Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Procedures
- -
- Endomorphic mesomorph (EnM): Mesomorphy is dominant and endomorphy is greater than ectomorphy.
- -
- Balanced mesomorph (BM): Mesomorphy is dominant and endomorphy and ectomorphy are equal.
- -
- Ectomorphic mesomorph (EcM): Mesomorphy is dominant and ectomorphy is greater than endomorphy.
- -
- Mesomorph-ectomorph (M-Ec): Mesomorphy and ectomorphy are equal, and endomorphy is smaller.
- -
- Mesomorphic ectomorph (MEc): Ectomorphy is dominant and mesomorphy is greater than endomorphy.
- -
- Balanced ectomorph (Bec): Ectomorphy is dominant and endomorphy and mesomorphy are equal.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic bioelectrical impedance vector reference values for assessing body composition in male and female athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, F.; Toselli, S. Bioimpedance vector analysis of elite, subelite, and low-level male volleyball players. Int. J. Sports Physiol. Perform. 2018, 13, 1250–1253. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, A.; Vicini, M.; Pollastri, L.; Lombardi, E.; Magni, E.; Andreazzoli, A.; Orsini, M.; Bonifazi, M.; Lukaski, H.; Gatterer, H. Bioimpedance patterns and bioelectrical impedance vector analysis (BIVA) of road cyclists. J. Sports Sci. 2018, 36, 2608–2613. [Google Scholar] [CrossRef]
- Micheli, M.L.; Pagani, L.; Marella, M.; Gulisano, M.; Piccoli, A.; Angelini, F.; Burtscher, M.; Gatterer, H. Bioimpedance and impedance vector patterns as predictors of league level in male soccer players. Int. J. Sports Physiol. Perform. 2014, 9, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The role of somatic maturation on bioimpedance patterns and body composition in male elite youth soccer players. Int. J. Environ. Res. Public Health 2019, 16, 4711. [Google Scholar] [CrossRef] [Green Version]
- De Araújo Jerônimo, A.F.; Batalha, N.; Collado-Mateo, D.; Parraca, J.A. Phase Angle from Bioelectric Impedance and Maturity-Related Factors in Adolescent Athletes: A Systematic Review. Sustainability 2020, 12, 4806. [Google Scholar]
- Koury, J.C.; Trugo, N.M.F.; Torres, A.G. Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes. Int. J. Sports Physiol. Perform. 2014, 9, 798–804. [Google Scholar] [CrossRef]
- Toselli, S.; Marini, E.; Maietta Latessa, P.; Benedetti, L.; Campa, F. Maturity Related Differences in Body Composition Assessed by Classic and Specific Bioimpedance Vector Analysis among Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 729. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Piras, A.; Raffi, M.; Trofè, A.; Perazzolo, M.; Mascherini, G.; Toselli, S. The effects of dehydration on metabolic and neuromuscular functionality during cycling. Int. J. Environ. Res. Public Health 2020, 17, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, F.; Gatterer, H.; Lukaski, H.; Toselli, S. Stabilizing bioimpedance-vector-analysis measures with a 10-minute cold shower after running exercise to enable assessment of body hydration. Int. J. Sports Physiol. Perform. 2019, 14, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Marginet, M.; Castizo-Olier, J.; Rodríguez-Zamora, L.; Iglesias, X.; Rodríguez, F.A.; Chaverri, D.; Brotons, D.; Irurtia, A. Bioelectrical impedance vector analysis (BIVA) for measuring the hydration status in young elite synchronized swimmers. PLoS ONE 2017, 12, e0178819. [Google Scholar] [CrossRef] [Green Version]
- Gatterer, H.; Schenk, K.; Laninschegg, L.; Lukaski, H.; Burtscher, M. Bioimpedance identifies body FluidLoss after exercise in the heat: A pilot study with body cooling. PLoS ONE 2014, 9, e109729. [Google Scholar] [CrossRef] [PubMed]
- Mundstock, E.; Amaral, M.A.; Baptista, R.R.; Sarria, E.E.; Dos Santos, R.R.; Detoni Filho, A.; Rodrigues, C.A.; Forte, G.C.; Castro, L.; Padoin, A.V.; et al. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clin. Nutr. 2019, 38, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying athlete body-fluid changes during a competitive season with bioelectrical impedance vector analysis. Int. J. Sports Physiol. Perform. 2020, 15, 361–367. [Google Scholar] [CrossRef]
- Francisco, R.; Matias, C.N.; Santos, D.A.; Campa, F.; Minderico, C.S.; Rocha, P.; Heymsfield, S.B.; Lukaski, H.; Sardinha, L.B.; Silva, A.M. The predictive role of raw bioelectrical impedance parameters in water compartments and fluid distribution assessed by dilution techniques in athletes. Int. J. Environ. Res. Public Health 2020, 17, 759. [Google Scholar] [CrossRef] [Green Version]
- González-Correa, C.H. Body Composition by Bioelectrical Impedance Analysis. In Bioimpedance in Biomedical Applications and Research; Simini, F., Bertemes-Filho, P., Eds.; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-74387-5. [Google Scholar]
- Marini, E.; Campa, F.; Bua, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef]
- Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and Bioimpedance Vector Analysis: A New Target Zone for Male Athletes. Sustainability 2020, 12, 4365. [Google Scholar] [CrossRef]
- Piccoli, A.; Pastori, G.; Codognotto, M.; Paoli, A. Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders. Br. J. Nutr. 2007, 97, 182–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castizo-Olier, J.; Carrasco-Marginet, M.; Roy, A.; Chaverri, D.; Iglesias, X.; Pérez-Chirinos, C.; Rodríguez, F.; Irurtia, A. Bioelectrical Impedance Vector Analysis (BIVA) and Body Mass Changes in an Ultra-Endurance Triathlon Event. J. Sports Sci. Med. 2018, 17, 571–579. [Google Scholar]
- Mascherini, G.; Gatterer, H.; Lukaski, H.; Burtscher, M.; Galanti, G. Changes in hydration, body-cell massand endurance performance of professional soccer players through a competitive season. J. Sports Med. Phys. Fit. 2015, 55, 749–755. [Google Scholar]
- Carter, J.E.L. The Heath-Carter Somatotype Method, 3rd ed.; San Diego State University Syllabus Service: San Diego, CA, USA, 1980. [Google Scholar]
- Carter, J.E.; Phillips, W.H. Structural changes in exercising middle-aged males during a 2-year period. J. Appl. Physiol. 1969, 27, 787–794. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Pumerantz, A.C.; Fiala, K.A.; Roti, M.W.; Kavouras, S.A.; Casa, D.J.; Maresh, C.M. Human hydration indices: Acute and longitudinal reference values. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champain, IL, USA, 1988. [Google Scholar]
- Lukaski, H.C.; Piccoli, A. Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In Handbook of Anthropometry; Preedy, V., Ed.; Springer: Berlin, Germany, 2012; pp. 287–305. [Google Scholar]
- Matias, C.N.; Santos, D.A.; Júdice, P.B.; Magalhães, J.P.; Minderico, C.S.; Fields, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Estimation of total body water and extracellular water with bioimpedance in athletes: A need for athlete-specific prediction models. Clin. Nutr. 2016, 35, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef]
- Rakovic, A.; Savanovic, V.; Stankovic, D.; Pavlovic, R.; Simeonov, A.; Petkovic, E. Analysis of the elite athletes’somatotypes. Acta Kinesiol. 2015, 9, 47–53. [Google Scholar]
- Sánchez, M.C.; Muros, J.J.; Lópezm, B.Ó.; Zabala, M. Anthropometric characteristics, body composition and somatotype of elite male young runners. Int. J. Environ. Res. Public Health 2020, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Di Vincenzo, O.; Marra, M.; Scalfi, L. Bioelectrical impedance phase angle in sport: A systematic review. J. Int. Soc. Sports Nutr. 2019, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.F.; Matias, C.N.; Campa, F.; Morgado, J.P.; Franco, P.; Quaresma, P.; Almeida, N.; Curto, D.; Toselli, S.; Monteiro, C.P. Bioimpedance Vector Patterns Changes in Response to Swimming Training: An Ecological Approach. Int. J. Environ. Res. Public Health 2020, 17, 4851. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.G.; Silva, A.M.; Sardinha, L.B.; Rodrigues, F.B.; Tomeleri, C.M.; Ravagnani, F.C.; Cyrino, E.S.; Ravagnani, C.F. Phase Angle is Moderately Associated with Short-term Maximal Intensity Efforts in Soccer Players. Int. J. Sports Med. 2019, 40, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Nunes, C.L.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Heymsfield, S.B.; Lukaski, H.; Sardinha, L.B. Usefulness of raw bioelectrical impedance parameters in tracking fluid shifts in judo athletes. Eur. J. Sport Sci. 2019, 28, 1–10. [Google Scholar] [CrossRef]
- Pollastri, L.; Lanfranconi, F.; Tredici, G.; Schenk, K.; Burtscher, M.; Gatterer, H. Body fluid status and physical demand during the Giro d’Italia. Res. Sports Med. 2016, 24, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Matias, C.N.; Nunes, C.L.; Santos, D.A.; Marini, E.; Lukaski, H.C.; Sardinha, L.B. Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. Eur. J. Clin. Nutr. 2019, 73, 1077–1083. [Google Scholar] [CrossRef]
Variable | Somatotype | Q1 (n = 42) | Q2 (n = 40) | Q3 (n = 41) | Q4 (n = 41) |
---|---|---|---|---|---|
TBW (L) | EnM | 49.2 ± 0.3 | 52.4 ± 1.5 | 56.6 ± 1.4 | 67.5 ± 3.8 |
BM | 45.9 ± 1.6 | 51.6 ± 1.6 | 58.1 ± 1.1 | 65.1 ± 5.2 | |
EcM | 45.9 ± 3.1 | 52.5 ± 0.9 | 56.7 ± 1.3 | 63.9 ± 4.7 | |
M-Ec | - | 53.7 ± 0.8 | 56.7 ± 0.9 | 62.4 ± 1.2 | |
MEc | - | 52.4 ± 0.7 | 57.7 ± 1.5 | 61.2 ± 1.2 | |
BEc | 44.2 ± 3.6 | 51.7 ± 0.9 | 56.9 ± 1.3 | 61.6 ± 0.7 | |
Whole sample | 46.1 ± 2.9 | 52.3 ± 1.3 | 56.9 ± 1.3 | 65.2 ± 4.3 | |
R/H (Ohm/m) | EnM | 247.0 ± 8.8 | 238.5 ± 14.1 | 214.9 ± 18.8 | 203.9 ± 18.1 |
BM | 266.8 ± 17.3 | 238.2 ± 16.9 | 223.5 ± 6.0 | 211.6 ± 17.6 | |
EcM | 262.2 ± 15.9 | 245.5 ± 18.4 | 223.5 ± 10.8 | 203.1 ± 12.5 | |
M-Ec | - | 249.2 ± 16.1 | 237.7 ± 12.8 | 234.6 ± 29.0 | |
MEc | - | 268.0 ± 9.5 | 234.5 ± 12.5 | 224.2 ± 4.9 | |
BEc | 287.8 ± 17.6 | 253.9 ± 9.5 | 243.1 ± 17.2 | 219.6 ± 14.0 | |
Whole sample | 262.9 ± 17.1 | 245.5 ± 17.3 | 227.5 ± 17.2 | 209.0 ± 17.9 | |
Xc/H (Ohm/m) | EnM | 35.9 ± 1.4 | 34.7 ± 3.3 | 30.7 ± 2.8 | 28.3 ± 4.0 |
BM | 36.0 ± 2.7 | 33.4 ± 2.6 | 31.9 ± 3.6 | 27.6 ± 3.9 | |
EcM | 35.9 ± 3.4 | 34.7 ± 4.1 | 29.0 ± 2.2 | 27.7 ± 2.9 | |
M-Ec | - | 32.2 ± 2.3 | 31.5 ± 2.6 | 31.4 ± 3.1 | |
MEc | - | 34.7 ± 2.3 | 31.1 ± 2.6 | 30.2 ± 2.2 | |
BEc | 36.1 ± 3.3 | 34.2 ± 1.5 | 30.4 ± 3.1 | 29.0 ± 3.8 | |
Whole sample | 35.9 ± 3.0 | 34.3 ± 3.1 | 30.5 ± 2.7 | 28.4 ± 3.5 |
Variable | Somatotype | Q1 (n = 42) | Q2 (n = 40) | Q3 (n = 41) | Q4 (n = 41) | df | F * | p |
---|---|---|---|---|---|---|---|---|
PhA (°) | EnM | 8.3 ± 0.1 | 8.3 ± 0.7 | 8.1 ± 0.5 | 8.0 ± 0.7 | |||
BM | 7.7 ± 0.5 | 7.9 ± 0.6 | 8.2 ± 1.1 | 7.4 ± 0.6 | ||||
EcM | 7.8 ± 0.6 | 8.1 ± 0.8 | 7.4 ± 0.4 | 7.8 ± 0.5 | ||||
M-Ec | - | 7.4 ± 0.5 | 7.5 ± 0.6 | 7.7 ± 0.2 | ||||
MEc | - | 7.4 ± 0.5 | 7.6 ± 0.4 | 7.7 ± 0.4 | ||||
BEc | 7.1 ± 0.2 | 7.7 ± 0.2 | 7.1 ± 0.3 | 7.5 ± 0.6 | ||||
Whole sample | 7.8 ± 0.5 | 7.9 ± 0.6 | 7.7 ± 0.6 | 7.8 ± 0.6 | 3 | 1.8 | 0.144 | |
VL/H (Ohm/m) | EnM | 249.6 ± 8.8 | 241.1 ± 14.2 | 217.1 ± 18.9 | 205.9 ± 18.2 | |||
BM | 269.3 ± 17.3 | 241.2 ± 16.8 | 225.8 ± 5.5 | 213.4 ± 17.9 | ||||
EcM | 264.6 ± 16.1 | 247.9 ± 18.5 | 225.4 ± 10.9 | 204.9 ± 12.7 | ||||
M-Ec | - | 251.3 ± 16.2 | 239 ± 12.8 | 236.6 ± 29.2 | ||||
MEc | - | 270.3 ± 9.5 | 236.6 ± 12.7 | 226.3 ± 4.2 | ||||
BEc | 290.4 ± 17.8 | 256.2 ± 9.6 | 244.9 ± 17.4 | 221.5 ± 18.0 | ||||
Whole sample | 265.4 ± 17.1 2,3,4 | 247.9 ± 17.3 1,3,4 | 229.5 ± 17.3 1,2,4 | 210.9 ± 18.1 1,2,3 | 3 | 74.7 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campa, F.; Silva, A.M.; Matias, C.N.; Monteiro, C.P.; Paoli, A.; Nunes, J.P.; Talluri, J.; Lukaski, H.; Toselli, S. Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players. Int. J. Environ. Res. Public Health 2020, 17, 6604. https://doi.org/10.3390/ijerph17186604
Campa F, Silva AM, Matias CN, Monteiro CP, Paoli A, Nunes JP, Talluri J, Lukaski H, Toselli S. Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players. International Journal of Environmental Research and Public Health. 2020; 17(18):6604. https://doi.org/10.3390/ijerph17186604
Chicago/Turabian StyleCampa, Francesco, Analiza M. Silva, Catarina N. Matias, Cristina P. Monteiro, Antonio Paoli, João Pedro Nunes, Jacopo Talluri, Henry Lukaski, and Stefania Toselli. 2020. "Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players" International Journal of Environmental Research and Public Health 17, no. 18: 6604. https://doi.org/10.3390/ijerph17186604
APA StyleCampa, F., Silva, A. M., Matias, C. N., Monteiro, C. P., Paoli, A., Nunes, J. P., Talluri, J., Lukaski, H., & Toselli, S. (2020). Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players. International Journal of Environmental Research and Public Health, 17(18), 6604. https://doi.org/10.3390/ijerph17186604