The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Sample Preparation and DNA Extraction
2.3. Selection of HMGB1 SNPs
2.4. HMGB1 SNPs Genotyping
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lv, D.J.; Song, X.L.; Huang, B.; Yu, Y.Z.; Shu, F.P.; Wang, C.; Chen, H.; Zhang, H.B.; Zhao, S.C. Hmgb1 promotes prostate cancer development and metastasis by interacting with brahma-related gene 1 and activating the akt signaling pathway. Theranostics 2019, 9, 5166–5182. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Hung, C.F.; Yang, C.K.; Ou, Y.C. Urologic cancer in Taiwan. Jpn. J. Clin. Oncol. 2016, 46, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.S. Prostate cancer in Taiwan: Epidemiology and risk factors. Int. J. Androl. 2000, 23, 34–36. [Google Scholar] [CrossRef]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef] [Green Version]
- Schreyer, E.; Barthelemy, P.; Cottard, F.; Ould Madi-Berthelemy, P.; Schaff-Wendling, F.; Kurtz, J.E.; Ceraline, J. Androgen receptor variants in prostate cancer. Med. Sci. M/S 2017, 33, 758–764. [Google Scholar]
- McAllister, M.J.; McCall, P.; Dickson, A.; Underwood, M.A.; Andersen, D.; Holmes, E.; Markert, E.; Leung, H.Y.; Edwards, J. Androgen receptor phosphorylation at serine 81 and serine 213 in castrate-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Huang, C.Y.; Yeh, H.M.; Hong, J.H.; Chang, C.H.; Muo, C.H.; Chung, S.D.; Yang, T.K.; Jaw, F.S.; Chung, C.J. Associations between peripheral thromboembolic vascular disease and androgen deprivation therapy in asian prostate cancer patients. Sci. Rep. 2019, 9, 14231. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, J.; Afridi, A.; Vatsia, S.; Joshi, G.; Joshi, G.; Kaplan, S.A.; Smith, N.L.; Khan, S.A. The molecular biology of prostate cancer: Current understanding and clinical implications. Prostate Cancer Prostatic Dis. 2018, 21, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Benafif, S.; Kote-Jarai, Z.; Eeles, R.A.; Consortium, P. A review of prostate cancer genome-wide association studies (gwas). Cancer Epidemiol. Biomark. Prev. 2018, 27, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantus, R.J.; Helfand, B.T. Germline genetics of prostate cancer: Time to incorporate genetics into early detection tools. Clin. Chem. 2019, 65, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, R.; Chen, R.; Zhang, Q.; Hou, W.; Wu, S.; Cao, L.; Huang, J.; Yu, Y.; Fan, X.G.; Yan, Z.; et al. Hmgb1 in health and disease. Mol. Aspects Med. 2014, 40, 1–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, R.; Zhang, Q.; Zeh, H.J., III; Lotze, M.T.; Tang, D. Hmgb1 in cancer: Good, bad, or both? Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 4046–4057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnanasekar, M.; Thirugnanam, S.; Ramaswamy, K. Short hairpin rna (shrna) constructs targeting high mobility group box-1 (hmgb1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int. J. Oncol. 2009, 34, 425–431. [Google Scholar] [CrossRef]
- Li, T.; Gui, Y.; Yuan, T.; Liao, G.; Bian, C.; Jiang, Q.; Huang, S.; Liu, B.; Wu, D. Overexpression of high mobility group box 1 with poor prognosis in patients after radical prostatectomy. BJU Int. 2012, 110, E1125–E1130. [Google Scholar] [CrossRef]
- Tripathi, A.; Shrinet, K.; Kumar, A. Hmgb1 protein as a novel target for cancer. Toxicol. Rep. 2019, 6, 253–261. [Google Scholar] [CrossRef]
- Vijayakumar, E.C.; Bhatt, L.K.; Prabhavalkar, K.S. High mobility group box-1 (hmgb1): A potential target in therapeutics. Curr. Drug Targets 2019, 20, 1474–1485. [Google Scholar] [CrossRef]
- Sonpavde, G.; Agarwal, N.; Choueiri, T.K.; Kantoff, P.W. Recent advances in immunotherapy for the treatment of prostate cancer. Expert Opin. Biol. Ther. 2011, 11, 997–1009. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, S.; Han, D.; Xu, Y.; Jiao, D.; Wu, J.; Yang, F.; Ge, Y.; Shi, S.; Li, Y.; et al. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer pc3 cells via the rage/nf-kappab signaling pathway. Int. J. Oncol. 2018, 53, 659–671. [Google Scholar] [CrossRef]
- Gnanasekar, M.; Kalyanasundaram, R.; Zheng, G.; Chen, A.; Bosland, M.C.; Kajdacsy-Balla, A. Hmgb1: A promising therapeutic target for prostate cancer. Prostate Cancer 2013, 2013, 157103. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.W.; Chou, Y.E.; Yeh, C.M.; Yang, S.F.; Chuang, C.Y.; Liu, Y.F. A functional variant at the mirna binding site in hmgb1 gene is associated with risk of oral squamous cell carcinoma. Oncotarget 2017, 8, 34630–34642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supic, G.; Kozomara, R.; Zeljic, K.; Stanimirovic, D.; Magic, M.; Surbatovic, M.; Jovic, N.; Magic, Z. Hmgb1 genetic polymorphisms in oral squamous cell carcinoma and oral lichen planus patients. Oral Dis. 2015, 21, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Chien, M.H.; Chou, Y.E.; Chang, J.H.; Liu, T.C.; Tsao, T.C.; Chou, M.C.; Yang, S.F. Association of egfr mutations and hmgb1 genetic polymorphisms in lung adenocarcinoma patients. J. Cancer 2019, 10, 2907–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Li, X.; Quan, X.; Li, X.; Zhou, B. Single nucleotide polymorphisms in hmgb1 correlate with lung cancer risk in the northeast chinese han population. Molecules 2018, 23, 832. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.P.; Yin, J.Y.; Zhang, Y.; He, H.; Qian, C.Y.; Chen, J.; Zheng, Y.; Smieszkol, K.; Fu, Y.L.; et al. Association of hmgb1 and hmgb2 genetic polymorphisms with lung cancer chemotherapy response. Clin. Exp. Pharmacol. Physiol. 2014, 41, 408–415. [Google Scholar] [CrossRef]
- Hu, W.; Liu, P.Y.; Yang, Y.C.; Chen, P.C.; Su, C.M.; Chao, C.C.; Tang, C.H. Association of hmgb1 gene polymorphisms with lung cancer susceptibility and clinical aspects. Int. J. Med. Sci. 2017, 14, 1197–1202. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.F.; Tzeng, H.E.; Chen, P.C.; Wang, C.Q.; Su, C.M.; Wang, Y.; Hu, G.N.; Zhao, Y.M.; Wang, Q.; Tang, C.H. Hmgb1 genetic polymorphisms are biomarkers for the development and progression of breast cancer. Int. J. Med. Sci. 2018, 15, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Choi, J.; Chung, S.; Park, J.; Kim, J.E.; Sung, H.; Han, W.; Lee, J.W.; Park, S.K.; Kim, M.K.; et al. Genetic predisposition of polymorphisms in hmgb1-related genes to breast cancer prognosis in Korean women. J. Breast Cancer 2017, 20, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Yue, L.; Zhang, Q.; He, L.; Zhang, M.; Dong, J.; Zhao, D.; Ma, H.; Pan, H.; Zheng, L. Genetic predisposition of six well-defined polymorphisms in hmgb1/rage pathway to breast cancer in a large Han Chinese population. J. Cell. Mol. Med. 2016, 20, 1966–1973. [Google Scholar] [CrossRef]
- Bao, G.; Qu, F.; He, L.; Zhao, H.; Wang, N.; Ji, G.; He, X. Prognostic significance of tag snp rs1045411 in hmgb1 of the aggressive gastric cancer in a chinese population. PLoS ONE 2016, 11, e0154378. [Google Scholar] [CrossRef]
- Wang, B.; Yeh, C.B.; Lein, M.Y.; Su, C.M.; Yang, S.F.; Liu, Y.F.; Tang, C.H. Effects of hmgb1 polymorphisms on the susceptibility and progression of hepatocellular carcinoma. Int. J. Med. Sci. 2016, 13, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Qi, X.; Liu, F.; Yang, C.; Jiang, W.; Wei, X.; Li, X.; Mi, J.; Tian, G. A multicenter matched case-control analysis on seven polymorphisms from hmgb1 and rage genes in predicting hepatocellular carcinoma risk. Oncotarget 2017, 8, 50109–50116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Yu, H.L.; Bei, S.S.; Cui, Z.H.; Li, Z.W.; Liu, Z.J.; Lv, Y.F. Association of hmgb1 gene polymorphisms with risk of colorectal cancer in a Chinese population. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 3419–3425. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Wang, S.S.; Yang, C.K.; Li, J.R.; Chen, C.S.; Hung, S.C.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Yang, S.F. Impact of gas5 genetic polymorphism on prostate cancer susceptibility and clinicopathologic characteristics. Int. J. Med. Sci. 2019, 16, 1424–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading, C. The 2014 international society of urological pathology (isup) consensus conference on gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Wang, S.S.; Yang, C.K.; Li, J.R.; Chen, C.S.; Hung, S.C.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Yang, S.F. Genetic polymorphism and carbonic anhydrase 9 expression can predict nodal metastatic prostate cancer risk in patients with prostate-specific antigen levels </=10 ng/ml at initial biopsy. Urol. Oncol. 2019, 37, 814.e9–814.e16. [Google Scholar]
- Egevad, L.; Delahunt, B.; Srigley, J.R.; Samaratunga, H. International society of urological pathology (isup) grading of prostate cancer—An isup consensus on contemporary grading. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2016, 124, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.T.; Liu, Y.F.; Hsu, C.L.; Cheng, T.Y.; Yang, C.Y.; Chang, J.S.; Lee, W.J.; Hsiao, M.; Juan, H.F.; Chien, M.H.; et al. 3′utr polymorphisms of carbonic anhydrase ix determine the mir-34a targeting efficiency and prognosis of hepatocellular carcinoma. Sci. Rep. 2017, 7, 4466. [Google Scholar] [CrossRef]
- Weng, W.C.; Chen, C.J.; Chen, P.N.; Wang, S.S.; Hsieh, M.J.; Yang, S.F. Impact of gene polymorphisms in gas5 on urothelial cell carcinoma development and clinical characteristics. Diagnostics 2020, 10, 260. [Google Scholar] [CrossRef]
- International HapMap. The international HapMap project. Nature 2003, 426, 789–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Tan, H.; Wang, S.; Zhang, Y.; Ding, Y. Association of high mobility group box protein b1 gene polymorphisms with pneumonia susceptibility and severity. Genet. Test. Mol. Biomark. 2019, 23, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Perdana, N.R.; Mochtar, C.A.; Umbas, R.; Hamid, A.R. The risk factors of prostate cancer and its prevention: A literature review. Acta Med. Indones. 2016, 48, 228–238. [Google Scholar]
- Vickers, A.J.; Cronin, A.M.; Bjork, T.; Manjer, J.; Nilsson, P.M.; Dahlin, A.; Bjartell, A.; Scardino, P.T.; Ulmert, D.; Lilja, H. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: Case-control study. BMJ 2010, 341, c4521. [Google Scholar] [CrossRef] [Green Version]
- Parkes, C.; Wald, N.J.; Murphy, P.; George, L.; Watt, H.C.; Kirby, R.; Knekt, P.; Helzlsouer, K.J.; Tuomilehto, J. Prospective observational study to assess value of prostate specific antigen as screening test for prostate cancer. BMJ 1995, 311, 1340–1343. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.G.; Bae, Y.; Shin, D.; Nam, J.; Kim, K.Y.; Kim, D.S. Hmgb1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in kawasaki disease. Rheumatology 2019, 58, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Liu, Y.F.; Yang, S.F.; Lin, W.L.; Chen, S.C.; Han, C.P.; Wang, H.L.; Lin, L.Y.; Wang, P.H. Association of single-nucleotide polymorphisms of high-mobility group box 1 with susceptibility and clinicopathological characteristics of uterine cervical neoplasia in taiwanese women. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 15813–15823. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, D.; Yang, S.; Jin, Y.; He, L.; Chen, J.; Zhao, X.; Chen, Y.; Zhou, W.; Shen, C. Hmgb1 gene polymorphism is associated with hypertension in han chinese population. Clin. Exp. Hypertens. 2015, 37, 166–171. [Google Scholar] [CrossRef]
- Lee, K.; Chang, Y.; Song, K.; Park, Y.Y.; Huh, J.W.; Hong, S.B.; Lim, C.M.; Koh, Y. Associations between single nucleotide polymorphisms of high mobility group box 1 protein and clinical outcomes in korean sepsis patients. Yonsei Med. J. 2016, 57, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Hung, S.C.; Wang, S.S.; Li, J.R.; Chen, C.S.; Yang, C.K.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Ho, H.C.; Yang, S.F. Effect of hmgb1 polymorphisms on urothelial cell carcinoma susceptibility and clinicopathological characteristics. Int. J. Med. Sci. 2018, 15, 1731–1736. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Liang, C.H.; Yang, Y.J.; Liu, L.; Du, Y.J.; Liang, H.S.; Li, L.; Zhang, B.; Li, J.M.; Zhao, J.M. No association between hmgb1 polymorphisms and cancer risk: Evidence from a meta-analysis. Biosci. Rep. 2018, 38, BSR20180658. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. Starbase v2.0: Decoding mirna-cerna, mirna-ncrna and protein-rna interaction networks from large-scale clip-seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, P.Z.; Cao, D.H.; Zhang, X.L.; Ren, Z.J.; Wei, Q. Association between tp53 gene codon72 polymorphism and prostate cancer risk: A systematic review and meta-analysis. Medicine 2019, 98, e16135. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Petrovics, G.; Srivastava, S. Prostate cancer genomics: Recent advances and the prevailing underrepresentation from racial and ethnic minorities. Int. J. Mol. Sci. 2018, 19, 1255. [Google Scholar] [CrossRef] [Green Version]
Variable | Controls (n = 579) (%) | Patients (n = 579) (%) | p-Value |
---|---|---|---|
Age at diagnosis (years) | |||
≤60 | 430 (74.3%) | 101 (17.4%) | p < 0.001 |
>60 | 149 (25.7%) | 478 (82.6%) | |
Mean ± S.D. | 52.31 ± 10.08 | 67.08 ± 7.42 | p < 0.001 |
PSA at diagnosis (ng/mL) | |||
≤10 | 309 (53.4%) | ||
>10 | 270 (46.6%) | ||
Pathologic Gleason grade group | |||
1 + 2 + 3 | 484 (83.6%) | ||
4 + 5 | 95 (16.4%) | ||
Clinical T stage | |||
1 + 2 | 501 (86.5%) | ||
3 + 4 | 78 (13.5%) | ||
Pathologic T stage | |||
2 | 306 (52.8%) | ||
3 + 4 | 273 (47.2%) | ||
Pathologic N stage | |||
N0 | 530 (91.5%) | ||
N1 | 49 (8.5%) | ||
Seminal vesicle invasion | |||
No | 452 (78.1%) | ||
Yes | 127 (21.9%) | ||
Perineural invasion | |||
No | 155 (26.8%) | ||
Yes | 424 (73.2%) | ||
Lymphovascular invasion | |||
No | 482 (83.2%) | ||
Yes | 97 (16.8%) | ||
D’Amico classification | |||
Low risk | 60 (10.4%) | ||
Intermediate risk | 220 (38.0%) | ||
High risk | 299 (51.6%) |
Variables | Controls (n = 579) (%) | Patients (n = 579) (%) | OR (95% CI) † | AOR (95% CI) ‡ |
---|---|---|---|---|
rs1412125 | ||||
TT | 318 (54.9%) | 333 (57.5%) | 1.00 | 1.00 |
TC | 222 (38.3%) | 209 (36.1%) | 0.899 (0.705–1.147) | 0.757 (0.562–1.021) |
CC | 39 (6.8%) | 37 (6.4%) | 0.906 (0.563–1.457) | 0.626 (0.354–1.108) |
TC + CC | 261 (45.1%) | 246 (42.5%) | 0.900 (0.714–1.135) | 0.848 (0.649–1.107) |
rs2249825 | ||||
CC | 431 (74.4%) | 438 (75.6%) | 1.00 | 1.00 |
CG | 139 (24.0%) | 126 (21.8%) | 0.892 (0.677–1.175) | 0.820 (0.587–1.146) |
GG | 9 (1.6%) | 15 (2.6%) | 1.640 (0.710–3.788) | 1.785 (0.647–4.925) |
CG + GG | 148 (25.6%) | 141 (24.4%) | 0.937 (0.718–1.223) | 0.874 (0.632–1.208) |
rs1045411 | ||||
CC | 353 (61.0%) | 367 (63.4%) | 1.00 | 1.00 |
CT | 200 (34.5%) | 186 (32.1%) | 0.895 (0.698–1.146) | 0.887 (0.656–1.199) |
TT | 26 (4.5%) | 26 (4.5%) | 0.962 (0.548–1.689) | 0.847 (0.429–1.672) |
CT + TT | 226 (39.0%) | 212 (36.6%) | 0.902 (0.711–1.144) | 0.882 (0.661–1.178) |
rs1360485 | ||||
TT | 335 (57.9%) | 347 (59.9%) | 1.00 | 1.00 |
TC | 211 (36.4%) | 199 (34.4%) | 0.911 (0.713–1.163) | 0.900 (0.668–1.213) |
CC | 33 (5.7%) | 33 (5.7%) | 0.965 (0.582–1.600) | 0.897 (0.486–1.657) |
TC + CC | 244 (42.1%) | 232 (40.1%) | 0.918 (0.726–1.160) | 0.899 (0.676–1.196) |
Variable | Genotypic Frequencies | |||
---|---|---|---|---|
rs1412125 | TT (N = 333) | TC + CC (N = 246) | OR (95% CI) | p-Value |
PSA at diagnosis (ng/mL) | ||||
≤10 | 151 (45.3%) | 119 (48.4%) | 1.00 | p = 0.470 |
>10 | 182 (54.7%) | 127 (51.6%) | 0.885 (0.636–1.232) | |
Pathologic Gleason grade group | ||||
1 + 2 + 3 | 282 (84.7%) | 202 (82.1%) | 1.00 | p = 0.409 |
4 + 5 | 51 (15.3%) | 44 (17.9%) | 1.204 (0.774–1.874) | |
Clinical T stage | ||||
1 + 2 | 284 (85.3%) | 217 (88.2%) | 1.00 | p = 0.308 |
3 + 4 | 49 (14.7%) | 29 (11.8%) | 0.775 (0.474–1.267) | |
Pathologic T stage | ||||
2 | 183 (55.0%) | 123 (50.0%) | 1.00 | p = 0.238 |
3 + 4 | 150 (45.0%) | 123 (50.0%) | 1.220 (0.877–1.697) | |
Pathologic N stage | ||||
N0 | 307 (92.2%) | 223 (90.7%) | 1.00 | p = 0.510 |
N1 | 26 (7.8%) | 23 (9.3%) | 1.218 (0.677–2.190) | |
Seminal vesicle invasion | ||||
No | 260 (78.1%) | 192 (78.0%) | 1.00 | p = 0.993 |
Yes | 73 (21.9%) | 54 (22.0%) | 1.002 (0.673–1.492) | |
Perineural invasion | ||||
No | 88 (26.4%) | 67 (27.2%) | 1.00 | p = 0.828 |
Yes | 245 (73.6%) | 179 (72.8%) | 0.960 (0.662–1.392) | |
Lymphovascular invasion | ||||
No | 282 (84.7%) | 200 (81.3%) | 1.00 | p = 0.281 |
Yes | 51 (15.3%) | 46 (18.7%) | 1.272 (0.821–1.970) | |
D’Amico classification | ||||
Low/Intermediate risk | 173 (52.0%) | 107 (43.5%) | 1.00 | p = 0.044 * |
High risk | 160 (48.0%) | 139 (56.5%) | 1.405 (1.009–1.956) |
Variable | Genotypic Frequencies | |||
---|---|---|---|---|
rs1045411 | CC (N = 367) | CT + TT (N = 2 12) | OR (95% CI) | p-Value |
PSA at diagnosis (ng/mL) | ||||
≤10 | 167 (45.5%) | 103 (48.6%) | 1.00 | p = 0.474 |
>10 | 200 (54.5%) | 109 (51.4%) | 0.884 (0.630–1.240) | |
Pathologic Gleason grade group | ||||
1 + 2 + 3 | 314 (85.6%) | 170 (80.2%) | 1.00 | p = 0.093 |
4 + 5 | 53 (14.4%) | 42 (19.8%) | 1.464 (0.937–2.286) | |
Clinical T stage | ||||
1 + 2 | 321 (87.5%) | 180 (84.9%) | 1.00 | p = 0.385 |
3 + 4 | 46 (12.5%) | 32 (15.1%) | 1.241 (0.763–2.018) | |
Pathologic T stage | ||||
2 | 206 (56.1%) | 100 (47.2%) | 1.00 | p = 0.037 * |
3 + 4 | 161 (43.9%) | 112 (52.8%) | 1.433 (1.021–2.012) | |
Pathologic N stage | ||||
N0 | 344 (93.7%) | 186 (87.7%) | 1.00 | p = 0.012 * |
N1 | 23 (6.3%) | 26 (12.3%) | 2.091 (1.160–3.767) | |
Seminal vesicle invasion | ||||
No | 294 (80.1%) | 158 (74.5%) | 1.00 | p = 0.118 |
Yes | 73 (19.9%) | 54 (25.5%) | 1.376 (0.921–2.056) | |
Perineural invasion | ||||
No | 103 (28.1%) | 52 (24.5%) | 1.00 | p = 0.354 |
Yes | 264 (71.9%) | 160 (75.5%) | 1.200 (0.815–1.768) | |
Lymphovascular invasion | ||||
No | 312 (85.0%) | 170 (80.2%) | 1.00 | p = 0.134 |
Yes | 55 (15.0%) | 42 (19.8%) | 1.401 (0.900–2.183) | |
D’Amico classification | ||||
Low/Intermediate risk | 187 (51.0%) | 93 (43.9%) | 1.00 | p = 0.100 |
High risk | 180 (49.0%) | 119 (56.1%) | 1.329 (0.946–1.867) |
Variable | Genotypic Frequencies | |||
---|---|---|---|---|
rs1360485 | TT (N = 347) | TC + CC (N = 232) | OR (95% CI) | p-Value |
PSA at diagnosis (ng/mL) | ||||
≤10 | 161 (46.4%) | 109 (47.0%) | 1.00 | p = 0.890 |
>10 | 186 (53.6%) | 123 (53.0%) | 0.977 (0.700–1.363) | |
Pathologic Gleason grade group | ||||
1 + 2 + 3 | 299 (86.2%) | 185 (79.7%) | 1.00 | p = 0.041 * |
4 + 5 | 48 (13.8%) | 47 (20.3%) | 1.583 (1.017–2.462) | |
Clinical T stage | ||||
1 + 2 | 302 (87.0%) | 199 (85.8%) | 1.00 | p = 0.664 |
3 + 4 | 45 (13.0%) | 33 (14.2%) | 1.113 (0.686–1.805) | |
Pathologic T stage | ||||
2 | 197 (56.8%) | 109 (47.0%) | 1.00 | p = 0.021 * |
3 + 4 | 150 (43.2%) | 123 (53.0%) | 1.482 (1.061–2.070) | |
Pathologic N stage | ||||
N0 | 326 (93.9%) | 204 (87.9%) | 1.00 | p = 0.011 * |
N1 | 21 (6.1%) | 28 (12.1%) | 2.131 (1.178–3.852) | |
Seminal vesicle invasion | ||||
No | 279 (80.4%) | 173 (74.6%) | 1.00 | p = 0.096 |
Yes | 68 (19.6%) | 59 (25.4%) | 1.399 (0.941–2.081) | |
Perineural invasion | ||||
No | 97 (28.0%) | 58 (25.0%) | 1.00 | p = 0.431 |
Yes | 250 (72.0%) | 174 (75.0%) | 1.164 (0.797–1.700) | |
Lymphovascular invasion | ||||
No | 296 (85.3%) | 186 (80.2%) | 1.00 | p = 0.105 |
Yes | 51 (14.7%) | 46 (19.8%) | 1.435 (0.926–2.226) | |
D’Amico classification | ||||
Low/Intermediate risk | 178 (51.3%) | 102 (44.0%) | 1.00 | p = 0.084 |
High risk | 169 (48.7%) | 130 (56.0%) | 1.342 (0.961–1.875) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, Y.-E.; Yang, P.-J.; Lin, C.-Y.; Chen, Y.-Y.; Chiang, W.-L.; Lin, P.-X.; Huang, Z.-Y.; Huang, M.; Ho, Y.-C.; Yang, S.-F. The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics. Int. J. Environ. Res. Public Health 2020, 17, 7247. https://doi.org/10.3390/ijerph17197247
Chou Y-E, Yang P-J, Lin C-Y, Chen Y-Y, Chiang W-L, Lin P-X, Huang Z-Y, Huang M, Ho Y-C, Yang S-F. The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics. International Journal of Environmental Research and Public Health. 2020; 17(19):7247. https://doi.org/10.3390/ijerph17197247
Chicago/Turabian StyleChou, Ying-Erh, Po-Jen Yang, Chia-Yen Lin, Yen-Yu Chen, Whei-Ling Chiang, Pei-Xuan Lin, Zih-Yun Huang, Matthew Huang, Yung-Chuan Ho, and Shun-Fa Yang. 2020. "The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics" International Journal of Environmental Research and Public Health 17, no. 19: 7247. https://doi.org/10.3390/ijerph17197247
APA StyleChou, Y. -E., Yang, P. -J., Lin, C. -Y., Chen, Y. -Y., Chiang, W. -L., Lin, P. -X., Huang, Z. -Y., Huang, M., Ho, Y. -C., & Yang, S. -F. (2020). The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics. International Journal of Environmental Research and Public Health, 17(19), 7247. https://doi.org/10.3390/ijerph17197247