Sarcopenia as a Mediator of the Effect of a Gerontogymnastics Program on Cardiorespiratory Fitness of Overweight and Obese Older Women: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.3.1. Trained Group
2.3.2. Control Group
2.3.3. Assessment of gait speed
2.3.4. Assessment of Cardiorespiratory Fitness Level
2.3.5. Assessment of Functional Capacity
2.3.6. Assessment of Muscle Strength
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-related loss of muscle mass and function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Pierre Baeyens, J.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Haehling, S.; Morley, J.E.; Anker, S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle 2010, 1, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J.; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Epidemiology of Sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630. [Google Scholar] [CrossRef]
- Chen, L.; Xia, J.; Xu, Z.; Chen, Y.; Yang, Y. Evaluation of Sarcopenia in Elderly Women of China. Int. J. Gerontol. 2017, 11, 149–153. [Google Scholar] [CrossRef]
- Aagaard, P.; Suetta, C.; Caserotti, P.; Magnusson, S.P.; Kjær, M. Role of the nervous system in sarcopenia and muscle atrophy with aging: Strength training as a countermeasure. Scand. J. Med. Sci. Sport. 2010, 20, 49–64. [Google Scholar] [CrossRef]
- Guizelini, P.; de Aguiar, R.; Denadai, B.; Caputo, F.; Greco, C. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis. Exp. Gerontol. 2018, 102, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Coen, P.M.; Musci, R.V.; Hinkley, J.M.; Miller, B.F. Mitochondria as a target for mitigating sarcopenia. Front. Physiol. 2019, 10, 1883. [Google Scholar] [CrossRef] [Green Version]
- Mthembu, T.G.; Brown, Z.; Cupido, A.; Razak, G.; Wassung, D. Family caregivers’ perceptions and experiences regarding caring for older adults with chronic diseases. South Afr. J. Occup. Ther. 2016, 46, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Gadelha, A.B.; Neri, S.G.R.; de Oliveira, R.J.; Bottaro, M.; de David, A.C.; Vainshelboim, B.; Lima, R.M. Severity of sarcopenia is associated with postural balance and risk of falls in community-dwelling older women. Exp. Aging Res. 2018, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Trombetti, A.; Reid, K.F.; Hars, M.; Herrmann, F.R.; Pasha, E.; Phillips, E.M.; Fielding, R.A. Age-associated declines in muscle mass, strength, power, and physical performance: Impact on fear of falling and quality of life. Osteoporos. Int. 2016, 27, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, A.; Sun, Y.; Zhang, H.; Zhong, F.; Lin, S.; Gao, T.; Cai, J. Association between Sarcopenia and Metabolic Syndrome in Middle-Aged and Older Non-Obese Adults: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, X.-X.; Liang, Y.-Y.; Chen, S.-Y.; Sheng, J.; Ma, S.-J. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: A randomized controlled trial. PeerJ 2018, 6, e4244. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.J.; Lee, Y.M.; Kim, M.; Uhm, K.E.; Lee, J. Suggested assessments for sarcopenia in patients with stroke who can walk independently. Ann. Rehabil. Med. 2020, 44, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Peel, N.M.; Kuys, S.S.; Klein, K. Gait Speed as a Measure in Geriatric Assessment in Clinical Settings: A Systematic Review. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 68, 39–46. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Noh, B.; Youm, C.; Lee, M.; Park, H. Age-specific differences in gait domains and global cognitive function in older women: Gait characteristics based on gait speed modification. PeerJ 2020, 8, e8820. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Lee, M.; Youm, C.; Noh, B.; Park, H. Association between Gait Variability and Gait-Ability Decline in Elderly Women with Subthreshold Insomnia Stage. Int. J. Environ. Res. Public Health 2020, 17, 5181. [Google Scholar] [CrossRef]
- Kuys, S.S.; Peel, N.M.; Klein, K.; Slater, A.; Hubbard, R.E. Gait Speed in Ambulant Older People in Long Term Care: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2014, 15, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Perez-Sousa, M.A.; Venegas-Sanabria, L.C.; Chavarro-Carvajal, D.A.; Cano-Gutierrez, C.A.; Izquierdo, M.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Gait speed as a mediator of the effect of sarcopenia on dependency in activities of daily living. J. Cachexia Sarcopenia Muscle 2019, 10, 1009–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.N.; Choi, K.M. Sarcopenia: Definition, Epidemiology, and Pathophysiology. J. Bone Metab. 2013, 20, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batsis, J.A.; Mackenzie, T.A.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity, and functional impairments in older adults: National Health and Nutrition Examination Surveys 1999-2004. Nutr. Res. 2015, 35, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef]
- Marcos-Pardo, P.J.; Orquin-Castrillón, F.J.; Gea-García, G.M.; Menayo-Antúnez, R.; González-Gálvez, N.; Vale, R.; Martínez-Rodríguez, A. Effects of a moderate-to-high intensity resistance circuit training on fat mass, functional capacity, muscular strength, and quality of life in elderly: A randomized controlled trial. Sci. Rep. 2019, 9, 7830. [Google Scholar] [CrossRef] [Green Version]
- Marcos-Pardo, P.J.; González-Hernández, J.M.; García-Ramos, A.; López-Vivancos, A.; Jiménez-Reyes, P. Movement velocity can be used to estimate the relative load during the bench press and leg press exercises in older women. PeerJ 2019, 7, e7533. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Marzetti, E.; Martone, A.M.; Bernabei, R.; Onder, G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 25–31. [Google Scholar] [CrossRef]
- Singh, N.A.; Quine, S.; Clemson, L.M.; Williams, E.J.; Williamson, D.A.; Stavrinos, T.M.; Grady, J.N.; Perry, T.J.; Lloyd, B.D.; Smith, E.U.R.; et al. Effects of high-intensity progressive resistance training and targeted multidisciplinary treatment of frailty on mortality and nursing home admissions after hip fracture: A randomized controlled trial. J. Am. Med. Dir. Assoc. 2012, 13, 24–30. [Google Scholar] [CrossRef]
- Lolascon, G.; Di Pietro, G.; Gimigliano, F.; Mauro, G.L.; Moretti, A.; Giamattei, M.T.; Ortolani, S.; Tarantino, U.; Brandi, M.L. Physical exercise and sarcopenia in older people: Position paper of the Italian Society of Orthopaedics and Medicine (OrtoMed). Clin. Cases Miner. Bone Metab. 2014, 11, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Clausen, J.S.R.; Marott, J.L.; Holtermann, A.; Gyntelberg, F.; Jensen, M.T. Midlife Cardiorespiratory Fitness and the Long-Term Risk of Mortality: 46 Years of Follow-Up. J. Am. Coll. Cardiol. 2018, 72, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Park, M.S.; Kim, Y.J.; Lee, E.J.; Kim, M.-K.; Kim, J.M.; Ko, K.S.; Rhee, B.D.; Won, J.C. Association of Low Muscle Mass and Combined Low Muscle Mass and Visceral Obesity with Low Cardiorespiratory Fitness. PLoS ONE 2014, 9, e100118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Distefano, G.; Standley, R.A.; Zhang, X.; Carnero, E.A.; Yi, F.; Cornnell, H.H.; Coen, P.M. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia Sarcopenia Muscle 2018, 9, 279–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurin, J.L.; Reid, J.J.; Lawrence, M.M.; Miller, B.F. Long-term aerobic exercise preserves muscle mass and function with age. Curr. Opin. Physiol. 2019, 10, 70–74. [Google Scholar] [CrossRef]
- Ryan, A.S. Exercise in aging: Its important role in mortality, obesity and insulin resistance. Aging Health 2010, 6, 551–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thinggaard, M.; Jacobsen, R.; Jeune, B.; Martinussen, T.; Christensen, K. Is the Relationship Between BMI and Mortality Increasingly U-Shaped With Advancing Age? A 10-Year Follow-up of Persons Aged 70–95 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65A, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.Z.; No, M.H.; Heo, J.W.; Park, D.H.; Kang, J.H.; Kim, S.H.; Kwak, H.B. Role of exercise in age-related sarcopenia. J. Exerc. Rehabil. 2018, 14, 551–558. [Google Scholar] [CrossRef]
- Takeshima, N.; Rogers, M.E.; Islam, M.M.; Yamauchi, T.; Watanabe, E.; Okada, A. Effect of concurrent aerobic and resistance circuit exercise training on fitness in older adults. Eur. J. Appl. Physiol. 2004, 93, 173–182. [Google Scholar] [CrossRef]
- Guðlaugsson, J.; Aspelund, T.; Guðnason, V.; Ólafsdóttir, A.S.; Jónsson, P.V.; Arngrímsson, S.Á.; Jóhannsson, E. The effects of 6 months’ multimodal training on functional performance, strength, endurance, and body mass index of older individuals. Are the benefits of training similar among women and men? Læknablaðið 2013, 2013, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Fien, S.; Henwood, T.; Climstein, M.; Rathbone, E.; Keogh, J.W.L. Exploring the feasibility, sustainability and the benefits of the GrACE + GAIT exercise programme in the residential aged care setting. PeerJ 2019, 2019, e6973. [Google Scholar] [CrossRef] [PubMed]
- Yoshiko, A.; Tomita, A.; Ando, R.; Ogawa, M.; Kondo, S.; Saito, A.; Tanaka, N.I.; Koike, T.; Oshida, Y.; Akima, H. Effects of 10-week walking and walking with home-based resistance training on muscle quality, muscle size, and physical functional tests in healthy older individuals. Eur. Rev. Aging Phys. Act. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehsani, A.A.; Spina, R.J.; Peterson, L.R.; Rinder, M.R.; Glover, K.L.; Villareal, D.T.; Binder, E.F.; Holloszy, J.O. Attenuation of cardiovascular adaptations to exercise in frail octogenarians. J. Appl. Physiol. 2003, 95, 1781–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Huerta, L.; Córdova-León, K. Reliability of two gait speed tests of different timed phases and equal non-timed phases in community-dwelling older persons. Medwave 2019, 19, e7611. [Google Scholar] [CrossRef]
- Urbaniak, G.C.; Plous, S. Research Randomizer (Version 4.0). Available online: https://www.randomizer.org/ (accessed on 1 September 2019).
- Shubert, T.E.; Smith, M.L.; Jiang, L.; Ory, M.G. Disseminating the Otago exercise program in the United States: Perceived and actual physical performance improvements from participants. J. Appl. Gerontol. 2018, 37, 79–98. [Google Scholar] [CrossRef]
- Gearhart, R.F.; Lagally, K.M.; Riechman, S.E.; Andrews, R.D.; Robertson, R.J. Safety of using the adult OMNI Resistance Exercise Scale to determine 1-RM in older men and women. Percept. Mot. Skills 2011, 113, 671–676. [Google Scholar] [CrossRef]
- Farinatti, P.T.V.; Monteiro, W.D. Walk-run transition in young and older adults: With special reference to the cardio-respiratory responses. Eur. J. Appl. Physiol. 2010, 109, 379–388. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Ostir, G.V.; Volpato, S.; Fried, L.P.; Chaves, P.; Guralnik, J.M. Reliability and sensitivity to change assessed for a summary measure of lower body function: Results from the Women’s Health and Aging Study. J. Clin. Epidemiol. 2002, 55, 916–921. [Google Scholar] [CrossRef]
- Penninx, B.W.; Ferrucci, L.; Leveille, S.G.; Rantanen, T.; Pahor, M.; Guralnik, J.M. Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M691–M697. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Reginster, J.Y.; Slomian, J.; Buckinx, F.; Dardenne, N.; Quabron, A.; Slangen, C.; Gillain, S.; Petermans, J.; Bruyère, O. Estimation of sarcopenia prevalence using various assessment tools. Exp. Gerontol. 2015, 61, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Salzman, S.H. The 6-min walk test: Clinical and research role, technique, coding, and reimbursement. Chest 2009, 135, 1345–1352. [Google Scholar] [CrossRef]
- Pinto-Plata, V.M.; Cote, C.; Cabral, H.; Taylor, J.; Celli, B.R. The 6-min walk distance: Change over time and value as a predictor of survival in severe COPD. Eur. Respir. J. 2004, 23, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Enright, P.L. The six-minute walk test. Respir. Care 2003, 48, 783–785. [Google Scholar]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: New York, NY, USA, 2013; ISBN 1450411185. [Google Scholar]
- Sperandio, E.F.; Arantes, R.L.; Matheus, A.C.; Silva, R.P.; Lauria, V.T.; Romiti, M.; Gagliardi, A.R.T.; Dourado, V.Z. Intensity and physiological responses to the 6-minute walk test in middle-aged and older adults: A comparison with cardiopulmonary exercise testing. Braz. J. Med. Biol. Res. 2015, 48, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Kotsia, A.; Michalis, L.K.; Naka, K.K. 6-minute walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Dantas, E.H.M.; Figueira, H.A.; Emygdio, R.F.; Vale, R.G.S. Functional Autonomy GdlAm Protocol Classification Pattern in Elderly Women. Indian J. Appl. Res. 2014, 4, 262–266. [Google Scholar] [CrossRef]
- Vale, R.G.; Soares-Pernambuco, C.; Ferreira Emygdio, R.; Marcos-Pardo, P.J.; Martín-Dantas, E.H. Avaliação da autonomia funcional. In Manual de Avaliaçao do Idoso; Vale, R.G.S., Soares-Pernambuco, C., Martín-Dantas, E.H., Eds.; Icone Editora: São Paulo, Brazil, 2016; pp. 149–162. ISBN 978-85-274-1285-8. [Google Scholar]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Preacher, K.J.; Kelley, K. Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychol. Methods 2011, 16, 93–115. [Google Scholar] [CrossRef] [PubMed]
- Sobel, M.E. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. Sociol. Methodol. 1982, 13, 290. [Google Scholar] [CrossRef]
- De Resende-Neto, A.G.; do Nascimento, M.A.; da Silva, D.R.P.; Netto, R.S.M.; de Santana, J.M.; Silva, M.E.D.G. Effects of Multicomponent Training on Functional Fitness and Quality of Life in Older Women: A Randomized Controlled Trial. Int. J. Sport. Exerc. Med. 2019, 5. [Google Scholar] [CrossRef]
- De Matos, D.G.; Mazini Filho, M.L.; Moreira, O.C.; De Oliveira, C.E.; De Oliveira Venturini, G.R.; Da Silva-Grigoletto, M.E.; Aidar, F.J. Effects of eight weeks of functional training in the functional autonomy of elderly women: A pilot study. J. Sports Med. Phys. Fit. 2017, 57, 272–277. [Google Scholar] [CrossRef]
- Carrasco-Poyatos, M.; Rubio-Arias, J.A.; Ballesta-García, I.; Ramos-Campo, D.J. Pilates vs. muscular training in older women. Effects in functional factors and the cognitive interaction: A randomized controlled trial. Physiol. Behav. 2019, 201, 157–164. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, Y.; Li, Q.; Wang, J.; Tan, S. Exercise Training at Maximal Fat Oxidation Intensity for Overweight or Obese Older Women: A Randomized Study. J. Sports Sci. Med. 2019, 18, 413. [Google Scholar]
- De Liao, C.; Tsauo, J.Y.; Lin, L.F.; Huang, S.W.; Ku, J.W.; Chou, L.C.; Liou, T.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity. Medicine 2017, 96. [Google Scholar] [CrossRef]
- Huang, C.; Sun, S.; Tian, X.; Wang, T.; Wang, T.; Duan, H.; Wu, Y. Age modify the associations of obesity, physical activity, vision and grip strength with functional mobility in Irish aged 50 and older. Arch. Gerontol. Geriatr. 2019, 84. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Goss, A.M.; Locher, J.L.; Ard, J.D.; Gower, B.A. Physical Function and Strength in Relation to Inflammation in Older Adults with Obesity and Increased Cardiometabolic Risk. J. Nutr. Heal. Aging 2019, 23, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.D.; Rhea, M.R.; Sen, A.; Gordon, P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Barbat-Artigas, S.; Pinheiro Carvalho, L.; Rolland, Y.; Vellas, B.; Aubertin-Leheudre, M. Muscle Strength and Body Weight Mediate the Relationship Between Physical Activity and Usual Gait Speed. J. Am. Med. Dir. Assoc. 2016, 17, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Ibeneme, S.C.; Ekanem, C.; Ezuma, A.; Iloanusi, N.; Lasebikan, N.N.; Lasebikan, O.A.; Oboh, O.E. Walking balance is mediated by muscle strength and bone mineral density in postmenopausal women: An observational study. BMC Musculoskelet. Disord. 2018, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibeneme, S.; Ezeigwe, C.; Ibeneme, G.C.; Ezuma, A.; Okoye, I.; Nwankwo, J.M. Response of Gait Output and Handgrip Strength to Changes in Body Fat Mass in Pre- and Postmenopausal Women. Curr. Ther. Res. Clin. Exp. 2019, 90, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.F.; Schechtman, K.B.; Ehsani, A.A.; Steger-May, K.; Brown, M.; Sinacore, D.R.; Yarasheski, K.E.; Holloszy, J.O. Effects of exercise training on frailty in community-dwelling older adults: Results of a randomized, controlled trial. J. Am. Geriatr. Soc. 2002, 50, 1921–1928. [Google Scholar] [CrossRef]
Criterion | Measurement Method | Cut-off Points by Gender |
---|---|---|
Muscle mass | DEXA | Skeletal muscle mass index (SMI) (Appendicular skeletal muscle mass/height2) Men: 7 kg/m2 Women: 5.5 kg/m2 |
BIA | SMI using BIA predicted skeletal muscle mass (SM) equation (SM/height2) Men: 8.87 kg/m2 Women: 6.42 kg/m2 | |
Muscle strength | Handgrip strength | Men: <27 kg Women: <16 kg |
Chair stand | >15 s for five rises | |
Physical performance | SPPB SPPB score is a summation of scores on three tests: Balance, Gait Speed and Chair Stand. Each test is weighted equally with scores between 0 and 4—quartiles generated from Established Populations for Epidemiologic Studies of the Older people (EPESE) data (n = 6534). The maximum score on the SPPB is 12 | SPPB ≤ 8 SPPB 0–6 Low performance SPPB 7–9 Intermediate performance SPPB 10–12 High Performance |
GS | GS ≤ 0.8 m/s |
M ± SD | |
---|---|
Age | 68.03 ± 4.03 |
Weight (kg) | 69.59 ± 11.28 |
Height (m) | 1.55 ± 0.07 |
BMI (kg/m2) | 29.97 ± 3.86 |
10-m test (s) | 7.29 ± 1.51 |
6MWT (m) | 460.29 ± 78.02 |
Stand from siting (s) | 13.13 ± 3.31 |
Rise from the floor (s) | 8.47 ± 3.64 |
Stand and go (s) | 42.83 ± 5.03 |
T-shirt (s) | 15.92 ± 6.16 |
GDLAM index | 33.11 ± 5.18 |
Ex Flex Elbow 30 s (rep) | 14.54 ± 4.16 |
Lift chair 30 s (rep) | 10.98 ± 2.78 |
Pre-Test (M ± SD) | Post-Test (M±SD) | Difference Post-Pre (M±SD) | p | CI 95% (Mpost–Mpre) | ES | ||
---|---|---|---|---|---|---|---|
10-m test (s) | TG | 6.93 ± 1.14 | 6.05 ± 0.94 | 0.878 ± 0.14 | 0.000 | 0.601; 1.155 | 0.77 |
CG | 7.59 ± 1.70 | 8.40 ± 1.68 | −0.811 ± 0.15 | 0.000 | −1.103; −0.518 | 0.47 | |
6MWT (m) | TG | 473.54 ± 70.42 | 491.06 ± 74.00 | −17.528 ± 5.36 | 0.001 | −28.083; −6.973 | 0.25 |
CG | 448.30 ± 79.33 | 433.70 ± 79.49 | 14.601 ± 5.66 | 0.011 | 3.442; 25.760 | 0.18 | |
Stand from siting (s) | TG | 13.56 ± 3.15 | 11.29 ± 2.69 | 2.272 ± 0.37 | 0.000 | 1.535; 3.010 | 0.72 |
CG | 12.96 ± 3.62 | 13.08 ± 3.70 | −0.123 ± 0.4 | 0.756 | −0.903; 0.657 | 0.03 | |
Rise from the floor (s) | TG | 8.92 ± 3.80 | 6.18 ± 3.27 | 2.740 ± 0.2 | 0.000 | 2.357; 3.124 | 0.72 |
CG | 8.44 ± 3.71 | 8.00 ± 3.92 | 0.444 ± 0.21 | 0.032 | 0.039; 0.850 | 0.12 | |
Stand and go (s) | TG | 41.07 ± 3.57 | 40.51 ± 4.04 | 0.566 ± 0.39 | 0.150 | −0.206; 1.338 | 0.16 |
CG | 44.41 ± 5.44 | 46.36 ± 5.02 | −1.950 ± 0.41 | 0.000 | −2.766; −1.134 | 0.36 | |
T-shirt (s) | TG | 16.46 ± 6.94 | 11.73 ± 4.41 | 4.721 ± 0.37 | 0.000 | 3.999; 5.444 | 0.68 |
CG | 15.85 ± 5.66 | 15.36 ± 4.81 | 0.489 ± 0.39 | 0.208 | −0.275; 1.252 | 0.09 | |
GDLAM index | TG | 33.20 ± 5.92 | 27.75 ± 4.50 | 5.448 ± 0.34 | 0.000 | 4.777; 6.118 | 0.91 |
CG | 33.52 ± 4.68 | 34.01 ± 3.83 | −0.489 ± 0.36 | 0.176 | −1.197; 0.220 | 0.10 | |
Ex Flex Elbow 30 s (rep) | TG | 14.59 ± 4.25 | 17.46 ± 4.55 | −2.868 ± 0.28 | 0.000 | −3.417; −2.320 | 0.67 |
CG | 14.63 ± 4.09 | 13.34 ± 3.64 | 1.284 ± 0.29 | 0.000 | 0.704; 1.865 | 0.31 | |
Lift chair 30 s (rep) | TG | 10.81 ± 2.46 | 13.09 ± 2.70 | −2.281 ± 0.21 | 0.000 | −2.699; −1.863 | 0.92 |
CG | 11.26 ± 3.17 | 11.15 ± 3.07 | 0.118 ± 0.22 | 0.600 | −0.324; 0.560 | 0.04 | |
BMI (kg/m2) | TG | 31.13 ± 4.15 | 31.26 ± 4.13 | 0.13 ± 0.54 | 0.021 | 0.020; 0.242 | 0.03 |
CG | 28.68 ± 3.04 | 28.59 ± 3.17 | −0.09 ± 0.66 | 0.125 | −0.209; 0.026 | 0.02 |
Group | Difference Post-Pre (M ± SD) | F | p | ES | |
---|---|---|---|---|---|
10-m test (s) | TG | 0.878 ± 0.14 | 68.220 | 0.000 | 0.242 |
CG | −0.811 ± 0.15 | ||||
6MWT (m) | TG | −17.528 ± 5.36 | 17.000 | 0.000 | 0.074 |
CG | 14.601 ± 5.66 | ||||
Stand from siting (s) | TG | 2.272 ± 0.37 | 19.354 | 0.000 | 0.083 |
CG | −0.123 ± 0.4 | ||||
Rise from the floor (s) | TG | 2.740 ± 0.2 | 65.676 | 0.000 | 0.235 |
CG | 0.444 ± 0.21 | ||||
Stand and go (s) | TG | 0.566 ± 0.39 | 19.489 | 0.000 | 0.083 |
CG | −1.950 ± 0.41 | ||||
T-shirt (s) | TG | 4.721 ± 0.37 | 63.004 | 0.000 | 0.227 |
CG | 0.489 ± 0.39 | ||||
GDLAM index | TG | 5.448 ± 0.34 | 143.774 | 0.000 | 0.402 |
CG | −0.489 ± 0.36 | ||||
Ex Flex Elbow 30 s (rep) | TG | −2.868 ± 0.28 | 105.018 | 0.000 | 0.329 |
CG | 1.284 ± 0.29 | ||||
Lift chair 30 s (rep) | TG | −2.281 ± 0.21 | 60.373 | 0.000 | 0.220 |
CG | 0.118 ± 0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Pardo, P.J.; González-Gálvez, N.; Gea-García, G.M.; López-Vivancos, A.; Espeso-García, A.; Gomes de Souza Vale, R. Sarcopenia as a Mediator of the Effect of a Gerontogymnastics Program on Cardiorespiratory Fitness of Overweight and Obese Older Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 7064. https://doi.org/10.3390/ijerph17197064
Marcos-Pardo PJ, González-Gálvez N, Gea-García GM, López-Vivancos A, Espeso-García A, Gomes de Souza Vale R. Sarcopenia as a Mediator of the Effect of a Gerontogymnastics Program on Cardiorespiratory Fitness of Overweight and Obese Older Women: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2020; 17(19):7064. https://doi.org/10.3390/ijerph17197064
Chicago/Turabian StyleMarcos-Pardo, Pablo Jorge, Noelia González-Gálvez, Gemma María Gea-García, Abraham López-Vivancos, Alejandro Espeso-García, and Rodrigo Gomes de Souza Vale. 2020. "Sarcopenia as a Mediator of the Effect of a Gerontogymnastics Program on Cardiorespiratory Fitness of Overweight and Obese Older Women: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 17, no. 19: 7064. https://doi.org/10.3390/ijerph17197064
APA StyleMarcos-Pardo, P. J., González-Gálvez, N., Gea-García, G. M., López-Vivancos, A., Espeso-García, A., & Gomes de Souza Vale, R. (2020). Sarcopenia as a Mediator of the Effect of a Gerontogymnastics Program on Cardiorespiratory Fitness of Overweight and Obese Older Women: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 17(19), 7064. https://doi.org/10.3390/ijerph17197064