The Impact of COVID-19 on Mental Health: The Role of Locus on Control and Internet Use
Abstract
:1. Introduction
Current Study
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.2.1. Demographic Information
2.2.2. Depression Anxiety Stress Scale (DASS)
2.2.3. COVID-19 Status
2.2.4. General Information Seeking and Information Seeking About COVID-19
2.2.5. Internet Efficacy
2.2.6. Internet Experience
2.2.7. Internet Social Capital
2.2.8. Levenson Locus of Control Scale
2.3. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Situation Report 128. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200527-covid-19-sitrep-128.pdf?sfvrsn=11720c0a_2 (accessed on 27 May 2020).
- Ahmed, M.Z.; Ahmed, O.; Aibao, Z.; Hanbin, S.; Siyu, L.; Ahmad, A. Epidemic of COVID-19 in China and associated psychological problems. Asian J. Psychiatr. 2020, 51, 102092. [Google Scholar] [CrossRef]
- Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr. 2020, 52, 102066. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatr. 2020, 33, e100213. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.P.H.; Hui, B.P.H.; Wan, E.Y.F. Depression and anxiety in Hong Kong during COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3740. [Google Scholar] [CrossRef]
- Yang, H.; Ma, J. How an epidemic outbreak impacts happiness: Factors that worsen (vs. protect) emotional well-being during the Coronavirus pandemic. Psychiatry Res. 2020, 30, 113045. [Google Scholar] [CrossRef]
- Li, H.Y.; Cao, H.; Leung, D.Y.; Mak, Y.W. The psychological impacts of a COVID-19 outbreak on college students in China: A longitudinal study. Int. J. Environ. Res. Public Health 2020, 17, 3933. [Google Scholar] [CrossRef]
- Smith, L.; Jacob, L.; Yakkundi, A.; McDermott, D.; Armstrong, N.C.; Barnett, Y.; López-Sánchez, G.F.; Martin, S.; Butler, L.; Tully, M.A. Correlates of symptoms of anxiety and depression and mental well-being associated with COVID-19: A cross-sectional study of UK-based respondents. Psychiatry Res. 2020, 291, 113138. [Google Scholar] [CrossRef]
- Odriozola-González, P.; Planchuelo-Gómez, Á.; Irurtia, M.J.; de Luis-García, R. Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Res. 2020, 290, 113108. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhang, E.; Wong, G.T.F.; Hyun, S. Factors associated with depression, anxiety, and PTSD symptomatology during the COVID-19 pandemic: Clinical implications for US young adult mental health. Psychiatry Res. 2020, 290, 113172. [Google Scholar] [CrossRef] [PubMed]
- Sønderskov, K.M.; Dinesen, P.T.; Santini, Z.I.; Østergaard, S.D. The depressive state of Denmark during the COVID-19 pandemic. Acta Neuropsychiatr. 2020, 22, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.K.; Arafat, S.Y.; Sharma, P.; Dixit, A.; Marthoenis, M.; Kabir, R. COVID-19 pandemic and addiction: Current problems and future concerns. Asian J. Psychiatr. 2020, 51, 102064. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Salgado, J.; Andrés-Villas, M.; Domínguez-Salas, S.; Díaz-Milanés, D.; Ruiz-Frutos, C. Related health factors of psychological distress during the COVID-19 pandemic in Spain. Int. J. Environ. Res. Public Health 2020, 17, 3947. [Google Scholar] [CrossRef]
- Guo, J.; Feng, X.L.; Wang, X.H.; van Ijzendoorn, M.H. Coping with COVID-19: Exposure to COVID-19 and negative impact on livelihood predict elevated mental health problems in Chinese adults. Int. J. Environ. Res. Public Health 2020, 17, 3857. [Google Scholar] [CrossRef]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef]
- Mak, I.W.C.; Chu, C.M.; Pan, P.C.; Yiu, M.G.C.; Chan, V.L. Long-term psychiatric morbidities among SARS survivors. Gen. Hosp. Psychiatry 2009, 31, 318–326. [Google Scholar] [CrossRef]
- James, P.B.; Wardle, J.; Steel, A.; Adams, J. Post-Ebola psychosocial experiences and coping mechanisms among Ebola survivors: A systematic review. Trop. Med. Int. Health 2019, 24, 671–691. [Google Scholar] [CrossRef]
- Reznik, S.E.; Gardner, E.L.; Ashby, C.R., Jr. Cannabidiol: A potential treatment for post Ebola syndrome? Int. J. Infect. Dis. 2016, 52, 74–76. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef]
- Our World in Data. Coronavirus: Case Fatality Rates by Age. Available online: https://ourworldindata:mortality-risk-covid#case-fatality-rate-of-covid-19-by-age (accessed on 27 May 2020).
- Schönfeld, P.; Brailovskaia, J.; Bieda, A.; Zhang, X.C.; Margraf, J. The effects of daily stress on positive and negative mental health: Mediation through self-efficacy. Int. J. Clin. Health Psychol. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Lagoe, C.; Atkin, D. Health anxiety in the digital age: An exploration of psychological determinants of online health information seeking. Comput. Hum. Behav. 2015, 52, 484–491. [Google Scholar] [CrossRef]
- McMullan, R.D.; Berle, D.; Arnáez, S.; Starcevic, V. The relationships between health anxiety, online health information seeking, and cyberchondria: Systematic review and meta-analysis. J. Affect. Disord. 2019, 245, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Norr, A.M.; Capron, D.W.; Schmidt, N.B. Medical information seeking: Impact on risk for anxiety psychopathology. J. Behav. Ther. Exp. Psychiatry 2014, 45, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Tausczik, Y.; Faasse, K.; Pennebaker, J.W.; Petrie, K.J. Public anxiety and information seeking following the H1N1 outbreak: Blogs, newspaper articles, and Wikipedia visits. Health Commun. 2012, 27, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, A.H.; Saif, Z.Q.; Buheji, M.; AlBasri, N.; Al-Husaini, F.A.; Jahrami, H. COVID-19 information-seeking behavior and anxiety symptoms among parents. OSP J. Health Care Med. 2020, 1, 1–9. [Google Scholar]
- Thompson, R.R.; Garfin, D.R.; Holman, E.A.; Silver, R.C. Distress, worry, and functioning following a global health crisis: A national study of Americans’ responses to Ebola. Clin. Psychol. Sci. 2017, 5, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.; Xue, D.; Liu, T.; Yang, H.; Hall, B.J. Media use and acute psychological outcomes during COVID-19 outbreak in China. J. Anxiety Disord. 2020, 74, 102248. [Google Scholar] [CrossRef]
- Zhong, B.; Huang, Y.; Liu, Q. Mental health toll from the coronavirus: Social media usage reveals Wuhan residents’ depression and secondary trauma in the COVID-19 outbreak. Comput. Hum. Behav. 2021, 114, 106524. [Google Scholar] [CrossRef]
- Drouin, M.; McDaniel, B.T.; Pater, J.; Toscos, T. How parents and their children used social media and technology at the beginning of the COVID-19 pandemic and associations with anxiety. Cyberpsychol. Behav. Soc. Netw. 2020. [Google Scholar] [CrossRef]
- Riehm, K.E.; Holingue, C.; Kalb, L.G.; Bennett, D.; Kapteyn, A.; Jiang, Q.; Veldhuis, C.; Johnson, R.M.; Fallin, M.D.; Kreuter, F.; et al. Associations between media exposure and mental distress among US adults at the beginning of the COVID-19 pandemic. Am. J. Prev. Med. 2020. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar]
- Murayama, H.; Fujiwara, Y.; Kawachi, I. Social capital and health: A review of prospective multilevel studies. J. Epidemiol. 2012, 22, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Zhang, Y.; Kong, D.; Li, S.; Yang, N. Social capital and sleep quality in individuals who self-isolated for 14 days during the coronavirus disease 2019 (COVID-19) outbreak in January 2020 in China. Med. Sci. Monit. 2020, 26, e923921-1. [Google Scholar] [CrossRef]
- Magsamen-Conrad, K.; Greene, K. Technology addiction’s contribution to mental wellbeing: The positive effect of online social capital. Comput. Hum. Behav. 2014, 40, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.H.; Jeong, E.J. Psychosocial effects of SNS use: A longitudinal study focused on the moderation effect of social capital. Comput. Hum. Behav. 2017, 69, 108–119. [Google Scholar] [CrossRef]
- Chan, M. Mobile phones and the good life: Examining the relationships among mobile use, social capital and subjective well-being. New Media Soc. 2015, 17, 96–113. [Google Scholar] [CrossRef]
- Cheng, C.; Cheung, S.F.; Chio, J.H.M.; Chan, M.P.S. Cultural meaning of perceived control: A meta-analysis of locus of control and psychological symptoms across 18 cultural regions. Psychol. Bull. 2013, 139, 152. [Google Scholar] [CrossRef] [Green Version]
- Kesavayuth, D.; Poyago-Theotoky, J.; Zikos, V. Locus of control, health and healthcare utilization. Econ. Model. 2020, 86, 227–238. [Google Scholar] [CrossRef]
- Wallston, B.S.; Wallston, K.A.; Kaplan, G.D.; Maides, S.A. Development and validation of the health locus of control (HLC) scale. J. Consult. Clin. Psychol. 1976, 44, 580–585. [Google Scholar] [CrossRef]
- Roncancio, A.M.; Berenson, A.B.; Rahman, M. Health locus of control, acculturation, and health-related internet use among Latinas. J. Health Commun. 2012, 17, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Vâjâean, C.C.; Băban, A. Emotional and behavioral consequences of online health information-seeking: The role of eHealth literacy. Cogn. Brain Behav. 2015, 19, 327–345. [Google Scholar]
- Elbay, R.Y.; Kurtulmuş, A.; Arpacıoğlu, S.; Karadere, E. Depression, anxiety, stress levels of physicians and associated factors in covid-19 pandemics. Psychiatry Res. 2020, 290, 113130. [Google Scholar] [CrossRef]
- Difallah, D.; Filatova, E.; Ipeirotis, P. Demographics and dynamics of mechanical turk workers. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 135–143. [Google Scholar] [CrossRef]
- Buhrmester, M.; Kwang, T.; Gosling, S.D. Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality data? Perspect. Psychol. Sci. 2011, 6, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.C.; Stroops, W.W.; Kincer, M.A.; Rush, C.R. The impact of financial strain on medication non-adherence: Influence of psychiatric medication use. Psychiatry Res. 2019, 271, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales, 2nd ed.; Psychology Foundation: Sydney, Australia, 1995. [Google Scholar]
- Rains, S.A. Seeking health information in the information age: The role of Internet Self-Efficacy. West J. Commun. 2008, 72, 1–18. [Google Scholar] [CrossRef]
- Eastin, M.S.; LaRose, R. Internet self-efficacy and the psychology of the digital divide. J. Comput. Mediat. Commun. 2000, 6, JCMC643. [Google Scholar] [CrossRef]
- Flanagin, A.J.; Metzger, M.J. Perceptions of Internet information credibility. J. Mass Commun. Q. 2000, 77, 515–540. [Google Scholar] [CrossRef] [Green Version]
- Williams, D. On and off the ’Net: Scales for social capital in an online era. J. Comput. Mediat. Commun. 2006, 11, 593–628. [Google Scholar] [CrossRef] [Green Version]
- Levenson, H. Multidimensional locus of control in psychiatric patients. J. Consult. Clin. Psychol. 1973, 41, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.; Dadlani, P.; Dwyer, M.; Hampton, K.; Kitzie, V.; Matni, Z.A.; Moore, P.; Teodoro, R. Testing the validity of social capital measures in the study of information and communication technologies. Inf. Commun. Soc. 2014, 17, 398–416. [Google Scholar] [CrossRef]
- Zimmermann, M.; Chong, A.K.; Vechiu, C.; Papa, A. Modifiable risk and protective factors for anxiety disorders among adults: A systematic review. Psychiatry Res. 2020, 285, 112705. [Google Scholar] [CrossRef] [PubMed]
- Forbes, C.N.; Tull, M.T.; Xie, H.; Christ, N.M.; Brickman, K.; Mattin, M.; Wang, X. Emotional avoidance and social support interact to predict depression symptom severity one year after traumatic exposure. Psychiatry Res. 2020, 284, 112746. [Google Scholar] [CrossRef] [PubMed]
- Bobdey, S.; Ray, S. Going Viral–Covid-19 impact assessment: A persepective beyond clinical practice. J. Mar. Med. Soc. 2020, 22, 9–12. [Google Scholar] [CrossRef]
Mental Health | Infected | Family/Friend Infected | In Risk Group | |||
---|---|---|---|---|---|---|
Yes | No | Yes | No | Yes | No | |
M(SD) | M(SD) | M(SD) | M(SD) | M(SD) | M(SD) | |
Depressive Symptoms | 17.23 (11.85) ** | 11.04 (10.96) | 13.08 (11.46) * | 10.94 (10.95) | 14.57 (12.27) ** | 10.50 (10.60) |
Anxiety Symptoms | 17.37 (12.31) ** | 7.48 (9.12) | 10.44 (10.63) ** | 7.34 (9.11) | 11.40 (11.07) ** | 6.98 (8.78) |
Stress Symptoms | 17.89 (11.08) ** | 11.97 (10.37) | 14.56 (10.69) ** | 11.73 (10.34) | 15.54 (11.17) ** | 11.39 (10.11) |
Variable name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | M(SD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Depression symptoms | 1 | 0.73 ** | 0.81 ** | −0.08 * | −0.17 ** | 0.03 | 0.05 | −0.02 | −0.24 ** | 0.43 ** | 0.42 ** | −0.17 ** | 11.28 (11.05) |
2. Anxiety symptoms | - | 1 | 0.80 ** | −0.11 ** | −0.29 ** | 0.01 | 0.05 | 0.10 ** | −0.12 ** | 0.46 ** | 0.48 ** | −0.18 ** | 7.83 (9.42) |
3. Stress symptoms | - | - | 1 | −0.05 * | −0.14 ** | 0.08 * | 0.12 ** | 0.04 | −0.15 ** | 0.42 ** | 0.41 ** | −0.17 ** | 12.19 (10.45) |
4. Internet efficacy | - | - | - | 1 | 0.58 ** | 0.52 ** | 0.34 ** | 0.11 ** | 0.26 ** | −0.03 | −0.09 ** | 0.10 ** | 5.81 (1.03) |
5. Internet experience | - | - | - | - | 1 | 0.38 ** | 0.31 ** | 0.04 | 0.21 ** | −0.13 ** | −0.16 ** | 0.06 * | 6.52 (0.79) |
6. Information seeking general | - | - | - | - | - | 1 | 0.59 ** | 0.19 ** | 0.17 ** | 0.09 ** | 0.02 | 0.16 ** | 5.54 (1.28) |
7. Information seeking COVID-19 | - | - | - | - | - | - | 1 | 0.14 ** | 0.09 ** | 0.09 ** | 0.05 * | 0.05 * | 5.61 (1.38) |
8. Internet social capital | - | - | - | - | - | - | - | 1 | 0.21 ** | 0.12 ** | 0.14 ** | −0.09 ** | 3.30 (0.66) |
9. Internal locus of control | - | - | - | - | - | - | - | - | 1 | −0.15 ** | −0.19 ** | 0.16 ** | 32.73 (7.06) |
10. Powerful others locus of control | - | - | - | - | - | - | - | - | - | 1 | 0.74 ** | −0.09 ** | 22.92 (9.31) |
11. Chance locus of control | - | - | - | - | - | - | - | - | - | - | 1 | −0.15 ** | 21.87 (9.24) |
12. Age | - | - | - | - | - | - | - | - | - | - | - | 1 | 34.70 (11.58) |
Predictors | Depression | Anxiety | Stress | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |
Gender | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.09 ** | 0.08 * | 0.07 * | 0.08 ** |
Age | −0.16 ** | −0.19 ** | − 0.20 ** | −0.12 ** | −0.17 ** | −0.21 ** | −0.20 ** | −0.13 ** | −0.17 ** | −0.20 ** | −0.20 ** | −0.14 ** |
Income | 0.09 ** | 0.08 ** | 0.08 * | 0.03 | −0.01 | −0.03 | −0.02 | −0.05 * | 0.03 | 0.02 | 0.02 | −0.02 |
Economic status | 0.03 | 0.02 | 0.04 | 0.05 * | −0.04 | −0.04 | −0.01 | 0.01 | 0.00 | −0.01 | 0.02 | 0.03 |
Education | −0.04 | −0.03 | −0.03 | −0.03 | −0.07 * | −0.05 * | −0.05 * | −0.05 * | −0.04 | −0.03 | −0.03 | 0.03 |
Contracted COVID-19 | - | 0.07 * | 0.06 * | 0.03 | - | 0.13 ** | 0.10 ** | 0.08 ** | - | 0.07 * | 0.05 * | 0.03 |
Someone close COVID-19 | - | 0.02 | 0.02 | 0.03 | - | 0.05 * | 0.05 * | 0.05 * | - | 0.05 | 0.04 | 0.05 * |
At risk for COVID-19 | - | 0.16 ** | 0.14 ** | 0.08 ** | - | 0.21 ** | 0.18 ** | 0.13 ** | - | 0.17 ** | 0.16 ** | 0.10 ** |
Internet efficacy | - | - | −0.01 | 0.03 | - | - | 0.00 | 0.02 | - | - | −0.03 | −0.10 |
Internet experience | - | - | −0.21 ** | −0.12 ** | - | - | −0.35 ** | −0.28 ** | - | - | −0.20 ** | −0.12 ** |
Information seeking general | - | - | 0.09 * | 0.06 * | - | - | 0.09 * | 0.05 | - | - | 0.10 * | 0.07 * |
Information seeking COVID-19 | - | - | 0.07 * | 0.04 | - | - | 0.09 * | 0.06 * | - | - | 0.12 ** | 0.09 ** |
Internet social capital | - | - | −0.05 ** | −0.08 ** | - | - | 0.39 * | 0.00 | - | - | −0.03 | −0.04 |
ILC | - | - | - | −0.12 ** | - | - | - | 0.00 | - | - | - | −0.05 * |
POLC | - | - | - | 0.23 ** | - | - | - | 0.19 ** | - | - | - | 0.23 ** |
CLC | - | - | - | 0.19 ** | - | - | - | 0.24 ** | - | - | - | 0.17 ** |
R2 | 3.8% ** | 6.8% ** | 10.6% ** | 26.9% ** | 3.2% ** | 10.0% ** | 20.2% ** | 34.7% ** | 3.6% ** | 7.5% ** | 11.9% ** | 25.2% ** |
Level of Locus of Control | Depression Symptoms | Anxiety Symptoms | Stress Symptoms |
---|---|---|---|
Chance locus of control | - | - | - |
Low | 0.30 | 1.52 * | 0.74 |
Mean | 2.19 * | 2.89 ** | 2.45 * |
High | 3.88 ** | 4.12 ** | 3.99 ** |
Powerful others locus of control | - | - | - |
Low | 0.89 | 1.81 * | 1.54 |
Mean | 2.27 * | 2.92 ** | 2.56 ** |
High | 3.50 ** | 3.93 ** | 3.48 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigurvinsdottir, R.; Thorisdottir, I.E.; Gylfason, H.F. The Impact of COVID-19 on Mental Health: The Role of Locus on Control and Internet Use. Int. J. Environ. Res. Public Health 2020, 17, 6985. https://doi.org/10.3390/ijerph17196985
Sigurvinsdottir R, Thorisdottir IE, Gylfason HF. The Impact of COVID-19 on Mental Health: The Role of Locus on Control and Internet Use. International Journal of Environmental Research and Public Health. 2020; 17(19):6985. https://doi.org/10.3390/ijerph17196985
Chicago/Turabian StyleSigurvinsdottir, Rannveig, Ingibjorg E. Thorisdottir, and Haukur Freyr Gylfason. 2020. "The Impact of COVID-19 on Mental Health: The Role of Locus on Control and Internet Use" International Journal of Environmental Research and Public Health 17, no. 19: 6985. https://doi.org/10.3390/ijerph17196985
APA StyleSigurvinsdottir, R., Thorisdottir, I. E., & Gylfason, H. F. (2020). The Impact of COVID-19 on Mental Health: The Role of Locus on Control and Internet Use. International Journal of Environmental Research and Public Health, 17(19), 6985. https://doi.org/10.3390/ijerph17196985