Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan
Abstract
:1. Introduction
2. Data and Measures
2.1. Data and Samples
2.2. Statistical Analysis
3. Results and Discussion
3.1. Association between SA Knowledge, Importance and Adoption
3.2. Effects of SA Knowledge and Importance on SA Adoption
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ingram, J.S.I.; Gregory, P.J.; Izac, A.M. The role of agronomic research in climate change and food security policy. Agric. Ecosyst. Environ. 2008, 126, 4–12. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate smart agriculture? Assessing the adaptation implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Lamanna, C.; Chesterman, S.; Bell, P.; Arslan, A.; Richards, M.; Corner-Dolloff, C. The Scientific Basis of Climate-Smart Agriculture: A Systematic Review Protocol; Working Paper No. 138; Consultative Group on International Agricultural Research (CGIAR): Montpellier, France, 2016. [Google Scholar]
- Saj, S.; Torquebiau, E.; Hainzelin, E.; Pages, J.; Maraux, F. The way forward: An agroecological perspective for Climate-Smart Agriculture. Agric. Ecosyst. Environ. 2017, 250, 20–24. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming–A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Smart Farming Thematic Network (Smart-AKIS). What Is Smart Farming. 2017. Available online: https://www.smart-akis.com/index.php/network/what-is-smart-farming/ (accessed on 15 May 2020).
- Pivoto, D.; Barham, B.; Waquil, P.D.; Foguesatto, C.R.; Corte, V.F.D.; Zhang, D.; Talaminic, E. Factors influencing the adoption of smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 2019, 22, 571–588. [Google Scholar] [CrossRef]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of climate-smart agriculture technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Mozzato, D.; Bortolini, L.; Pezzuolo, A.; Pirotti, E.; Pisani, E.; Gatto, P. Drivers of farmers’ adoption and continuation of climate-smart agricultural practices: A study from northeastern Italy. Sci. Total Environ. 2020, 710, 136345. [Google Scholar] [CrossRef]
- Li, M.; Chung, S.O. Special issue on precision agriculture. Comput. Electron. Agric. 2015, 112, 2–9. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Chuang, J.H.; Wang, J.H.; Liang, C.Y. Implementation of Internet of Things depends on intention: Young farmers’ willingness to accept innovative technology. Int. Food Agribus. Manag. Rev. 2020, 23, 253–265. [Google Scholar] [CrossRef]
- Wang, J.H. Recruiting Young Farmers to Join Small-Scale Farming in EU: A Structural Policy Perspective. J. Agric. Assoc. Taiwan 2015, 16, 1–17. [Google Scholar]
- Yang, C.K.; Shih, Y.Y.; Yang, S.H. Moving Towards Agricultural 4.0 in Taiwan with Smart Technology. 2016. Available online: http://eng.coa.gov.tw/ws.php?id=2505331 (accessed on 10 June 2020).
- Protopop, I.; Shanoyan, A. Big data and smallholder farmers: Big data applications in the agri-food supply chain in developing countries. Int. Food Agribus. Manag. Rev. 2016, 19, 173–190. [Google Scholar]
- Yang, C.K.; Tsay, J.R.; Chen, J.J. Connecting Intelligent Devices, Sensing Techs, IOTs and Big Data to Enhance the Productivity among Agricultural Production, Marketing and Consumption. 2018. Available online: http://www.fftc.agnet.org/library.php?func=view&style=type&id=20180524112526 (accessed on 15 May 2020).
- Kamrath, C.; Rajendran, S.; Nenguwo, N.; Afari-Sefad, V.; Bröring, S. Adoption behavior of market traders: An analysis based on technology acceptance model and theory of planned behavior. Int. Food Agribus. Manag. Rev. 2018, 21, 771–790. [Google Scholar] [CrossRef]
- Wang, J.H.; Huang, C.L.; Knerr, B. Knowledge, attitudes, and practices of straybirds agricultural trainees in Taiwan. Soc. Behav. Pers. Int. J. 2010, 38, 795–804. [Google Scholar] [CrossRef]
- Castella, J.C.; Slaats, J.; Dinh Quang, D.; Geay, F.; Van Linh, N.; Thi Hanh Tho, P. Connecting marginal rice farmers to agricultural knowledge and information systems in Vietnam uplands. J. Agric. Educ. Ext. 2006, 12, 109–125. [Google Scholar] [CrossRef]
- Cheung, C.K.; Chan, C.M. Learning to work safely with reference to a social-cognitive model. Soc. Behav. Pers. Int. J. 2000, 28, 293–308. [Google Scholar] [CrossRef]
- Mulder, M.; Weigel, T.; Collins, K. The concept of competence concept in the development of vocational education and training in selected EU member states: A critical analysis. J. Vocat. Educ. Train. 2006, 59, 65–85. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [Green Version]
- Long, T.B.; Blok, V.; Poldner, K. Business models for maximising the diffusion of technological innovations for climate-smart agriculture. Int. Food Agribus. Manag. Rev. 2017, 20, 5–23. [Google Scholar] [CrossRef]
- Au, A.K.M.; Enderwick, P. A cognitive model on attitude towards technology adoption. J. Manag. Psychol. 2000, 15, 266–282. [Google Scholar]
- Wolters, S.; Balafoutis, T.; Fountas, S.; van Evert, F. Deliverable 1.2 Research Project Results on Smart Farming Technology. 2017. Available online: http://www.smart-akis.com (accessed on 15 May 2020).
Variables | Frequency (Mean) | % | SD a | |
---|---|---|---|---|
Gender | Male | 254 | 79.1 | |
Female | 67 | 20.9 | ||
Age (years) b | 42.61 | 11.22 | ||
Edu level | Senior high or below | 49 | 15.3 | |
College/University | 188 | 58.6 | ||
Graduated or above | 84 | 26.2 | ||
Farmer type | Owner or operator of Agribusiness | 41 | 12.8 | |
Hired staffs in Agribusiness | 73 | 22.7 | ||
Self-employed | 207 | 64.5 | ||
Farm size (hectare) b | 3.92 | 13.57 | ||
Annual turnover (TWD) | 0.2 million or below | 83 | 25.9 | |
0.2–1 million | 91 | 28.3 | ||
1–5 million | 86 | 26.8 | ||
5 million or above | 61 | 19.0 |
SA Technology | SA Importance | SA Knowledge | ||||
---|---|---|---|---|---|---|
Mean | SD a | Rank | Mean | SD a | Rank | |
Total adoption score | 40.22 | 20.82 | - | - | - | - |
Automatic control system | 3.24 | 0.74 | 1 | 3.04 | 0.81 | 1 |
Apps | 3.35 | 0.57 | 2 | 2.90 | 0.96 | 3 |
Big data | 3.33 | 0.59 | 3 | 2.68 | 0.94 | 7 |
IoT | 3.27 | 0.52 | 4 | 2.75 | 0.81 | 5 |
Image recognition | 3.23 | 0.58 | 5 | 2.59 | 0.97 | 8 |
Sensing and monitoring | 3.22 | 0.57 | 6 | 2.71 | 0.93 | 6 |
Robotic | 3.12 | 0.63 | 7 | 2.85 | 0.83 | 4 |
Drones | 3.10 | 0.65 | 8 | 2.93 | 0.84 | 2 |
SA Knowledge | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1. IoT | 1 | ||||||||
2. Climate sensing and monitoring | 0.644 ** | 1 | |||||||
3. Image recognition | 0.590 ** | 0.722 ** | 1 | ||||||
4. Big data | 0.666 ** | 0.712 ** | 0.762 ** | 1 | |||||
5. Apps | 0.638 ** | 0.657 ** | 0.691 ** | 0.717 ** | 1 | ||||
6. Robotic | 0.583 ** | 0.610 ** | 0.582 ** | 0.632 ** | 0.610 ** | 1 | |||
7. Drones | 0.600 ** | 0.568 ** | 0.632 ** | 0.649 ** | 0.667 ** | 0.662 ** | 1 | ||
8. Automatic system | 0.597 ** | 0.602 ** | 0.638 ** | 0.695 ** | 0.645 ** | 0.645 ** | 0.738 ** | 1 | |
9. SA adoption score | 0.251 ** | 0.219 ** | 0.286 ** | 0.296 ** | 0.306 ** | 0.249 ** | 0.224 ** | 0.270 ** | 1 |
SA Importance | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1. IoT | 1 | ||||||||
2. Climate sensing and monitoring | 0.458 ** | 1 | |||||||
3. Image recognition | 0.320 ** | 0.571 ** | 1 | ||||||
4. Big data | 0.537 ** | 0.509 ** | 0.505 ** | 1 | |||||
5. Apps | 0.442 ** | 0.589 ** | 0.556 ** | 0.667 ** | 1 | ||||
6. Robotic | 0.367 ** | 0.385 ** | 0.422 ** | 0.436 ** | 0.470 ** | 1 | |||
7. Drones | 0.319 ** | 0.344 ** | 0.488 ** | 0.418 ** | 0.402 ** | 0.530 ** | 1 | ||
8. Automatic system | 0.481 ** | 0.383 ** | 0.375 ** | 0.524 ** | 0.426 ** | 0.355 ** | 0.407 ** | 1 | |
9. SA adoption score | 0.129 * | 0.166 ** | 0.016 | 0.132 * | 0.184 ** | 0.148 ** | 0.106 | 0.266 ** | 1 |
Variable | Coefficient | s.e. | t-Value |
---|---|---|---|
Total_Knowledge | 0.93 ** | 1.50 | 4.97 |
Total_Importance | 0.81 * | 2.54 | 2.56 |
Socio-demographic characteristics | |||
Male | 3.66 * | 2.52 | 1.45 |
Age | 0.23 | 0.10 | 2.42 |
University | 2.65 | 2.95 | 0.90 |
Graduated or above | −0.26 | 3.35 | −0.08 |
Farming features | |||
Operator | 6.75 * | 3.24 | 2.08 |
Hired staffs | 8.52 ** | 2.56 | 3.33 |
Farm size (ha) | 0.15 * | 0.08 | 1.99 |
Turnover_0.2–1 million | 8.83 ** | 2.77 | 3.19 |
Turnover_1–5 million | 15.75 ** | 2.87 | 5.48 |
Turnover_5 million and above | 17.32 ** | 3.15 | 5.491 |
Intercept | −24.43 | 10.31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, J.-H.; Wang, J.-H.; Liou, Y.-C. Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 7236. https://doi.org/10.3390/ijerph17197236
Chuang J-H, Wang J-H, Liou Y-C. Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan. International Journal of Environmental Research and Public Health. 2020; 17(19):7236. https://doi.org/10.3390/ijerph17197236
Chicago/Turabian StyleChuang, Jui-Hsiung, Jiun-Hao Wang, and Yu-Chang Liou. 2020. "Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan" International Journal of Environmental Research and Public Health 17, no. 19: 7236. https://doi.org/10.3390/ijerph17197236
APA StyleChuang, J. -H., Wang, J. -H., & Liou, Y. -C. (2020). Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan. International Journal of Environmental Research and Public Health, 17(19), 7236. https://doi.org/10.3390/ijerph17197236