Temporal Kinematic Differences between Forward and Backward Jump-Landing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Procedure of Forward and Backward Jumping with Single-Leg and Double-Leg Landings
2.4. Data Collection and Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agel, J.; Arendt, E.A.; Bershadsky, B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: A 13-year review. Am. J. Sports Med. 2005, 33, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.; Seward, H.; McGivern, J.; Hood, S. Intrinsic and extrinsic risk factors for anterior cruciate ligament injury in Australian footballers. Am. J. Sports Med. 2001, 29, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gu, Y. Single leg landing movement differences between male and female badminton players after overhead stroke in the backhand-side court. Hum. Mov. Sci. 2019, 66, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Waldén, M.; Hägglund, M.; Magnusson, H.; Ekstrand, J. Anterior cruciate ligament injury in elite football: A prospective three-cohort study. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Waldén, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Non-contact ACL injuries: Mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Ugbolue, U.C. Is There a Relationship Between Strike Pattern and Injury During Running: A Review. Phys. Act. Health. 2019, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Gu, Y.; Ren, X.; Li, J.; Lake, M.; Zhang, Q.; Zeng, Y. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. Int. Orthop. 2010, 34, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Ireland, M.L. Anterior cruciate ligament injury in female athletes: Epidemiology. J. Athl. Train. 1999, 34, 150–154. [Google Scholar] [CrossRef]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009, 43, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikstrom, E.A.; Powers, M.E.; Tillman, M.D. Dynamic stabilization time after isokinetic and functional fatigue. J. Athl. Train. 2004, 39, 247–253. [Google Scholar]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E., Jr.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Arendt, E.A.; Agel, J.; Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J. Athl. Train. 1999, 34, 86–92. [Google Scholar] [PubMed]
- Griffin, L.Y.; Albohm, M.J.; Arendt, E.A.; Bahr, R.; Beynnon, B.D.; DeMaio, M.; Dick, R.W.; Engebretsen, L.; Garrett, W.E.; Hannafin, J.A. Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II meeting, January 2005. Am. J. Sports Med. 2006, 34, 1512–1532. [Google Scholar] [CrossRef]
- Liu, K.; Heise, G.D. The effect of jump-landing directions on dynamic stability. J. Appl. Biomech. 2013, 29, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Guskiewicz, K.M.; Perrin, D.H. Research and clinical applications of assessing balance. J. Sport Rehabil. 1996, 5, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part II: The role of proprioception in motor control and functional joint stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar] [PubMed]
- Abt, J.P.; Sell, T.C.; Laudner, K.G.; McCrory, J.L.; Loucks, T.L.; Berga, S.L.; Lephart, S.M. Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Ageberg, E.; Roberts, D.; Holmström, E.; Fridén, T. Balance in single-limb stance in patients with anterior cruciate ligament injury: Relation to knee laxity, proprioception, muscle strength, and subjective function. Am. J. Sports Med. 2005, 33, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Sell, T.C.; Ferris, C.M.; Abt, J.P.; Tsai, Y.S.; Myers, J.B.; Fu, F.H.; Lephart, S.M. Predictors of proximal tibia anterior shear force during a vertical stop-jump. J. Orthop. Res. 2007, 25, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Söderman, K.; Alfredson, H.; Pietilä, T.; Werner, S. Risk factors for leg injuries in female soccer players: A prospective investigation during one out-door season. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 313–321. [Google Scholar] [CrossRef]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Tillman, M.D.; Schenker, S.M.; Borsa, P.A. Jump-landing direction influences dynamic postural stability scores. J. Sci. Med. Sport 2008, 11, 106–111. [Google Scholar] [CrossRef]
- Hogg, J.A.; Vanrenterghem, J.; Ackerman, T.; Nguyen, A.D.; Ross, S.E.; Schmitz, R.J.; Shultz, S.J. Temporal kinematic differences throughout single and double-leg forward landings. J. Biomech. 2020, 99, 109559. [Google Scholar] [CrossRef]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 2013, 46, 2394–2401. [Google Scholar] [CrossRef] [Green Version]
- Cappozzo, A.; Cappello, A.; Croce, U.D.; Pensalfini, F. Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans. Biomed. Eng. 1997, 44, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Cowley, H.R.; Ford, K.R.; Myer, G.D.; Kernozek, T.W.; Hewett, T.E. Differences in neuromuscular strategies between landing and cutting tasks in female basketball and soccer athletes. J. Athl. Train. 2006, 41, 67–73. [Google Scholar] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1990; pp. 154–219. [Google Scholar] [CrossRef]
- Ueda, T.; Hobara, H.; Kobayashi, Y.; Heldoorn, T.; Mochimaru, M.; Mizoguchi, H. Comparison of 3 methods for computing loading rate during running. Int. J. Sports Med. 2016, 37, 1087–1090. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1990; pp. 19–32. [Google Scholar]
- Berns, G.S.; Hull, M.; Patterson, H.A. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 1992, 10, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Lin, C.-F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Seegmiller, J.G.; McCaw, S.T. Ground reaction forces among gymnasts and recreational athletes in drop landings. J. Athl. Train. 2003, 38, 311–314. [Google Scholar] [PubMed]
- Arms, S.W.; Pope, M.H.; Johnson, R.J.; Fischer, R.A.; Arvidsson, I.; Eriksson, E. The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am. J. Sports Med. 1984, 12, 8–18. [Google Scholar] [CrossRef]
- Gribble, P.A.; Robinson, R.H. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability. J. Athl. Train. 2009, 44, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Theisen, A.; Day, J. Chronic ankle instability leads to lower extremity kinematic changes during landing tasks: A systematic review. Int. J. Exerc. Sci. 2019, 12, 24–33. [Google Scholar]
- Lee, J.; Song, Y.; Shin, C.S. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing. Gait Posture 2018, 62, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Coventry, E.; O’Connor, K.M.; Hart, B.A.; Earl, J.E.; Ebersole, K.T. The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin. Biomech. 2006, 21, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Yeow, C.H.; Lee, P.V.S.; Goh, J.C.H. An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Hum. Mov. Sci. 2011, 30, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Decker, M.J.; Torry, M.R.; Noonan, T.J.; Riviere, A.; Sterett, W.I. Landing adaptations after ACL reconstruction. Med. Sci. Sports Exerc. 2002, 34, 1408–1413. [Google Scholar] [CrossRef]
Forward Landing | Backward Landing | p | ||||
---|---|---|---|---|---|---|
Hip | SP | MAX | SL | 41.1 ± 5.2 * | 45.0 ± 6.0 * | 0.042 |
DL | 56.7 ± 12.3 | 58.3 ± 14.9 | 0.686 | |||
MIN | SL | 17.7 ± 6.4 * | 9.9 ± 5.5 * | 0.001 | ||
DL | 24.4 ± 9.1 * | 15.8 ± 6.6 * | 0.001 | |||
ROM | SL | 23.4 ± 4.8 * | 35.1 ± 6.5 * | 0.001 | ||
DL | 32.3 ± 7.3 * | 42.5 ± 11.2 * | 0.001 | |||
FP | MAX | SL | 10.5 ± 3.0 | 10.8 ± 3.9 | 0.839 | |
DL | 0.2 ± 3.8 | 0.5 ± 6.3 | 0.740 | |||
MIN | SL | −10.0 ± 2.3 | −10.7 ± 2.3 | 0.406 | ||
DL | −5.5 ± 2.1 | −6.1 ± 2.0 | 0.173 | |||
ROM | SL | 20.5 ± 2.9 | 21.2 ± 5.11 | 0.527 | ||
DL | 5.6 ± 4.0 | 6.6 ± 5.4 | 0.583 | |||
Knee | SP | MAX | SL | −14.7 ± 4.7 | −16.5 ± 4.4 | 0.192 |
DL | −26.7 ± 5.8 * | −21.9 ± 5.3 * | 0.006 | |||
MIN | SL | −74.8 ± 11.2 | −69.6 ± 7.7 | 0.074 | ||
DL | −101.4 ± 13.8 * | −88.1 ± 12.8 * | 0.001 | |||
ROM | SL | 60.0 ± 9.00 * | 53.1 ± 7.1 * | 0.005 | ||
DL | 74.7 ± 9.4 * | 66.2 ± 11.3 * | 0.008 | |||
FP | MAX | SL | 15.4 ± 6.0 | 12.0 ± 3.5 | 0.109 | |
DL | 18.4 ± 5.8 | 14.0 ± 5.3 | 0.063 | |||
MIN | SL | 3.2 ± 2.1 | 2.8 ± 0.9 | 0.557 | ||
DL | 6.1 ± 2.4 * | 3.7 ± 0.9 * | 0.006 | |||
ROM | SL | 12.2 ± 4.3 | 9.2 ± 3.0 | 0.06 | ||
DL | 12.4 ± 3.8 | 10.3 ± 4.8 | 0.252 | |||
Ankle | SP | MAX | SL | 24.3 ± 5.9 * | 28.4 ± 4.5 * | 0.019 |
DL | 29.1 ± 5.1 | 31.3 ± 4.8 | 0.161 | |||
MIN | SL | −26.1 ± 3.5 | −25.7 ± 4.4 | 0.747 | ||
DL | −20.1 ± 3.7 | −21.4 ± 4.7 | 0.337 | |||
ROM | SL | 50.9 ± 4.2 | 54.1 ± 7.0 | 0.053 | ||
DL | 49.1 ± 6.8 | 52.7 ± 7.4 | 0.123 | |||
FP | MAX | SL | 7.1 ± 3.3 | 7.1 ± 2.5 | 0.968 | |
DL | 6.0 ± 2.4 | 6.6 ± 2.2 | 0.593 | |||
MIN | SL | −15.3 ± 3.2 | −15.4 ± 5.1 | 0.967 | ||
DL | −10.8 ± 2.5 | −10.7 ± 2.1 | 0.915 | |||
ROM | SL | 22.4 ± 4.5 | 22.4 ± 5.0 | 0.990 | ||
DL | 16.9 ± 1.6 | 17.3 ± 2.2 | 0.613 |
FS | BS | p | FD | BD | p | |
---|---|---|---|---|---|---|
Peak Vertical Ground Reaction Force (BW) | 4.11 ± 0.17 * | 4.78 ± 0.16 * | 0.001 | 2.61 ± 0.12 | 2.69 ± 0.18 | 0.533 |
Vertical Instantaneous Loading Rate (BW/S) | 190.26 ± 11.58 * | 217.97 ± 14.16 * | 0.041 | 133.96 ± 4.51 | 125.76 ± 12.09 | 0.322 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Cen, X.; Wang, M.; Rong, M.; István, B.; Baker, J.S.; Gu, Y. Temporal Kinematic Differences between Forward and Backward Jump-Landing. Int. J. Environ. Res. Public Health 2020, 17, 6669. https://doi.org/10.3390/ijerph17186669
Xu D, Cen X, Wang M, Rong M, István B, Baker JS, Gu Y. Temporal Kinematic Differences between Forward and Backward Jump-Landing. International Journal of Environmental Research and Public Health. 2020; 17(18):6669. https://doi.org/10.3390/ijerph17186669
Chicago/Turabian StyleXu, Datao, Xuanzhen Cen, Meizi Wang, Ming Rong, Bíró István, Julien S. Baker, and Yaodong Gu. 2020. "Temporal Kinematic Differences between Forward and Backward Jump-Landing" International Journal of Environmental Research and Public Health 17, no. 18: 6669. https://doi.org/10.3390/ijerph17186669
APA StyleXu, D., Cen, X., Wang, M., Rong, M., István, B., Baker, J. S., & Gu, Y. (2020). Temporal Kinematic Differences between Forward and Backward Jump-Landing. International Journal of Environmental Research and Public Health, 17(18), 6669. https://doi.org/10.3390/ijerph17186669