The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Laboratory Data Collection
2.4. Data Collection during Taekwondo-Specific Workouts and Tournaments
- Peak activity (ACTpeak)—squared root of (x2 + y2 + z2); x, y, and z are peak values of the three axial accelerations, where ~0.2 represents walking, ~0.5 jogging, ~0.8 running, and ~1.0+ sprinting.
- Average activity (ACTavg)—squared root of (x2 + y2 + z2); x, y, and z are the averages of the three axial accelerations over the previous 1-s epoch, where ~0.2 represents walking, ~0.5 jogging, ~0.8 running, and ~1.0+ sprinting.
- Physiological intensity (PHYSint)—range 0–10 (incremental step of 5%), where 0 is below 50% and 10 equals or exceeds 100% of maximum HR on the basis of the HR range of each athlete.
- Physiological load (PHYSload)—the accumulation of the PHYSint over time (average value multiplied by the total exertion time).
- Mechanical intensity (MECHint)—displayed in the range of 0–10 (incremental step of 5%), where 0 denotes motionless, whereas 10 is equal to an acceleration of 3.0 g or greater.
- Mechanical load (MECHload)—the accumulation of the MECHint over time (average value multiplied by the total exertion time).
- Training intensity (TRAINint)—arithmetic average of PHYSint and MECHint.
- Training load (TRAINload)—arithmetic average of PHYSload and MECHload.
- Energy expenditure—estimated according to the formula: EE (kcal) = Gender × (−55.0969 + 0.6309 HR + 0.1988 Weight + 0.2017 Age) + (1 − Gender) × (−20.4022 + 0.4472 HR − 0.1263 Weight + 0.074 Age). Gender—1 for male, 0 for female.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arias, J.L.; Argudo, F.M.; Alonso, J.I. Review of rule modification in sport. J. Sports Sci. Med. 2011, 10, 1–8. [Google Scholar] [PubMed]
- Eaves, S.J.; Hughes, M.D.; Lamb, K.L. Assessing the impact of the season and rule changes on specific match and tactical variables in professional rugby league football in the United Kingdom. Int. J. Perform. Anal. Sport 2008, 8, 104–118. [Google Scholar] [CrossRef]
- Ben Abdelkrim, N.; El Fazaa, S.; El Ati, J. Time–motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br. J. Sports Med. 2007, 41, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Halouani, J.; Chtourou, H.; Dellal, A.; Chaouachi, A.; Chamari, K. Physiological responses according to rules changes during 3 vs. 3 small-sided games in youth soccer players: Stop-ball vs. small-goals rules. J. Sports Sci. 2014, 32, 1485–1490. [Google Scholar] [PubMed]
- Janowski, M.; Zieliński, J.; Kusy, K. Exercise response to real combat in elite taekwondo athletes before and after competition rule changes. J. Strength Cond. Res. 2019. Online ahead of print. [Google Scholar] [CrossRef]
- Matthew, D.; Delextrat, A. Heart rate, blood lactate concentration, and time-motion analysis of female basketball players during competition. J. Sports Sci. 2009, 27, 813–821. [Google Scholar] [CrossRef]
- Meir, R.; Colla, P.; Milligan, C. Impact of the 10-meter rule change on Professional Rugby League: Implications for training. Strength Cond. J. 2001, 23, 42–46. [Google Scholar]
- Murray, S.; James, N.; Hughes, M.D.; Perš, J.; Mandeljc, R.; Vučković, G. Effects of rule changes on physical demands and shot characteristics of elite-standard men’s squash and implications for training. J. Sports Sci. 2006, 34, 2170–2174. [Google Scholar] [CrossRef] [Green Version]
- Vickery, W.; Dascombe, B.; Duffield, R.; Kellett, A.; Portus, M. The influence of field size, player number and rule changes on the physiological responses and movement demands of small-sided games for cricket training. J. Sports Sci. 2013, 31, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Gastin, P.B.; Allan, M.D.; Bellesini, K.; Spittle, M. Rule modification in junior sport: Does it create differences in player movement? J. Sci. Med. Sport 2017, 20, 937–942. [Google Scholar] [CrossRef]
- Platanou, T.; Geladas, N. The influence of game duration and playing position on intensity of exercise during match-play in elite water polo players. J. Sports Sci. 2006, 24, 1173–1181. [Google Scholar] [CrossRef]
- Jae-Ko, Y.; Chang, Y.; Rhee, Y.-C.; Valacih, J.S.; Hur, Y.; Park, C. Value-based stakeholder loyalty toward sport technology a case of the electronic body protector and scoring system in taekwondo events. RICYDE: Revista Internacional de Ciencias del Deporte 2014, 10, 46–62. [Google Scholar]
- Moenig, U. Rule and equipment modification issues in World Taekwondo Federation (WTF) competition. Ido Mov. Cult. J. Martial Arts Anthrop. 2015, 15, 3–12. [Google Scholar]
- Moenig, U. Dominant features and negative trends in the current World Taekwondo Federation (WTF) competition system. Ido Mov. Cult. J. Martial Arts Anthrop. 2017, 7, 56–67. [Google Scholar]
- Woo, J.H.; Ko, J.Y.; Choi, E.Y.; Her, J.G.; O’Sullivan, D.M. Development and evaluation of a novel taekwondo chest protector to improve mobility when performing axe kicks. Biol. Sport 2013, 30, 51–56. [Google Scholar] [CrossRef] [PubMed]
- World Taekwondo. Competition Rules and Interpretation. Available online: http://www.worldtaekwondo.org (accessed on 15 May 2017).
- Bridge, C.A.; McNaughton, L.R.; Close, G.L.; Drust, B. Taekwondo exercise protocols do not recreate the physiological responses of championship combat. Int. J. Sports Med. 2013, 34, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Obmiński, Z.; Lerczak, K.; Witek, K.; Pintera, M.; Błach, W.; Szczuka, E. Blood lactate level and perceptual responses (RPE) to an official fight and to a sparing in male taekwondo contestants. Pol. J. Sports Med. 2011, 4, 283–287. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of high-intensity interval training on Olympic combat sports athletes’ performance and physiological adaptation: A systematic review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Herrera-Valenzuela, T.; Zapata-Bastias, J.; Guajardo-Medrano, M.; Pons-Vargas, G.; Valdés-Badilla, P.; Ferreira Da Silva Santos, J.; Garcia-Hermoso, A.; Lopez-Fuenzalida, A.; Franchini, E.; Orihuela, P. Can simulation tasks reproduce the taekwondo match physiological responses? Arch. Budo 2018, 14, 25–31. [Google Scholar]
- Laursen, P.B. Training for intense exercise performance: High-intensity or high-volume training? Scan. J. Med. Sci. Sports 2010, 20, 1–10. [Google Scholar] [CrossRef]
- Monks, L.; Seo, M.W.; Kim, H.B.; Jung, H.C.; Song, J.K. High-intensity interval training and athletic performance in taekwondo athletes. J. Sports Med. Phys. Fit. 2017, 57, 1252–1260. [Google Scholar]
- Bouhlel, E.; Jouini, A.; Gmad, N.; Nefzi, A.; Abdallah, K.B.; Tabka, Z. Heart rate and blood lactate responses during taekwondo training and competition. Sci. Sports 2006, 21, 285–290. [Google Scholar] [CrossRef]
- Casolino, E.; Cortis, C.; Lupo, C.; Chiodo, S.; Minganti, C.; Capranica, L. Physiological versus psychological evaluation in taekwondo elite athletes. Int. J. Sports Physiol. 2012, 7, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, S.; Tessitore, A.; Lupo, C.; Ammendolia, A.; Cortis, C.; Capranica, L. Effects of official youth taekwondo competitions on jump and strength performance. Eur. J. Sport Sci. 2012, 12, 113–120. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Burke, L.M. Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Med. Sci. Sport Exerc. 2012, 44, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridge, C.A.; Jones, M.A.; Drust, B. The activity profile in international taekwondo competition is modulated by weight category. Int. J. Sports Physiol. 2011, 6, 344–357. [Google Scholar]
- Matsushige, K.A.; Hartmann, K.; Franchini, E. Taekwondo: Physiological responses and match analysis. J. Strength Cond. Res. 2009, 23, 1112–1117. [Google Scholar] [CrossRef]
- Hailstone, J.; Kilding, A.E. Reliability & validity of the Zephyr Bioharness to measure respiratory responses to exercise. Meas. Phys. Educ. Exerc. Sci. 2011, 15, 293–300. [Google Scholar]
- Johnstone, J.A.; Ford, P.A.; Hughes, G.; Watson, T.; Mitchell, A.C.; Garrett, A.T. Field based reliability and validity of the Bioharness multivariable monitoring device. J. Sports Sci. Med. 2012, 11, 643–652. [Google Scholar]
- Nazari, G.; Bobos, P.; MacDermid, J.C.; Sinden, K.E.; Richardson, J.; Tang, A. Psychometric properties of the Zephyr bioharness device: A systematic review. BMC Sports Sci. Med. 2018, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bridge, C.A.; Jones, M.A.; Hitchen, P.; Sanchez, X. Heart rate responses to taekwondo training in experienced practitioners. J. Strength Cond. Res. 2007, 21, 718–723. [Google Scholar]
- Bridge, C.A.; Santos, J.F.D.; Chaaben, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Chamari, K. Heart rate responses and training load during nonspecific and specific aerobic training in adolescent taekwondo athletes. J. Hum. Kinet. 2011, 26, 59–66. [Google Scholar]
- Kim, H.B.; Stebbins, C.H.; Chai, J.H.; Song, J.K. Taekwondo training and fitness in female adolescents. J. Sports Sci. 2011, 29, 133–138. [Google Scholar]
- Melhim, A.F. Aerobic and anaerobic power responses to the practice of taekwon-do. Br. J. Sports Med. 2011, 35, 231–235. [Google Scholar]
- Mota, G.R.; Magalhaes, C.G.; Azevedo, P.H.S.M.; Ide, B.N.; Lopes, C.R.; Castardelli, E.; Baldissera, V.V. Lactate threshold in taekwondo through specifics tests. J. Exerc. Physiol. Online 2011, 14, 60–66. [Google Scholar]
- Nikolaidis, T.P.; Chtourou, H.; Torres-Luque, G.; Tasiopulos, I.G.; Heller, J.; Padulo, J. Effect of a six-week preparation period on acute physiological responses to a simulated combat in young national-level taekwondo athletes. J. Hum. Kinet. 2015, 47, 115–125. [Google Scholar]
- Larson, A.J. Variations in heart rate at blood lactate threshold due to exercise mode in elite cross-country skiers. J. Strength Cond. Res. 2006, 20, 855–860. [Google Scholar]
- Weippert, M.; Behrens, M.; Gonschorek, R.; Bruh, S.; Behrens, K. Muscular contraction mode differently affects autonomic control during heart rate matched exercise. Front. Physiol. 2015, 6, 156–164. [Google Scholar]
- Zamparo, P.; Capelli, C.; Termin, B.; Pandergast, D.R. Effect of the underwater torque on the energy cost, drag and efficiency of front crawl swimming. Eur. J. Appl. Physiol. 1996, 73, 195–201. [Google Scholar]
- Adam, M.; Tabakov, S.; Klimowicz, P.; Paczoska, B.; Laskowski, R.; Smaruj, M. The efficiency of judo techniques in the light of amendments to the rules of a sports contest. J. Combat Sports Mart. Art. 2012, 2, 115–120. [Google Scholar] [CrossRef]
- Aragones, D.; Eekhoff, A.; Horst, F.; Schöllhorn, W.I. Fatigue-related changes in technique emerge at different timescales during repetitive training. J. Sports Sci. 2018, 36, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Rusidiana, A.; Rohmat, N.D.; Ray, H.R.; M Syahid, A.M. Effect of fatigue on the kinematic variables of jump header performance in soccer. J. Phys. Educ. 2020, 20, 649–657. [Google Scholar]
- Figueiredo, P.; Nazario, R.; Sousa, M.; Pelargio, J.G.; Vilas-Boas, J.P.; Fernandes, R. Kinematical analysis along maximal lactate steady state swimming intensity. J. Sports Sci. Med. 2014, 13, 610–615. [Google Scholar]
- Bassan, N.M.; César, T.E.A.S.; Denadai, B.S.; Greco, C.C. Relationship between fatigue and changes in swim technique during an exhaustive swim exercise. Int. J. Sports Phys. Perform. 2016, 11, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Aujouannet, Y.A.; Bonifazi, M.; Hintzy, F.; Vuillerme, N.; Rouard, A.H. Effects of a high-intensity swim test on kinematic parameters in high-level athletes. Appl. Physiol. Nutr. Metab. 2006, 31, 150–158. [Google Scholar] [CrossRef]
- Prieske, O.; Demps, M.; Lesinski, M.; Granacher, U. Combined effects of fatigue and surface instability on jump biomechanics in elite athletes. Int. J. Sports Med. 2017, 38, 781–790. [Google Scholar] [CrossRef]
- Grasaas, C.A.; Ettema, G.; Hegge, A.M.; Skovereng, K.; Sandbakk, O. Changes in technique and efficiency after high-intensity exercise in cross-country skiers. Int. J. Sports. Physiol. Perform. 2014, 9, 19–24. [Google Scholar] [CrossRef]
- Kellis, E.; Katis, A.; Vrabas, S. Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scand. J. Med. Sci. Sports 2016, 16, 334–344. [Google Scholar] [CrossRef] [PubMed]
Male | Female | Combined Group | ||||
---|---|---|---|---|---|---|
Old Rules | New Rules | Old Rules | New Rules | Old Rules | New Rules | |
Age (years) | 19.5 ± 3.3 | 20.5 ± 3.3 | 20.8 ± 1.5 | 21.8 ± 1.5 | 19.9 ± 2.8 | 20.9 ± 2,8 |
Experience (years) | 8.6 ± 2.7 | 9.6 ± 2.7 | 9.2 ± 2.2 | 10.2 ± 2.2 | 8.8 ± 2.5 | 9.8 ± 2.5 |
Height (cm) | 182.0 ± 5.9 | 182.0 ± 5.9 | 176.6 ± 8.1 | 176.6 ± 8.1 | 180.2 ± 6.9 | 180.1 ± 6.0 |
Weight (kg) | 66.7 ± 11.1 | 70.1 ± 9.2 | 67.5 ± 12.5 | 68.9 ± 11.8 | 67.0 ± 11.1 | 70.1 ± 9.7 * |
Lean body mass (kg) | 53.8 ± 9.0 | 57.0 ± 7.6 | 44.6 ± 9.2 | 46.6 ± 7.4 | 50.7 ± 9.8 | 53.5 ± 8.9 ** |
Lean body mass (%) | 80.7 ± 2.6 | 80.9 ± 2.2 | 66.4 ± 1.8 | 68.2 ± 2.0 | 76.0 ± 7.4 | 76.7 ± 6.5 |
Fat mass (kg) | 9.8 ± 2.4 | 10.3 ± 2.3 | 19.5 ± 4.3 | 19.0 ± 4.2 | 13.0 ± 5.6 | 13.2 ± 5.2 |
Fat mass (%) | 14.7 ± 2.6 | 14.5 ± 2.1 | 28.9 ± 2.7 | 27.7 ± 2.2 | 19.4 ± 7.4 | 18.9 ± 6.7 |
O2VT (mL·min−1·kg−1) | 41.0 ± 4.9 | 35.2 ± 3.7 ** | 30.0 ± 1.9 | 32.6 ± 5.7 | 37.3 ± 6.7 | 34.3 ± 4.4 |
O2RCP (mL·min−1·kg−1) | 47.9 ± 5.2 | 50.7 ± 3.3 | 39.0 ± 1.7 | 41.0 ± 3.2 | 44.9 ± 6.1 | 47.5 ± 5.7 |
O2max (mL·min−1·kg−1) | 54.1 ± 4.2 | 56.6 ± 4.1 | 44.6 ± 5.3 | 45.6 ± 4.8 | 50.9 ± 6.4 | 52.9 ± 6.8 |
LAmax (mmol·L−1) | 8.4 ± 1.8 | 9.2 ± 1.7 | 8.0 ± 1.5 | 8.2 ± 1.3 | 8.3 ± 1.7 | 8.9 ± 1.7 |
Circuit Old Rules | Circuit New Rules | Combat Old Rules | Combat New Rules | Circuit Old vs. New Rules | Circuit vs. Combat Old Rules | Circuit vs. Combat New Rules | ||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Effect Size | p-Value | Effect Size | p-Value | Effect Size | |||||
HRpeak (beats·min−1) | 174.9 ± 7.1 | 185.7 ± 6.8 | 187.2 ± 11.5 | 193.3 ± 11.3 | <0.001 | 0.37 (large) | <0.001 | 0.29 (large) | <0.001 | 0.14 (large) |
%HRmax | 92.6 ± 4.3 | 98.9 ± 4.8 | 99.4 ± 5.8 | 102.6 ± 6.9 | <0.001 | 0.32 (large) | <0.001 | 0.31 (large) | <0.001 | 0.09 (medium) |
HRavg (beats·min−1) | 165.8 ± 6.7 | 174.6 ± 6.7 | 179.1 ± 12.3 | 184.0 ± 13.2 | <0.001 | 0.30 (large) | <0.001 | 0.31 (large) | <0.001 | 0.17 (large) |
HRrec (beats·min−1) | 102.8 ± 8.4 | 105.3 ± 8.1 | 107.6 ± 11.2 | 109.3 ± 10.7 | 0.022 | 0.02 (small) | 0.002 | 0.05 (small) | <0.001 | 0.04 (small) |
PHYSint (au) | 7.5 ± 0.5 | 7.8 ± 0.6 | 8.7 ± 0.6 | 8.9 ± 0.6 | <0.001 | 0.06 (medium) | <0.001 | 0.51 (large) | <0.001 | 0.49 (large) |
PHYSload (au) | 18.4 ± 2.0 | 19.2 ± 2.1 | 19.4 ± 2.1 | 20.1 ± 2.0 | <0.001 | 0.03 (small) | <0.001 | 0.06 (medium) | <0.001 | 0.05 (small) |
Circuit Old Rules | Circuit New Rules | Combat Old Rules | Combat New Rules | Circuit Old vs. New Rules | Circuit vs. Combat Old Rules | Circuit vs. Combat New Rules | ||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Effect Size | p-Value | Effect Size | p-Value | Effect Size | |||||
BRpeak (breaths·min−1) | 43.7 ± 3.1 | 48.9 ± 2.9 | 40.2 ± 4.6 | 41.2 ± 4.6 | <0.001 | 0.42 (large) | <0.001 | 0.16 (large) | <0.001 | 0.50 (large) |
%BRmax | 69.7 ± 8.8 | 76.4 ± 10.0 | 64.3 ± 10.0 | 65.0 ± 9.8 | <0.001 | 0.11 (medium) | <0.001 | 0.08 (medium) | <0.001 | 0.25 (large) |
BRavg (breaths·min−1) | 36.5 ± 2.7 | 38.1 ± 2.6 | 35.9 ± 5.0 | 37.3 ± 4.8 | <0.001 | 0.08 (medium) | 0.040 | 0.01 (small) | 0.004 | 0.02 (small) |
BRrec (breaths·min−1) | 16.5 ± 2.2 | 17.3 ± 2.2 | 17.1 ± 3.1 | 17.8 ± 2.6 | 0.003 | 0.03 (small) | 0.130 | <0.01 (negligible) | 0.266 | <0.01 (negligible) |
Circuit Old Rules | Circuit New Rules | Combat Old Rules | Combat New Rules | Circuit Old vs. New Rules | Circuit vs. Combat Old Rules | Circuit vs. Combat New Rules | ||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Effect Size | p-Value | Effect Size | p-Value | Effect Size | |||||
EEavg (kcal·kg−1·h−1) | 14.1 ± 1.2 | 15.0 ± 1.1 | 13.2 ± 2.5 | 15.9 ± 2.9 | <0.001 | 0.14 (large) | <0.001 | 0.03 (small) | <0.001 | 0.04 (small) |
%EEvt | 132.4 ± 22.6 | 140.5 ± 18.0 | 135.8 ± 26.5 | 147.4 ± 23.0 | <0.001 | 0.04 (medium) | 0.06 | <0.01 (negligible) | <0.001 | 0.03 (small) |
%EERCP | 104.2 ± 11.9 | 107.2 ± 9.6 | 106.8 ± 20.4 | 112.1 ± 15.5 | 0.010 | 0.02 (small) | 0.04 | 0.01 (small) | <0.001 | 0.03 (small) |
%EEmax | 91.8 ± 11.7 | 91.5 ± 7.6 | 94.1 ± 17.6 | 94.9 ± 13.2 | 0.720 | <0.01 (negligible) | 0.03 | 0.01 (small) | <0.001 | 0.02 (small) |
eErec (kcal·kg−1·h−1) | 5.3 ± 0.6 | 5.6 ± 0.6 | 5.8 ± 1.4 | 5.8 ± 1.2 | <0.001 | 0.08 (medium) | <0.001 | 0.06 (medium) | 0.094 | <0.01 (negligible) |
%eerec | 37.2 ± 4.4 | 37.2 ± 4.3 | 37.3 ± 10.7 | 36. 9 ± 9.7 | 0.984 | <0.01 (negligible) | 0.944 | <0.01 (negligible) | 0.795 | <0.01 (negligible) |
Circuit Old Rules | Circuit New Rules | Combat Old Rules | Combat New Rules | Circuit Old vs. New Rules | Circuit vs. Combat Old Rules | Circuit vs. Combat New Rules | ||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Effect Size | p-Value | Effect Size | p-Value | Effect Size | |||||
LApre (mmol·l−1) | 2.0 ± 0.5 | 2.0 ± 0.4 | 2.2 ± 0.9 | 2.1 ± 1.0 | 0.451 | <0.01 (negligible) | 0.01 | 0.03 (small) | 0.261 | 0.01 (small) |
LApost (mmol·l−1) | 10.0 ± 2.8 | 11.1 ± 2.9 | 11.2 ± 2.4 | 12.8 ± 2.3 | <0.001 | 0.03 (small) | <0.001 | 0.03 (small) | <0.001 | 0.07 (medium) |
%LAmax | 120.8 ± 36.8 | 126.3 ± 34.5 | 131.1 ± 29.1 | 142.4 ± 27.6 | 0.039 | 0.01 (small) | 0.004 | 0.02 (small) | <0.001 | 0.06 (medium) |
larec (mmol·l−1) | 2.2 ± 0.5 | 2.5 ± 0.44 | 2.7 ± 0.8 | 3.5 ± 1.0 | <0.001 | 0.11 (medium) | <0.001 | 0.15 (large) | <0.001 | 0.32 (large) |
Circuit Old Rules | Circuit New Rules | Combat Old Rules | CombatNew Rules | Circuit Old vs. New Rules | Circuit vs. Combat Old Rules | Circuit vs. Combat New Rules | ||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Effect Size | p-Value | Effect Size | p-Value | Effect Size | |||||
ACTpeak (m·s−2) | 12.3 ± 1.5 | 13.6 ± 1.7 | 13.2 ± 2.5 | 13.6 ± 2.4 | <0.001 | 0.14 (large) | <0.001 | 0.04 (small) | 0.944 | <0.01 (negligible) |
ACTavg (m·s−2) | 7.1 ± 0.5 | 7.7 ± 0.5 | 7.5 ± 0.8 | 8.0 ± 0.6 | <0.001 | 0.28 (large) | <0.001 | 0.11 (medium) | <0.001 | 0.04 (small) |
MECHint (au) | 7.1 ± 0.5 | 7.5 ± 0.6 | 8.1 ± 0.7 | 8.5 ± 0.6 | <0.001 | 0.17 (large) | <0.001 | 0.43 (large) | <0.001 | 0.46 (large) |
MECHload (au) | 16.8 ± 1.8 | 17.8 ± 1.8 | 17.6 ± 2.2 | 19.0 ± 1.9 | <0.001 | 0.07 (medium) | <0.001 | 0.04 (small) | <0.001 | 0.10 (medium) |
TRAINint (∑au) | 7.3 ± 0.5 | 7.6 ± 0.5 | 8.4 ± 0.6 | 8.7 ± 0.5 | <0.001 | 0.13 (medium) | <0.001 | 0.53 (large) | <0.001 | 0.52 (large) |
TRAINload (∑au) | 17.6 ± 1.7 | 18.5 ± 1.8 | 18.5 ± 2.0 | 19.6 ± 1.8 | <0.001 | 0.06 (medium) | <0.001 | 0.06 (medium) | <0.001 | 0.09 (medium) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowski, M.; Zieliński, J.; Ciekot-Sołtysiak, M.; Schneider, A.; Kusy, K. The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts. Int. J. Environ. Res. Public Health 2020, 17, 6779. https://doi.org/10.3390/ijerph17186779
Janowski M, Zieliński J, Ciekot-Sołtysiak M, Schneider A, Kusy K. The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts. International Journal of Environmental Research and Public Health. 2020; 17(18):6779. https://doi.org/10.3390/ijerph17186779
Chicago/Turabian StyleJanowski, Michał, Jacek Zieliński, Monika Ciekot-Sołtysiak, Agata Schneider, and Krzysztof Kusy. 2020. "The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts" International Journal of Environmental Research and Public Health 17, no. 18: 6779. https://doi.org/10.3390/ijerph17186779
APA StyleJanowski, M., Zieliński, J., Ciekot-Sołtysiak, M., Schneider, A., & Kusy, K. (2020). The Effect of Sports Rules Amendments on Exercise Intensity during Taekwondo-Specific Workouts. International Journal of Environmental Research and Public Health, 17(18), 6779. https://doi.org/10.3390/ijerph17186779