The Recommended and Excessive Preventive Behaviors during the COVID-19 Pandemic: A Community-Based Online Survey in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sampling
2.2. Measurement
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Characteristics of Participants
3.2. The Prevalence of the Basic, Advanced, and Excessive Preventive Behaviors
3.3. Differences in the Adoption of Basic, Advanced, and Excessive Preventive Behavior
3.4. Factors Associated with the Adoption of Basic, Advanced, and Excessive Preventive Behaviors
3.5. Differences of the Psychological Health States between Symptomatic and Asymptomatic Populations
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi Zhonghua liuxingbingxue zazhi 2020, 41, 145–151. [Google Scholar] [CrossRef]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, E21. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Li, S.; Feng, B.; Liao, W.; Pan, W. Internet Use, Risk Awareness, and Demographic Characteristics Associated With Engagement in Preventive Behaviors and Testing: Cross-Sectional Survey on COVID-19 in the United States. J. Med. Internet Res. 2020, 22, e19782. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020, 20, e102–e107. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-2019) Situation Reports; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Riou, J.; Althaus, C.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 2020, 25, 7–11. [Google Scholar] [CrossRef]
- Tabata, S.; Imai, K.; Kawano, S.; Ikeda, M.; Kodama, T.; Miyoshi, K.; Obinata, H.; Mimura, S.; Kodera, T.; Kitagaki, M.; et al. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: A retrospective analysis. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; et al. Association of Public Health Interventions with the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA J. Am. Med. Assoc. 2020, 323, 1915–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiman, L.; Siegel, J.D.; LiPuma, J.J.; Brown, R.F.; Bryson, E.A.; Chambers, M.J.; Downer, V.S.; Fliege, J.; Hazle, L.A.; Jain, M.; et al. Infection Prevention and Control Guideline for Cystic Fibrosis: 2013 Update. Infect. Control Hosp. Epidemiol. 2014, 35, S1–S67. [Google Scholar] [CrossRef] [PubMed]
- Shatri, H.; Faisal, E.; Putranto, R. Mass Panic Disaster Management in COVID-19 Pandemic. Acta Med. Indones. 2020, 52, 179–184. [Google Scholar]
- Singh, M.; Sarkhel, P.; Kang, G.J.; Marathe, A.; Boyle, K.; Murray-Tuite, P.; Abbas, K.M.; Swarup, S. Impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States. BMC Infect. Dis. 2019, 19. [Google Scholar] [CrossRef]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef] [Green Version]
- Jing, Q.-L.; Liu, M.-J.; Zhang, Z.-B.; Fang, L.-Q.; Yuan, J.; Zhang, A.-R.; Dean, N.E.; Luo, L.; Ma, M.-M.; Longini, I.; et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: A retrospective cohort study. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Coe, A.B.; Gatewood, S.B.S.; Moczygemba, L.R.; Goode, J.-V.K.R.; Beckner, J.O. The use of the health belief model to assess predictors of intent to receive the novel (2009) H1N1 influenza vaccine. Innov. Pharm. 2012, 3, 1–11. [Google Scholar] [CrossRef]
- Kim, Y.; Zhong, W.; Jehn, M.; Walsh, L. Public Risk Perceptions and Preventive Behaviors during the 2009 H1N1 Influenza Pandemic. Disaster Med. Public Health Prep. 2015, 9, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.F. Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 2381. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Di, Y.; Ye, J.; Wei, W. Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China. Psychol. Health Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- Taghrir, M.H.; Borazjani, R.; Shiraly, R. COVID-19 and Iranian Medical Students; A Survey on Their Related-Knowledge, Preventive Behaviors and Risk Perception. Arch. Iran. Med. 2020, 23, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Bishwajit, G.; Ji, L.; Feng, D.; Fang, H.; Fu, H.; Shao, T.; Shao, P.; Liu, C.; Feng, Z.; et al. Improving the Blood Pressure Control with the ProActive Attitude of Hypertensive Patients Seeking Follow-up Services Evidence from China. Medicine 2016, 95, e3233. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.A.; Adams, S.R.; Schmittdiel, J.A.; Ali, M.K. Incidence of diabetes after a partner’s diagnosis. Prev. Med. 2017, 105, 52–57. [Google Scholar] [CrossRef]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef]
- Ogoina, D. COVID-19: The Need for Rational Use of Face Masks in Nigeria. Am. J. Trop. Med. Hyg. 2020, 103, 33–34. [Google Scholar] [CrossRef]
- Feng, S.; Shen, C.; Xia, N.; Song, W.; Fan, M.; Cowling, B.J. Rational use of face masks in the COVID-19 pandemic. Lancet Respir. Med. 2020, 8, 434–436. [Google Scholar] [CrossRef]
- Laestadius, L.; Wang, Y.; Ben Taleb, Z.; Kalan, M.E.; Cho, Y.; Manganello, J. Online National Health Agency Mask Guidance for the Public in Light of COVID-19: Content Analysis. JMIR Public Health Surveill. 2020, 6, e19501. [Google Scholar] [CrossRef]
- Clements, J.M. Knowledge and Behaviors toward COVID-19 among US Residents during the Early Days of the Pandemic: Cross-Sectional Online Questionnaire. JMIR Public Health Surveill. 2020, 6, e19161. [Google Scholar] [CrossRef] [PubMed]
- Delbaere, K.; Close, J.C.T.; Heim, J.; Sachdev, P.S.; Brodaty, H.; Slavin, M.J.; Kochan, N.A.; Lord, S.R. A Multifactorial Approach to Understanding Fall Risk in Older People. J. Am. Geriatr. Soc. 2010, 58, 1679–1685. [Google Scholar] [CrossRef]
- Al-Mohammed, H.I.; Amin, T.T.; Aboulmagd, E.; Hablus, H.R.; Zaza, B.O. Prevalence of intestinal parasitic infections and its relationship with socio-demographics and hygienic habits among male primary schoolchildren in Al-Ahsa, Saudi Arabia. Asian Pac. J. Trop. Med. 2010, 3, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Varela, J.M.; Mayan Santos, J.M.; Sanchez De Enciso Ruiz, M.; Lugilde Gude, M. Oral hygiene habits among non-institutionalized elderly subjects in the province of Lugo (Northwest Spain): A comparison of results from urban and rural districts. Geriatr. Madr. 1997, 13, 33–40. [Google Scholar]
- Narang, S.; Khinda, V.I.S.; Brar, G.S.; Kallar, S. Oral Health Status and Treatment Needs among 6, 9 and 12 Years Old Rural and Urban School Children in India: An Epidemiological Survey. J. Adv. Oral Res. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Lubetkin, E.I.; Zabor, E.C.; Isaac, K.; Brennessel, D.; Kemeny, M.; Hay, J.L. Health Literacy, Information Seeking, and Trust in Information in Haitians. Am. J. Health Behav. 2015, 39, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Hay, J.L.; Waters, E.A.; Kiviniemi, M.T.; Biddle, C.; Schofield, E.; Li, Y.; Kaphingst, K.; Orom, H. Health Literacy and Use and Trust in Health Information. J. Health Commun. 2018, 23, 724–734. [Google Scholar] [CrossRef]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef]
- Sim, S.W.; Moey, K.S.P.; Tan, N.C. The use of facemasks to prevent respiratory infection: A literature review in the context of the Health Belief Model. Singap. Med. J. 2014, 55, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-Q.; Chung, P.-K.; Liu, J.-D.; Chan, D.K.C.; Hagger, M.S.; Hamilton, K. Health Beliefs of Wearing Facemasks for Influenza A/H1N1 Prevention: A Qualitative Investigation of Hong Kong Older Adults. Asia-Pac. J. Public Health 2019, 31, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Zuo, Y.; Wan, R.; Xiong, L.; Tang, J.; Zou, L.; Shu, X.; Li, L. Short-term skin reactions following use of N95 respirators and medical masks. Contact Dermat. 2020, 83, 115–121. [Google Scholar] [CrossRef]
- Malosh, R.; Ohmit, S.E.; Petrie, J.G.; Thompson, M.G.; Aiello, A.E.; Monto, A.S. Factors associated with influenza vaccine receipt in community dwelling adults and their children. Vaccine 2014, 32, 1841–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, W.M.; Cho, S.; Jang, D.H.; Kim, U.-N.; Jung, H.; Lee, J.Y.; Eun, S.J. Preventive Behavioral Responses to the 2015 Middle East Respiratory Syndrome Coronavirus Outbreak in Korea. Int. J. Environ. Res. Public Health 2019, 16, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, J.T.F.; Kim, J.H.; Tsui, H.Y.; Griffiths, S. Anticipated and current preventive behaviors in response to an anticipated human-to-human H5N1 epidemic in the Hong Kong Chinese general population. BMC Infect. Dis. 2007, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saghazadeh, A.; Rezaei, N. Immune-epidemiological parameters of the novel coronavirus—A perspective. Expert Rev. Clin. Immunol. 2020, 16, 465–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Wise, T.Z.T.; Michelini, G.; Hagan, C.C.; Mobbs, D. Changes in risk perception and protective behavior during the first week of the COVID-19 pandemic in the United States. PsyArXiv Prepr. 2020, 1–13. [Google Scholar] [CrossRef]
- Kreuter, M.W.; Lukwago, S.N.; Bucholtz, D.C.; Clark, E.M.; Sanders-Thompson, V. Achieving cultural appropriateness in health promotion programs: Targeted and tailored approaches. Health Educ. Behav. 2003, 30, 133–146. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wu, K.; Wang, W. Timely mental health services contribute to the containment of COVID-19 pandemic in China. Glob. Health Res. Policy 2020, 5, 40. [Google Scholar] [CrossRef]
Variables | Assignments |
---|---|
Dependent variables: | |
Basic prevention | 0 = no; 1 = yes |
Advanced prevention | 0 = no; 1 = yes |
Excessive prevention | 0 = no; 1 = yes |
The Health Belief Model: | |
Perceived sensitivity | 0 = not at all; 1 = low; 2 = medium; 3 = high |
Perceived severity | 0 = not at all; 1 = low; 2 = medium; 3 = high |
Perceived benefit | 0 = strongly disagree; 1 = disagree; 2 = agree; 3 = strongly agree |
Perceived barriers | 0 = not at all; 1 = low; 2 = medium; 3 = high |
Cues to action | 0 = not at all; 1 = a few; 2 = average; 3 = a lot |
Knowledge levels | 1 = answering one question correctly; 2 = answering two questions correctly; 3 = answering three questions correctly; 4 = answering four questions correctly |
Variables | Total | Basic Prevention | Advanced Prevention | Excessive Prevention |
---|---|---|---|---|
No. (%) | No. (%) | No. (%) | No. (%) | |
Total | 4788 (100) | 2621 | 3043 | 277 |
Age (years) | ||||
<20 | 599 (12.5) | 318 (53.1) | 414 (69.1) | 22 (3.7) |
21–40 | 1774 (37.1) | 1057 (59.6) | 1164 (65.6) | 113 (6.4) |
41–60 | 1601 (33.4) | 867 (54.2) | 1024 (64.0) | 92 (5.7) |
>60 | 814 (17.0) | 379 (46.6) | 441 (54.2) | 50 (6.1) |
p-Value | <0.001 | <0.001 | 0.102 | |
Gender | ||||
Male | 2248 (47.0) | 1203 (53.5) | 1412 (62.8) | 144 (6.4) |
Female | 2540 (53.0) | 1418 (55.8) | 1631 (64.2) | 133 (5.2) |
p-Value | 0.109 | 0.315 | 0.084 | |
Marriage status | ||||
Unmarried | 1725 (36.0) | 973 (56.4) | 1160 (67.2) | 87 (5.0) |
Married | 2851 (59.5) | 1565 (54.9) | 1783 (62.5) | 178 (6.2) |
Divorced | 212 (4.5) | 83 (39.2) | 100 (47.2) | 12 (5.7) |
p-Value | <0.001 | <0.001 | 0.241 | |
Occupation | ||||
Waiting for employment | 300 (6.3) | 180 (60) | 185 (61.7) | 22 (7.3) |
No work (no work ability) | 273 (5.7) | 123 (45.1) | 141 (51.6) | 17 (6.2) |
Self-employed shop owner or entrepreneurs | 569 (11.9) | 305 (53.6) | 361 (63.4) | 33 (5.8) |
Staff in government or public institution | 615 (12.8) | 370 (60.2) | 425 (69.1) | 33 (5.4) |
Famer/fisherman/herdsman | 321 (6.7) | 116 (36.1) | 164 (51.1) | 21 (6.5) |
Retired | 499 (10.4) | 278 (55.7) | 303 (60.7) | 33 (6.6) |
students | 1155 (24.1) | 604 (52.3) | 792 (68.6) | 55 (4.8) |
Staff in big company | 276 (5.8) | 189 (68.5) | 187 (67.8) | 18 (6.5) |
Staff in a middle or small company | 426 (8.9) | 256 (60.1) | 281 (66.0) | 22 (5.2) |
The others | 354 (7.4) | 200 (56.5) | 204 (57.4) | 23 (6.5) |
p-Value | <0.001 | <0.001 | 0.769 | |
Education | ||||
<6 years | 698 (14.6) | 284 (40.7) | 337 (48.3) | 36 (5.2) |
7–9years | 809 (16.9) | 413 (51.1) | 484 (59.8) | 39 (4.8) |
10–12years | 865 (18.1) | 505 (58.4) | 574 (66.4) | 53 (6.1) |
13–16years | 2145 (44.8) | 1253 (58.4) | 1464 (68.3) | 129 (6.0) |
>16years | 271 (5.6) | 166 (61.3) | 184 (67.9) | 20 (7.4) |
p-Value | <0.001 | <0.001 | 0.472 | |
Number of suspected symptoms | ||||
0 | 3914 (81.7) | 2207 (56.4) | 2544 (65.0) | 227 (5.8) |
1 | 382 (8.0) | 172 (45.0) | 221 (57.9) | 10 (2.6) |
2 | 252 (5.3) | 131 (52.0) | 149 (59.1) | 21 (8.3) |
>2 | 240 (5.0) | 111 (46.3) | 129 (53.8) | 19 (7.9) |
p-Value | <0.001 | <0.001 | 0.007 |
Variables | Total | Basic Prevention | Advanced Prevention | Excessive Prevention |
---|---|---|---|---|
No. (%) | No. (%) | No. (%) | No. (%) | |
Total | 4788 (100) | 2621 | 3043 | 277 |
Household income | ||||
<CNY 100,000 | 2074 (43.3) | 1148 (55.4) | 1248 (60.2) | 121 (5.8) |
CNY 100,000–200,000 | 1735 (36.2) | 929 (53.5) | 1130 (65.1) | 101 (5.8) |
CNY 200,000–300,000 | 579 (12.2) | 323 (55.8) | 396 (68.4) | 33 (5.7) |
CNY 300,000–400,000 | 193 (4.0) | 105 (54.4) | 136 (70.5) | 13 (6.7) |
>CNY 400,000 | 207 (4.3) | 116 (56.0) | 133 (64.3) | 9 (4.3) |
p-Value | 0.787 | <0.001 | 0.890 | |
Living Areas | ||||
Eastern China | 1317 (27.5) | 685 (52.0) | 878 (66.7) | 66 (5.0) |
Central China | 2191 (45.8) | 1182 (53.9) | 1373 (62.7) | 135 (6.2) |
Western China | 1280 (26.7) | 754 (58.9) | 792 (61.9) | 76 (5.9) |
p-Value | 0.001 | 0.020 | 0.355 | |
Living Place | ||||
Urban | 3065 (64.0) | 1829 (59.7) | 2033 (66.3) | 173 (5.6) |
Rural | 1723 (36.0) | 792 (46.0) | 1010 (58.6) | 104 (6.0) |
p-Value | <0.001 | <0.001 | 0.577 | |
Living style | ||||
Living with others | 4370 (91.3) | 2386 (54.6) | 2802 (64.1) | 248 (5.7) |
Living alone | 418 (8.7) | 235 (56.2) | 241 (57.7) | 29 (6.9) |
p-Value | 0.525 | 0.009 | 0.291 |
Variables | Basic Preventive Behaviors | Advanced Preventive Behaviors | Excessive Preventive Behaviors |
---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Age (refer to below 20) | |||
21–40 | 1.303 * (1.081–1.570) | 0.853 (0.699–1.041) | 1.784 * (1.119–2.845) |
41–60 | 1.044 (0.865–1.260) | 0.793 * (0.649–0.970) | 1.599 (0.994–2.571) |
>60 | 0.770 * (0.623–0.951) | 0.528 ** (0.423–0.659) | 1.716 * (1.028–2.867) |
Areas (refer to eastern China) | |||
Central China | 1.125 (0.979–1.293) | 0.878 (0.759–1.015) | 1.215 (0.897–1.646) |
Western China | 1.405 ** (1.199–1.645) | 0.836 * (0.711–0.984) | 1.194 (0.849–1.679) |
Living in rural areas (refer to urban) | 0.567 ** (0.503–0.639) | 0.714 ** (0.631–0.808) | 1.087 (0.844–1.399) |
Living alone (refer to living together) | 0.976 (0.790–1.205) | 0.699 * (0.566–0.864) | 1.350 (0.895–2.036) |
Marriage status (refer to unmarried) | |||
Married | 0.941 (0.833–1.064) | 0.770 ** (0.676–0.877) | 1.297 (0.989–1.702) |
Divorced | 0.515 ** (0.383–0.692) | 0.449 ** (0.336–0.600) | 1.098 (0.589–2.048) |
Occupation (refer to waiting for employment) | |||
No work (no work ability) | 0.547 ** (0.392–0.762) | 0.664 * (0.476–0.926) | 0.839 (0.436–1.616) |
Self-employed | 0.770 (0.580–1.023) | 1.079 (0.808–1.440) | 0.778 (0.445–1.360) |
Staff in government OR public institution | 1.007 (0.760–1.335) | 1.390 * (1.042–1.856) | 0.716 (0.410–1.252) |
Famer/fisherman/herdsman | 0.377 ** (0.273–0.522) | 0.649 * (0.472–0.894) | 0.885 (0.476–1.644) |
Retired | 0.839 (0.627–1.122) | 0.961 (0.716–1.289) | 0.895 (0.511–1.566) |
students | 0.731 * (0.564–0.946) | 1.356 * (1.042–1.766) | 0.632 (0.379–1.054) |
Staff in big company | 1.448 * (1.027–2.041) | 1.306 (0.927–1.841) | 0.882 (0.462–1.681) |
Staff in a middle or small company | 1.004 (0.743–1.357) | 1.205 (0.886–1.638) | 0.688 (0.374–1.267) |
Others | 0.866 (0.634–1.183) | 0.845 (0.618–1.157) | 0.878 (0.479–1.609) |
Exact household income in 2019 (refer to the level of >CNY 400,000 | |||
<CNY 100,000 | 1.106 (0.826–1.481) | 0.946 (0.699–1.279) | 1.451 (0.723–2.914) |
CNY100,000–200,000 | 0.926 (0.690–1.241) | 1.057 (0.780–1.432) | 1.399 (0.695–2.817) |
CNY200,000–300,000 | 0.973 (0.705–1.344) | 1.177 (0.841–1.648) | 1.336 (0.627–2.845) |
CNY300,000–400,000 | 0.875 (0.588–1.302) | 1.249 (0.818–1.906) | 1.537 (0.641–3.685) |
Education (refer to less than 6 years) | |||
7–9 years | 1.552 ** (1.264–1.905) | 1.595 ** (1.300–1.957) | 0.931 (0.585–1.482) |
10–12 years | 2.128 ** (1.733–2.611) | 2.113 ** (1.722–2.593) | 1.200 (0.776–1.855) |
13–16 years | 2.147 ** (1.798–2.564) | 2.303 ** (1.935–2.741) | 1.177 (0.805–1.720) |
over 16 years | 2.453 ** (1.830–3.289) | 2.266 ** (1.687–3.043) | 1.465 (0.832–2.580) |
Variables | Basic Preventive Behaviors | Advanced Preventive Behaviors | Excessive Preventive Behaviors |
---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Perceived sensitivity (refer to 0) | |||
1 | 1.252 * (1.074–1.460) | 0.991 (0.845–1.163) | 1.493 * (1.025–2.178) |
2 | 1.160 (0.970–1.387) | 0.923 (0.767–1.110) | 2.307 ** (1.551–3.432) |
3 | 1.636 * (1.060–2.525) | 1.325 (0.841–2.089) | 4.390 ** (2.293–8.430) |
Perceived severity (refer to not at all) | |||
Low | 0.952 (0.655–1.358) | 1.155 (0.921–1.448) | 1.212 (0.760–1.934) |
Middle | 0.993 (0.798–1.236) | 1.027 (0.847–1.143) | 1.196 (0.713–1.681) |
High | 1.296 * (1.066–1.576) | 1.085 (0.888–1.326) | 0.961 (0.626–1.473) |
Perceived benefits (refer to strongly disagree) | |||
Disagree | 2.259 (0.819–6.229) | 0.555 (0.227–1.360) | 0.131 (0.012–1.424) |
Agree | 2.912 * (1.144–7.412) | 1.635 (0.754–3.542) | 0.173 (0.011–2.638) |
strongly agree | 6.007 ** (2.401–15.029) | 2.883 * (1.357–6.127) | 0.218 (0.015–3.257) |
Perceived barriers (refer to not at all) | |||
Low | 0.636 ** (0.540–0.749) | 0.910 (0.769–1.077) | 0.776 (0.538–1.120) |
Middle | 0.649 ** (0.542–0.777) | 0.966 (0.801–1.164) | 0.878 (0.597–1.292) |
High | 0.829 * (0.713–0.966) | 0.854 * (0.731–0.997) | 1.096 (0.807–1.487) |
Cues to action (refer to not at all) | |||
A few | 0.485 (0.296–1.239) | 1.332 (0.431–4.114) | 0.074 * (0.008–0.713) |
Average | 0.632 (0.457–1.352) | 1.264 (0.460–3.475) | 0.130 * (0.034–0.497) |
A lot | 0.769 (0.304–1.950) | 2.984 * (1.111–8.014) | 0.313 * (0.099–0.992) |
Knowledge levels (refer to answering one question correctly) | |||
Answering two questions correctly | 1.165 * (1.004–1.352) | 1.997 (0.469–5.369) | 1.254 (0.413–3.807) |
Answering three questions correctly | 1.442 (0.692–3.005) | 0.821 (0.389–1.733) | 1.391 (0.823–2.681) |
Answering four questions correctly | 3.149 * (1.165–8.510) | 1.011 (0.869–1.177) | 1.659 ** (1.266–2.174) |
Variables | Group | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|---|
(n = 4718) | (n = 1748) | ||||||
Mean | T Value | p-Value | Mean | T Value | p-Value | ||
Age | A | 40.71 | −1.519 | 0.129 | 41.71 | −0.048 | 0.962 |
B | 41.76 | 41.76 | |||||
Gender | A | 1.53 | −0.701 | 0.483 | 1.55 | 0.336 | 0.737 |
B | 1.54 | 1.54 | |||||
Marry status | A | 1.68 | −0.012 | 0.990 | 1.69 | 0.336 | 0.737 |
B | 1.68 | 1.68 | |||||
Occupation | A | 5.74 | 2.578 | 0.010 | 5.71 | 1.79 | 0.074 |
B | 5.5 | 5.5 | |||||
Individual income | A | 2.2 | −0.828 | 0.408 | 2.18 | −1.084 | 0.279 |
B | 2.23 | 2.23 | |||||
Household income | A | 1.86 | −5.203 | <0.001 | 1.99 | −1.436 | 0.151 |
B | 2.06 | 2.06 | |||||
Education | A | 3.09 | −1.478 | 0.139 | 3.08 | −1.252 | 0.211 |
B | 3.15 | 3.15 | |||||
Living place | A | 0.37 | 3.004 | 0.003 | 0.34 | 1.12 | 0.263 |
B | 0.32 | 0.32 | |||||
Psychological health states | A | 2.28 | −10.115 | <0.001 | 2.25 | −8.593 | <0.001 |
B | 2.5 | 2.5 |
Variables | Option | Asymptomatic Group | Symptomatic Group | χ2 | p-Value |
---|---|---|---|---|---|
No (%) | No (%) | ||||
Psychology health states | Better | 30 (54.5) | 25 (54.5) | 79.91 | <0.001 |
Same | 609 (57.9) | 442 (42.1) | |||
Little worse | 220 (38.4) | 353 (61.6) | |||
Far worse | 15 (21.7) | 54 (78.3) | |||
Feeling depressed | Same | 520 (58.5) | 369 (41.5) | 65.6 | <0.001 |
Little worse | 330 (43.5) | 429 (56.5) | |||
Far worse | 24 (24.0) | 76 (76.0) | |||
Feeling helpless | Same | 617 (56.0) | 485 (44.0) | 46.78 | <0.001 |
Little worse | 236 (41.2) | 337 (58.8) | |||
Far worse | 21 (28.8) | 52 (71.2) | |||
Feeling lonely | Same | 632 (54.8) | 522 (45.2) | 38.50 | <0.001 |
Little worse | 216 (43.2) | 284 (56.8) | |||
Far worse | 26 (27.7) | 68 (72.3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Wang, R.; Feng, D.; Wu, R.; Li, Z.; Long, C.; Feng, Z.; Tang, S. The Recommended and Excessive Preventive Behaviors during the COVID-19 Pandemic: A Community-Based Online Survey in China. Int. J. Environ. Res. Public Health 2020, 17, 6953. https://doi.org/10.3390/ijerph17196953
Ye Y, Wang R, Feng D, Wu R, Li Z, Long C, Feng Z, Tang S. The Recommended and Excessive Preventive Behaviors during the COVID-19 Pandemic: A Community-Based Online Survey in China. International Journal of Environmental Research and Public Health. 2020; 17(19):6953. https://doi.org/10.3390/ijerph17196953
Chicago/Turabian StyleYe, Yisheng, Ruoxi Wang, Da Feng, Ruijun Wu, Zhifei Li, Chengxu Long, Zhanchun Feng, and Shangfeng Tang. 2020. "The Recommended and Excessive Preventive Behaviors during the COVID-19 Pandemic: A Community-Based Online Survey in China" International Journal of Environmental Research and Public Health 17, no. 19: 6953. https://doi.org/10.3390/ijerph17196953
APA StyleYe, Y., Wang, R., Feng, D., Wu, R., Li, Z., Long, C., Feng, Z., & Tang, S. (2020). The Recommended and Excessive Preventive Behaviors during the COVID-19 Pandemic: A Community-Based Online Survey in China. International Journal of Environmental Research and Public Health, 17(19), 6953. https://doi.org/10.3390/ijerph17196953