, J.W.; Lee, N.K. The intra- and inter-rater reliabilities of the forward head posture assessment of normal healthy subjects. J. Phys. Ther. Sci. 2013, 25, 737–739. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Han, H.; Cheon, S.; Park, S.; Yong, M. The effect of forward head posture on muscle activity during neck protraction and retraction. J. Phys. Ther. Sci. 2015, 27, 977–979. [Google Scholar] [CrossRef] [Green Version]
- Cheung Lau, H.M.; Wing Chiu, T.T.; Lam, T. Clinical measurement of craniovertebral angle by electronic head posture instrument: A test of reliability and validity. Man. Ther. 2009, 14, 363–368. [Google Scholar] [CrossRef]
- Salahzadeh, Z.; Maroufi, N.; Ahmadi, A.; Behtash, H.; Razmjoo, A.; Gohari, M.; Parnianpour, M. Assessment of forward head posture in females: Observational and photogrammetry methods. J. Back Musculoeskelet Rehabil. 2014, 27, 131–139. [Google Scholar]
- Furlanetto, T.S.; Sedrez, J.A.; Candotti, C.T.; Loss, J.F. Photogrammetry as a tool for the postural evaluation of the spine: A systematic review. World J. Orthop. 2015, 7, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Fan, G.; Wu, X.; Zeng, Y.; Su, H.; Gu, G.; Zhou, Q.; Gu, X.; Zhang, H.; He, S. Photographic measurement of head and cervical posture when viewing mobile phone: A pilot study. Eur. Spine. J. 2015, 24, 2892–2898. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.T.; Cheung, K.Y.; Chan, K.B.; Chan, M.H.; Lo, K.Y.; Chiu, T.T. Relationships between sagittal postures of thoracic and cervical spine, presence of neck pain, neck pain severity and disability. Man. Ther. 2010, 15, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Pita-Fernández, S.; Pértega-Díaz, S.; Maseda, E.R. La fiabilidad de las mediciones clínicas: El análisis de concordancia para variables numéricas. Cuad. Atención Primaria 2003, 10, 290–296. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Haley, S.M.; Fragala-Pinkham, M.A. Interpreting change scores of tests and measures used in physical therapy. Phys. Ther. 2006, 86, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Cerda, J.; Cifuentes, L. Using ROC curves in clinical investigation: Theoretical and practical issues. Rev. Chilena. Infectol. 2012, 29, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Bethoux, F.; Bennett, S. Evaluating walking in patients with multiple sclerosis: Which assessment tools are useful in clinical practice? Int. J. MS Care 2011, 13, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Szucs, K.A.; Donoso Brown, E.V. Rater reliability and construct validity of a mobile application for posture analysis. J. Phys. Ther. Sci. 2018, 30, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Quek, J.; Brauer, S.G.; Treleaven, J.; Pua, Y.H.; Mentiplay, B.; Clark, R.A. Validity and intra-rater reliability of an Android phone application to measure cervical range-of-motion. J. Neuroeng. Rehab. 2014, 11, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, A.R.; Gumaa, M. Validity and reliability of smartphone applications for clinical assessment of the neuromusculoskeletal system. Expert. Rev. Med. Devices 2017, 14, 481–493. [Google Scholar] [CrossRef] [PubMed]
Variable | Female n = 21 | Male n = 23 | Total n = 44 |
---|---|---|---|
Age (Years) | 22.62 (±4.37) [20.63–24.61] | 23.91 (±4.52) [21.96–25.87] | 23.30 (±4.44) [21.94–24.65] |
Weight (kg) | 66.15 (±16.02) [58.86-73.45] | 75.31 (±10.76) [70.66–79.97] | 70.94 (±14.14) [66.54–75.24] |
Height (cm) | 166.64 (±5.98) [163.91–169.36] | 177.15 (±5.04) [174.97–179.33] | 172.13 (±7.60) [169.82–174.44] |
Body Mass Index (BMI) (kg/m2) | 23.84 (±5.99) [21.11–26.57] | 23.93 (±2.68) [22.77–25.09] | 23.88 (±4.51) [22.51–25.26] |
Cervical Pain | 13 (61.90%) | 9 (39.13%) | n = 22 (50%) |
Visual Analog Scale (VAS) (cm) Only Cervical Pain | 2.65 (±1.20) [1.92–3.38] | 4.43 (±1.12) [3.57–5.30] | 3.38 (±1.45) [2.73–4.02] |
Physical Activity Practice | 15 (71.42%) | 21 (91.30%) | n = 36 (81.81%) |
Physical Activity (h/week) Only Physical Activity | 5.43 (±3.39) [3.55–7.31] | 5.45 (±2.06) [4.51–6.39] | 5.44 (±2.65) [4.54–6.34] |
Observer | Mean (SD) | ICC (95% CI) | SEM | MDC | |
---|---|---|---|---|---|
Intra-Observer Reliability | 1 2 | 52.90° (±5.52) 52.79° (±5.17) | 0.85 (0.74–0.91) 0.88 (0.79–0.93) | 2.13° 1.79° | 5.90° 4.96° |
Session | Mean (SD) | ICC (95% CI) | SEM | MDC | |
Inter-Observer Reliability | 1 2 | 52.87° (±5.89) 52.82° (±4.74) | 0.89 (0.80–0.93) 0.88 (0.80–0.93) | 1.95° 1.64° | 5.40° 4.54° |
ICC (95% CI) | SEM | MDC | |
---|---|---|---|
FHP1 vs. KIN1 | 0.85 (0.78–0.90) | 2.11° | 5.84° |
FHP2 vs. KIN2 | 0.88 (0.82–0.91) | 1.83° | 5.07° |
FHP Application | Correct Percentage (%) | |||
---|---|---|---|---|
No FHP | FHP | |||
Photometry | No FHP | 22 | 4 | 84.6 |
FHP | 1 | 17 | 94.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego-Izquierdo, T.; Arroba-Díaz, E.; García-Ascoz, G.; Val-Cano, M.d.A.; Pecos-Martin, D.; Cano-de-la-Cuerda, R. Psychometric Proprieties of a Mobile Application to Measure the Craniovertebral Angle a Validation and Reliability Study. Int. J. Environ. Res. Public Health 2020, 17, 6521. https://doi.org/10.3390/ijerph17186521
Gallego-Izquierdo T, Arroba-Díaz E, García-Ascoz G, Val-Cano MdA, Pecos-Martin D, Cano-de-la-Cuerda R. Psychometric Proprieties of a Mobile Application to Measure the Craniovertebral Angle a Validation and Reliability Study. International Journal of Environmental Research and Public Health. 2020; 17(18):6521. https://doi.org/10.3390/ijerph17186521
Chicago/Turabian StyleGallego-Izquierdo, Tomas, Enrique Arroba-Díaz, Gema García-Ascoz, María del Alba Val-Cano, Daniel Pecos-Martin, and Roberto Cano-de-la-Cuerda. 2020. "Psychometric Proprieties of a Mobile Application to Measure the Craniovertebral Angle a Validation and Reliability Study" International Journal of Environmental Research and Public Health 17, no. 18: 6521. https://doi.org/10.3390/ijerph17186521
APA StyleGallego-Izquierdo, T., Arroba-Díaz, E., García-Ascoz, G., Val-Cano, M. d. A., Pecos-Martin, D., & Cano-de-la-Cuerda, R. (2020). Psychometric Proprieties of a Mobile Application to Measure the Craniovertebral Angle a Validation and Reliability Study. International Journal of Environmental Research and Public Health, 17(18), 6521. https://doi.org/10.3390/ijerph17186521