The Role of Iron Metabolism in Fatigue, Depression, and Quality of Life in Multiple Sclerosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Group
- Research schedule and research procedures,
- Voluntary participation in the study and the possibility of resigning from further participation at any time of its duration, or not consenting to the use of their results in scientific works,
- Anonymity of results that will be used only for scientific purposes.
2.2. Biochemical Determination of Blood
2.3. Questionnaire Surveys
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations of the Study
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kamińska, J.; Koper, O.M.; Piechal, K.; Kemona, H. Stwardnienie rozsiane–etiopatogeneza i możliwości diagnostyczne. Postep. Hig. Med. Dosw. 2017, 71, 551–563. [Google Scholar]
- Labuz-Roszak, B.; Kubicka-Bączyk, K.; Pierzchała, K.; Horyniecki, M.; Machowska-Majchrzak, A.; Augustyńska-Mutryn, D.; Kosałka, K.; Michalski, K.; Pyszak, D.; Wach, J. Jakość życia chorych na stwardnienie rozsiane–związek z cechami klinicznymi choroby, zespołem zmęczenia i objawami depresyjnymi. Psychiatr. Pol. 2013, 47, 433–442. [Google Scholar]
- Weiland, T.J.; Jelinek, G.A.; Marck, C.H.; Hadgkiss, E.J.; van der Meer, D.M.; Pereira, N.G.; Taylor, K.L. Clinically significant fatigue: Prevalence and associated factors in an international sample of adults with multiple sclerosis recruited via the internet. PLoS ONE 2015, 18. [Google Scholar] [CrossRef] [PubMed]
- Kallaur, A.P.; Lopes, J.; Olivieira, S.R.; Colado Simão, A.N.; Vissoci Reiche, E.M.; Delicato de Almeida, E.R.; Morimoto, H.K.; Carvalho Jennings de Pereira, W.L.; Alfieri, D.F.; Borelli, S.D.; et al. Immune-inflammatory and oxidative and nitrosative stress biomarkers of depression symptoms in subjects with multiple sclerosis: Increased peripheral inflammation but less acute neuroinflammation. Mol. Neurobiol. 2016, 53, 5191–5202. [Google Scholar] [CrossRef]
- Karatepe, G.; Kaya, T.; Günaydn, R.; Demirhan, A.; Ce, P.; Gedizlioğlu, M. Quality of life in patients with multiple sclerosis: The impact of depression, fatigue, and disability. Int. J. Rehabil. Res. 2011, 34, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Gangania, M.K.; Batra, J.; Kushwaha, S.; Agarwal, R. Role of Iron and copper in the pathogenesis of parkinson’s disease. Indian J. Clin. Biochem. 2017, 32, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.R.; Lane, D.J.; Becker, E.M.; Huang, M.L.H.; Whitnall, M.; Rahmanto, Y.S.; Sheftel, A.D.; Ponka, P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. USA 2010, 107, 10775–10782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 2015, 372, 1832–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ropele, S.; Enzinger, C.; Fazekas, F. Iron mapping in multiple sclerosis. Neuroimag. Clin. N. Am. 2017, 27, 335–342. [Google Scholar] [CrossRef]
- Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review review. Cell Death Dis. 2018, 9, 348. [Google Scholar] [CrossRef]
- Zivadinov, R.; Tavazzi, E.; Bergsland, N.; Hagemeier, J.; Lin, F.; Dwyer, M.G.; Carl, E.; Kolb, C.; Hojnacki, D.; Ramasamy, D.; et al. Brain iron at quantitative mri is associated with disability in multiple sclerosis. Radiology 2018, 289, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Al-Radaideh, A.; Wharton, S.J.; Lim, S.Y.; Tench, C.R.; Morgan, P.S.; Bowtell, R.W.; Constantinescu, C.S.; Gowland, P.A. Increased iron accumulation occurs in the earliest stages of demyelinating disease: An ultra-high field susceptibility mapping study in clinically isolated syndrome. Mult. Scler. 2013, 19, 896–903. [Google Scholar] [CrossRef]
- Khalil, M.; Enzinger, C.; Langkammer, C.; Tscherner, M.; Wallner-Blazek, M.; Jehna, M.; Ropele, S.; Fuchs, S.; Fazekas, F. Quantitative assessment of brain iron by R2* relaxometry in patients with clinically isolated syndrome and relapsing–remitting multiple sclerosis. Mult. Scler. 2009, 15, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Rieder, H.P.; Schoettli, G.; Seiler, H. Trace elements in whole blood of multiple sclerosis. Eur. Neurol. 1983, 22, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, F.; Bakhsgi, H.; Akbaripoor, A. Serum iron and ferritin in patients with multiple sclerosis. Zahedan J. Res. Med. Sci. 2013, 15, 39–42. [Google Scholar]
- Johnson, S. The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B12, B6, D, and E and essential fatty acids in multiple sclerosis. Med. Hypotheses 2000, 55, 239–241. [Google Scholar] [CrossRef]
- Magliozzi, R.; Hametner, S.; Facchiano, F.; Marastoni, D.; Rossi, S.; Castellaro, M.; Poli, A.; Lattanzi, F.; Visconti, A.; Nicholas, R.; et al. Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Ann. Clin. Transl. Neurol. 2019, 6, 2150–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.J.; Ha, S.K.; Sati, P.; Absinta, M.; Nair, G.; Luciano, N.J.; Leibovitch, E.C.; Yen, C.C.; Rouault, T.A.; Silva, A.C.; et al. Potential role of iron in repair of inflammatory demyelinating lesions. J. Clin. Investig. 2019, 129, 4365–4376. [Google Scholar]
- Zhu, L.; Han, B.; Wang, L.; Chang, Y.; Ren, W.; Gu, Y.; Yan, M.; Wu, C.; Zhang, X.Y. The association between serum ferritin levels and post-stroke depression. J. Affect. Disord. 2016, 190, 98–102. [Google Scholar] [CrossRef]
- Zuo, L.J.; Yu, S.Y.; Hu, Y.; Wang Piao, Y.S.; Lian, T.H.; Yu, Q.J.; Wa Li, L.X.; Guo, P.; Du, Y.; Zhu, R.Y.; et al. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease. Sci. Rep. 2016, 6, 19. [Google Scholar] [CrossRef]
- Dama, M.; Van Lieshout, E.J.; Mattina, D.; Steiner, F. Iron Deficiency and risk of maternal depression in pregnancy: An observational study. J. Obstet. Gynaecol. Can. 2018, 40, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Bergis, D.; Tessmer, L.; Badenhoop, K. Iron deficiency in long standing type 1 diabetes mellitus and its association with depression and impaired quality of life. Diabet. Res. Clin. Pract. 2019, 151, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okan, S.; Caglıyan, T.; Sıvgın, H.; Ozsoy, F.; Okan, F. Association of ferritin levels with depression, anxiety, sleep quality, and physical functioning in patients with fibromyalgia syndrome: A cross-sectional study. Croat. Med. J. 2019, 60, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, S.; Ytterberg, C.; Back, B.; Holmqvist, L.W.; von Koch, L. The Swedish occupational fatigue inventory in people with multiple sclerosis. J. Rehabil. Med. 2008, 40, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Ottonello, M.; Pellicciari, L.; Giordano, A.; Foti, C. Rasch analysis of the fatigue severity scale in italian subjects with multiple sclerosis. J. Rehabil. Med. 2016, 48, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, A. Pomiar zmęczenia-przegląd narzędzi. Polskie Forum Psychol. 2013, 18, 419–440. [Google Scholar]
- Halicka, D.; Tarasiuk, J.; Szczepański, M.; Krajewska, A. Fatigue syndrome, depression and the quality of life in patients with multiple sclerosis. JNNN 2017, 6, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, B.; Popiel, A.; Pragłowska, E. Psychometric Properties of the polish version of the Aaron T. beck’s depression inventory BDI-II. Psychol. Etol. Genet. 2009, 19, 71–95. [Google Scholar]
- Kossakowska, M. Standaryzacja polskiej wersji kwestionariusza do oceny jakości życia w stwardnieniu rozsianym (FAMS). Qual. Life Psychol. 2004, 3, 61–80. [Google Scholar]
- Brola, W.; Fudala, M.; Czernicki, J. Wpływ depresji na jakość życia chorych ze stwardnieniem rozsianym. Rehabil. Med. 2007, 11, 9–13. [Google Scholar]
- Demkow, U.; Tom, I. Diagnostyka Laboratoryjna; Demkow, U., Tom, I., Eds.; Oficyna Wydawnicza Warszawskiego, Uniwersytetu Medycznego: Warszawa, Poland, 2015. [Google Scholar]
- Sfagos, C.; Makis, A.C.; Chaidos, A. Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult. Scler. 2005, 11, 272–275. [Google Scholar] [CrossRef] [PubMed]
- LeVine, S.M.; Lynch, S.G.; Ou, C.N.; Wulser, M.J.; Tam, E.; Boo, N. Ferritin, transferrin and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res. 1999, 821, 511–515. [Google Scholar] [CrossRef]
- Sena, A.; Pedrosa, F.; Ferret-Sena, V.; Cascais, R.; Roque, C.R.; Araújo, C.; Couderc, R. Interferon β therapy increases serum ferritin levels in patients with relapsing-remitting multiple sclerosis. Mult. Scler. 2008, 14, 857–879. [Google Scholar] [CrossRef]
- Visconti, A.; Cotichini, R.; Cannoni, S.; Bocca, B.; Forte, G.; Ghazaryan, A.; Santucci, S.; D’Ippolito, C.; Stazi, M.A.; Salvetti, M.; et al. Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: A six-month longitudinal follow-up study. Ann. Inst. Super. Sanita 2005, 41, 217–222. [Google Scholar]
- Abo-Krysha, N.; Rashed, L. The role of iron dysregulation in the pathogenesis of multiple sclerosis: An Egyptian study. Mult. Scler. 2008, 14, 602–608. [Google Scholar] [CrossRef]
- Forte, G.; Visconti, A.; Santucci, S.; Ghazaryan, A.; Figà-Talamanca, L.; Cannoni, S.; Bocca, B.; Pino, A.; Violante, N.; Alimonti, A.; et al. Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann. Inst. Super Sanita 2005, 41, 213–216. [Google Scholar]
- Ferreira, K.P.Z.; Oliveira, S.R.; Kallaur, A.P.; Kaimen-Maciel, D.R.; Lozovoy, M.A.B.; Delicato de Almeida, E.R.; Kaminami Morimoto, E.R.; Mezzaroba, L.; Dichi, I.; Vissoci Reiche, E.M.; et al. Disease progression and oxidative stress are associated with higher serum ferritin levels in patients with multiple sclerosis. J. Neurol. Sci. 2017, 15, 236–241. [Google Scholar] [CrossRef]
- Duck, K.A.; Connor, J.R. Iron uptake and transport across physiological barriers. Biometals 2016, 9, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Zeman, D.; Adam, P.; Kalistova, H.; Sobek, O.; Kelbich, P.; Andel, J.; Andel, M. Transferrin in patients with multiple sclerosis: A comparison among various subgroups of multiple sclerosis patients. Acta Neurol. Scand. 2000, 101, 89–94. [Google Scholar] [CrossRef]
- Hametner, S.; Wimmer, I.; Haider, L.; Pfeifenbring, S.; Brück, W.; Lassmann, H. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 2013, 74, 848–861. [Google Scholar] [CrossRef]
- Brock, J.H. Iron in infection, immunity, inflammation and neoplasia. In Iron Metabolism in Health and Disease; Brock, J.H., Halliday, J.W., Pippard, M.J., Powell, L.W., Eds.; W.B. Saunders: London, UK, 1994; pp. 353–390. [Google Scholar]
- Maes, M.; Van de Vyvere, J.; Vandoolaeghe, E.; Bril, T.; Demedts, P.; Wauters, A.H. Neels Alterations in iron metabolism and the erythron in major depression: Further evidence for a chronic inflammatory proces. J. Affect. Disord. 1996, 40, 23–33. [Google Scholar] [CrossRef]
- Rybka, J.; Kędziora-Kornatowska, K.; Banaś-Leżańska, P.; Majsterek, I.; Carvalho, L.A.; Cattaneo, A.; Anacker, C.; Kędziora, J. Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radic. Biol. Med. 2013, 63, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Nanria, A.; Poudel-Tandukar, K.; Nonaka, D.; Matsushita, Y.; Hori, A.; Mizoue, T. Association between serum ferritin concentrations and depressive symptoms in Japanese municipal employees. Psychiatry Res. 2011, 189, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Shariatpanaahi, M.V.; Shariatpanaahi, Z.V.; Moshtaaghi, M. The relationship between depression and serum ferritin level. Eur. J. Clin. Nutr. 2007, 61, 532–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | n | Mean ± SD | Me | Min–Max | Q1–Q3 | p | ||
---|---|---|---|---|---|---|---|---|
AGE | All | 90 | 42.5 ± 11.96 | 48.5 | 19.0–67.0 | 32.3–50.0 | - | |
Female | 62 | 43.4 ± 12.09 | 42.5 | 19.0–67.0 | 34.3–51.0 | 0.41 | ||
Male | 28 | 41.2 ± 11.98 | 38.5 | 19.0–64.0 | 32.0–48.5 | |||
EDSS | All | 90 | 2.9 ± 0.90 | 3.0 | 1.5–6.5 | 2.5–3.0 | - | |
Female | 62 | 3.0 ± 0.90 | 3.0 | 1.5–5.5 | 2.5–3.0 | 0.45 | ||
Male | 28 | 2.8 ± 1.00 | 2.3 | 1.5–6.5 | 2.0–3.0 | |||
Iron Metabolism | Iron, μg/dL | All | 90 | 93.3 ± 40.55 | 88.8 | 11.4–272.0 | 67.2–111.7 | - |
Female | 62 | 86.9 ± 42.33 | 80.7 | 11.4–272.0 | 59.9–103.6 | 0.04 | ||
Male | 28 | 107.7 ± 30.99 | 102.1 | 63.6–197.3 | 84.3–118.3 | |||
UIBC, μg/dL | All | 90 | 220.7 ± 82.25 | 220.5 | 12.0–438.4 | 160.1–268.2 | - | |
Female | 62 | 234.9 ± 88.07 | 229.1 | 12.0–438.4 | 170.4–287.5 | 0.01 | ||
Male | 28 | 189.3 ± 54.76 | 193.4 | 60.5–275.0 | 154.5–231.5 | |||
TIBC, μg/dL | All | 90 | 314.9 ± 62.86 | 316.6 | 166.3–449.8 | 271.9–350.2 | - | |
Female | 62 | 322.0 ± 65.20 | 324.4 | 198.3–449.8 | 272.5–374.0 | 0.16 | ||
Male | 28 | 299.0 ± 52.73 | 303.7 | 166.3–402.0 | 271.8–336.2 | |||
Transferrin saturation, % | All | 90 | 31.6 ± 15.41 | 30.0 | 2.5–95.6 | 22.7–39.6 | - | |
Female | 62 | 29.1 ± 16.26 | 27.1 | 2.5–95.6 | 18.6–37.5 | 0.00 | ||
Male | 28 | 37.3 ± 11.07 | 37.1 | 18.8–65.4 | 30.9–41.6 | |||
Transferrin, mg/dL | All | 90 | 268.5 ± 43.63 | 261.0 | 181.4–368.0 | 236.8–299.3 | - | |
Female | 62 | 275.5 ± 45.26 | 273.5 | 194.0–368.0 | 237.8–308.5 | 0.04 | ||
Male | 28 | 252.9 ± 34.13 | 252.5 | 181.4–353.0 | 229.5–272.0 | |||
Ferritin, μg/L | All | 90 | 101.5 ± 106.9 | 64.1 | 3.3–570.0 | 29.3–126.3 | - | |
Female | 62 | 59.5 ± 55.19 | 49.7 | 3.3–349.0 | 21.0–82.3 | 0.00 | ||
Male | 28 | 194.7 ± 130.34 | 199.8 | 50.6–570.0 | 93.8–235.0 | |||
Fatigue FSS | All | 90 | 4.0 ± 1.50 | 3.9 | 1.1–7.0 | 3.0–5.0 | - | |
Female | 62 | 4.0 ± 1.53 | 3.8 | 1.1–7.0 | 2.9–7.2 | 0.75 | ||
Male | 28 | 4.1 ± 1.42 | 3.9 | 1.7–6.9 | 3.1–4.7 | |||
Depression BDI-II | All | 90 | 9.4 ± 9.0 | 6.5 | 0–37.0 | 2.5–15.0 | - | |
Female | 62 | 10.2 ± 9.13 | 7.0 | 0–37.0 | 3.0–15.0 | 0.07 | ||
Male | 28 | 7.6 ± 8.44 | 4.0 | 0–31.0 | 1.0–15.0 | |||
Quality of Life | FAMS Overal | All | 90 | 116.6 ± 24.08 | 118.0 | 65.0–169.0 | 98.3–133.8 | - |
Female | 62 | 112.4 ± 41.80 | 111.0 | 65.0–154.0 | 96.5–128.8 | 0.04 | ||
Male | 28 | 124.1 ± 27.08 | 126.0 | 67.0–169.0 | 101.8–148.5 | |||
FAMS–M | All | 90 | 18.0 ± 6.03 | 19.0 | 3.0–28.0 | 14.0–23.0 | - | |
Female | 62 | 17.6 ± 5.88 | 17.5 | 4.0–28.0 | 14.0–23.0 | 0.33 | ||
Male | 28 | 18.9 ± 6.27 | 20.0 | 3.0–28.0 | 14.0–23.3 | |||
FAMS–S | All | 90 | 18.9 ± 5.49 | 18.0 | 8.0–28.0 | 15.0–24.0 | - | |
Female | 62 | 18.2 ± 5.54 | 17.0 | 8.0–28.0 | 14.0–23.0 | 0.06 | ||
Male | 28 | 20.6 ± 4.98 | 21.0 | 12.0–27.0 | 15.8–25.3 | |||
FAMS–EWB | All | 90 | 19.6 ± 6.31 | 20.0 | 4.0–28.0 | 15.0–24.0 | - | |
Female | 62 | 19.2 ± 6.04 | 20.0 | 4.0–28.0 | 15.0–23.0 | 0.32 | ||
Male | 28 | 20.5 ± 6.77 | 23.0 | 6.0–28.0 | 14.8–27.0 | |||
FAMS–GC | All | 90 | 19.6 ± 5.56 | 20.0 | 5.0–28.0 | 15.3–23.8 | - | |
Female | 62 | 19.5 ± 4.97 | 20.0 | 6.0–28.0 | 16.3–23.0 | 0.57 | ||
Male | 28 | 19.9 ± 6.68 | 21.0 | 5.0–28.0 | 14.0–27.0 | |||
FAMS–TF | All | 90 | 20.4 ± 7.91 | 20.0 | 4.0–35.0 | 15.0–26.7 | - | |
Female | 62 | 19.0 ± 7.98 | 19.0 | 4.0–35.0 | 14.3–25.0 | 0.01 | ||
Male | 28 | 23.7 ± 6.69 | 24.5 | 7.0–35.0 | 19.0–29.0 | |||
FAMS–FSWB | All | 90 | 19.5 ± 5.68 | 20.0 | 5.0–28.0 | 15.3–24.0 | - | |
Female | 62 | 19.1 ± 5.99 | 20.0 | 5.0–28.0 | 15.0–23.0 | 0.36 | ||
Male | 28 | 20.6 ± 4.77 | 20.0 | 12.0–28.0 | 17.0–24.3 | |||
FAMS–AC | All | 90 | 35.8 ± 8.25 | 37.0 | 14.0–52.0 | 29.3–41.0 | - | |
Female | 62 | 34.5 ± 8.44 | 33.5 | 14.0–52.0 | 28.0–40.0 | 0.03 | ||
Male | 28 | 38.6 ± 7.02 | 39.0 | 23.0–51.0 | 33.0–43.3 |
EDSS | Quality of Life FAMS | Fatigue FSS | Depression BDI-II | ||||||
---|---|---|---|---|---|---|---|---|---|
rho | p | rho | p | rho | p | rho | p | ||
Iron Metabolism | Iron, μg/dL | −0.02 | 0.87 | 0.16 | 0.12 | 0.01 | 0.90 | −0.12 | 0.25 |
UIBC, μg/dL | −0.04 | 0.69 | −0.09 | 0.41 | 0.11 | 0.32 | 0.15 | 0.17 | |
TIBC, μg/dL | −0.15 | 0.17 | −0.01 | 0.96 | 0.14 | 0.19 | 0.06 | 0.55 | |
Transferrin saturation, % | −0.00 | 0.99 | 0.14 | 0.18 | −0.07 | 0.49 | −0.18 | 0.09 | |
Transferrin, mg/dL | −0.04 | 0.69 | −0.07 | 0.49 | 0.18 | 0.09 | 0.03 | 0.79 | |
Ferritin, μg/L | 0.03 | 0.80 | 0.22 | 0.04 | −0.18 | 0.09 | −0.22 | 0.04 | |
Depression—BDI-II | 0.28 | 0.01 | −0.56 | 0.00 | 0.51 | 0.00 | - | - | |
Fatigue—FSS | 0.20 | 0.06 | −0.47 | 0.00 | - | - | - | - | |
Quality of life—FAMS | −0.50 | 0.00 | - | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knyszyńska, A.; Radecka, A.; Zabielska, P.; Łuczak, J.; Karakiewicz, B.; Lubkowska, A. The Role of Iron Metabolism in Fatigue, Depression, and Quality of Life in Multiple Sclerosis Patients. Int. J. Environ. Res. Public Health 2020, 17, 6818. https://doi.org/10.3390/ijerph17186818
Knyszyńska A, Radecka A, Zabielska P, Łuczak J, Karakiewicz B, Lubkowska A. The Role of Iron Metabolism in Fatigue, Depression, and Quality of Life in Multiple Sclerosis Patients. International Journal of Environmental Research and Public Health. 2020; 17(18):6818. https://doi.org/10.3390/ijerph17186818
Chicago/Turabian StyleKnyszyńska, Anna, Aleksandra Radecka, Paulina Zabielska, Joanna Łuczak, Beata Karakiewicz, and Anna Lubkowska. 2020. "The Role of Iron Metabolism in Fatigue, Depression, and Quality of Life in Multiple Sclerosis Patients" International Journal of Environmental Research and Public Health 17, no. 18: 6818. https://doi.org/10.3390/ijerph17186818
APA StyleKnyszyńska, A., Radecka, A., Zabielska, P., Łuczak, J., Karakiewicz, B., & Lubkowska, A. (2020). The Role of Iron Metabolism in Fatigue, Depression, and Quality of Life in Multiple Sclerosis Patients. International Journal of Environmental Research and Public Health, 17(18), 6818. https://doi.org/10.3390/ijerph17186818