Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.1.1. Databases and Key Terms Searched
2.1.2. Inclusion Criteria
2.1.3. Search Process and Study Selection
2.2. Data Extraction and Analysis
3. Results
3.1. Prevalence of EIB in Athletes
3.2. Sex Differences in EIB Prevalence
3.3. Sex Differences in Atopic Status
3.4. Association of EIB and Atopy in Athletes
3.5. Sex Differences in Atopic Status in Athletes with EIB
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soriano, J.B.; Kendrick, P.J.; Paulson, K.R.; Gupta, V.; Abrams, E.M.; Adedoyin, R.A.; Adhikari, T.B.; Advani, S.M.; Agrawal, A.; Ahmadian, E.; et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Wenzel, S.E. Severe asthma: From characteristics to phenotypes to endotypes. Clin. Exp. Allergy 2012, 42, 650–658. [Google Scholar] [CrossRef]
- Moral, L.; Vizmanos, G.; Torres-Borrego, J.; Praena-Crespo, M.; Tortajada-Girbés, M.; Pellegrini, F.J.; Asensio, Ó. Asthma diagnosis in infants and preschool children: A systematic review of clinical guidelines. Allergol. Immunopathol. 2019, 47, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Raundhal, M.; Oriss, T.B.; Ray, P.; Wenzel, S.E. Current concepts of severe asthma. J. Clin. Investig. 2016, 126, 2394–2403. [Google Scholar] [CrossRef] [PubMed]
- Toskala, E.; Kennedy, D.W. Asthma risk factors. Int. Forum Allergy Rhinol. 2015, 5, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Chambers, L.; Finch, J.; Edwards, K.; Jeanjean, A.; Leigh, R.; Gonem, S. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation. Clin. Exp. Allergy 2018, 48, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Newcomb, D.C. Sex Bias in Asthma Prevalence and Pathogenesis. Front. Immunol. 2018, 9, 2997. [Google Scholar] [CrossRef] [Green Version]
- Yung, J.A.; Fuseini, H.; Newcomb, D.C. Hormones, sex, and asthma. Ann. Allergy Asthma Immunol. 2018, 120, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Di Cicco, M.; D’Elios, S.; Peroni, D.G.; Comberiati, P. The role of atopy in asthma development and persistence. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 131–137. [Google Scholar] [CrossRef]
- Johansson, S.G.; Bieber, T.; Dahl, R.; Friedmann, P.S.; Lanier, B.Q.; Lockey, R.F.; Motala, C.; Ortega Martell, J.A.; Platts-Mills, T.A.; Ring, J.; et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 2004, 113, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Arbes, S.J.; Gergen, P.J.; Vaughn, B.; Zeldin, D.C. Asthma cases attributable to atopy: Results from the Third National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 2007, 120, 1139–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, A.; Vieira, R.P.; Northoff, H. Letter to the editor: The evidence of exercise-induced bronchoconstriction in endurance runners; genetic basis and gender differences. Exerc. Immunol. Rev. 2015, 21, 186–188. [Google Scholar] [PubMed]
- Krafczyk, M.A.; Asplund, C.A. Exercise-induced bronchoconstriction: Diagnosis and management. Am. Fam. Physician 2011, 84, 427–434. [Google Scholar] [PubMed]
- Sue-Chu, M. Winter sports athletes: Long-term effects of cold air exposure. Br. J. Sports Med. 2012, 46, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Langdeau, J.B.; Turcotte, H.; Bowie, D.M.; Jobin, J.; Desgagné, P.; Boulet, L.P. Airway hyperresponsiveness in elite athletes. Am. J. Respir. Crit. Care. Med. 2000, 161, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Gawlik, R.; Kurowski, M.; Kowalski, M.; Ziętkowski, Z.; Pokrywka, A.; Krysztofiak, H.; Krzywański, J.; Bugajski, A.; Bartuzi, Z. Asthma and exercise-induced respiratory disorders in athletes. The position paper of the Polish Society of Allergology and Polish Society of Sports Medicine. Postepy Dermatol Allergol. 2019, 36, 1–10. [Google Scholar] [CrossRef]
- Storms, W.W. Asthma associated with exercise. Immunol. Allergy Clin. North. Am. 2005, 25, 31–43. [Google Scholar] [CrossRef]
- Weiler, J.M.; Bonini, S.; Coifman, R.; Craig, T.; Delgado, L.; Capão-Filipe, M.; Passali, D.; Randolph, C.; Storms, W.; Ad Hoc Committee of Sports Medicine Committee. American Academy of Allergy, Asthma & Immunology Work Group report: Exercise-induced asthma. J. Allergy Clin. Immunol. 2007, 119, 1349–1358. [Google Scholar] [CrossRef]
- Han, M.K.; Arteaga-Solis, E.; Blenis, J.; Bourjeily, G.; Clegg, D.J.; DeMeo, D.; Duffy, J.; Gaston, B.; Heller, N.M.; Hemnes, A.; et al. Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease. Am. J. Respir. Crit. Care Med. 2018, 198, 850–858. [Google Scholar] [CrossRef]
- Zein, J.G.; Erzurum, S.C. Asthma is Different in Women. Curr. Allergy Asthma Rep. 2015, 15, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuseini, H.; Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheel, A.W.; Richards, J.C.; Foster, G.E.; Guenette, J.A. Sex differences in respiratory exercise physiology. Sports Med. 2004, 34, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Norlander, K.; Janson, C.; Malinovschi, A.; Nordang, L.; Emtner, M. The relationship between exercise induced bronchial obstruction and health related quality of life in female and male adolescents from a general population. BMC Pulm. Med. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Northoff, H.; Symons, S.; Zieker, D.; Schaible, E.V.; Schäfer, K.; Thoma, S.; Löffler, M.; Abbasi, A.; Simon, P.; Niess, A.M.; et al. Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc. Immunol. Rev. 2008, 14, 86–103. [Google Scholar]
- Stanford, K.I.; Mickleborough, T.D.; Ray, S.; Lindley, M.R.; Koceja, D.M.; Stager, J.M. Influence of menstrual cycle phase on pulmonary function in asthmatic athletes. Eur. J. Appl. Physiol. 2006, 96, 703–710. [Google Scholar] [CrossRef]
- Anderson, S.D.; Schoeffel, R.E.; Black, J.L.; Daviskas, E. Airway cooling as the stimulus to exercise-induced asthma—A re-evaluation. Eur. J. Respir. Dis. 1985, 67, 20–30. [Google Scholar]
- Deal, E.C.; McFadden, E.R.; Ingram, R.H.; Strauss, R.H.; Jaeger, J.J. Role of respiratory heat exchange in production of exercise-induced asthma. J. Appl. Physiol. 1979, 46, 467–475. [Google Scholar] [CrossRef]
- Kallings, L.V.; Emtner, M.; Bäcklund, L. Exercise-induced bronchoconstriction in adults with asthma; Comparison between running and cycling and between cycling at different air conditions. Upsala J. Med. Sci. 1999, 104, 191–198. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Hankinson, J.L.; Irvin, C.G.; MacIntyre, N.R.; McKay, R.T.; Wanger, J.S.; Anderson, S.D.; et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329. [Google Scholar] [PubMed] [Green Version]
- Parsons, J.P.; Hallstrand, T.S.; Mastronarde, J.G.; Kaminsky, D.A.; Rundell, K.W.; Hull, J.H.; Storms, W.W.; Weiler, J.M.; Cheek, F.; Wilson, K.C.; et al. An Official American Thoracic Society Clinical Practice Guideline: Exercise-induced Bronchoconstriction. Am. J. Respir. Crit. Care Med. 2013, 187, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.D.; Argyros, G.J.; Magnussen, H.; Holzer, K. Provocation by eucapnic voluntary hyperpnoea to identify exercise induced bronchoconstriction. Br. J. Sports Med. 2001, 35, 344–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahad, A.; Sandila, M.P.; Siddiqui, N.A. Prevalence of exercise-induced bronchospasm in national hockey players of Pakistan. J. Pak. Med. Assoc. 2004, 54, 96–99. [Google Scholar]
- Ahad, A.; Sandila, M.P.; Siddiqui, N.A.; Ahmed, S.T. Exercise-induced bronchospasm in male athletes at Karachi. J. Ayub Med. Coll. Abbottabad 2003, 15, 29–33. [Google Scholar]
- Allen, H.; Hull, J.H.; Backhouse, S.H.; de Carné, T.; Dimitriou, L.; Price, O.J. The Allergy Questionnaire for Athletes provides value in ruling-out exercise-induced bronchoconstriction. Allergy 2019, 74, 1794–1796. [Google Scholar] [CrossRef] [Green Version]
- Ansley, L.; Kippelen, P.; Dickinson, J.; Hull, J.H. Misdiagnosis of exercise-induced bronchoconstriction in professional soccer players. Allergy 2012, 67, 390–395. [Google Scholar] [CrossRef]
- Becerril-Ángeles, M.; Vargas, M.H.; Hernández-Pérez, L.; Rivera-Istepan, N.J.; Pérez-Hidalgo, R.I.; Ortega-González, A.G.; Rubio-Domínguez, S.; Rodríguez-Gutiérrez, M.C.; Gaxiola-Cortés, R.; Dosal-Ulloa, R.; et al. Prevalence and Characteristics of Exercise-Induced Bronchoconstriction in High School and College Athletes at 2240 m Altitude. Rev. Investig. Clin. 2017, 69, 20–27. [Google Scholar]
- Bonini, M.; Gramiccioni, C.; Fioretti, D.; Ruckert, B.; Rinaldi, M.; Akdis, C.; Todaro, A.; Palange, P.; Carlsen, K.H.; Pelliccia, A.; et al. Asthma, allergy and the Olympics: A 12-year survey in elite athletes. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Bougault, V.; Turmel, J.; Boulet, L.P. Bronchial challenges and respiratory symptoms in elite swimmers and winter sport athletes: Airway hyperresponsiveness in asthma: Its measurement and clinical significance. Chest 2010, 138, 31s–37s. [Google Scholar] [CrossRef]
- Burnett, D.M.; Burns, S.; Merritt, S.; Wick, J.; Sharpe, M. Prevalence of Exercise-Induced Bronchoconstriction Measured by Standardized Testing in Healthy College Athletes. Respir. Care 2016, 61, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, D.M.; Vardiman, J.P.; Deckert, J.A.; Ward, J.L.; Sharpe, M.R. Perception of Exercise-Induced Bronchoconstriction in College Athletes. Respir. Care 2016, 61, 897–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couillard, S.; Bougault, V.; Turmel, J.; Boulet, L.P. Perception of bronchoconstriction following methacholine and eucapnic voluntary hyperpnea challenges in elite athletes. Chest 2014, 145, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.; Stang, J.; Horta, L.; Stensrud, T.; Severo, M.; Mowinckel, P.; Silva, D.; Delgado, L.; Moreira, A.; Carlsen, K.H. Two distinct phenotypes of asthma in elite athletes identified by latent class analysis. J. Asthma 2015, 52, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, J.; McConnell, A.; Whyte, G. Diagnosis of exercise-induced bronchoconstriction: Eucapnic voluntary hyperpnoea challenges identify previously undiagnosed elite athletes with exercise-induced bronchoconstriction. Br. J. Sports Med. 2011, 45, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Kippelen, P.; Ceugniet, F.; Gomez, V.R.; Desnot, P.; Poulain, M.; Préfaut, C. Undiagnosed exercise-induced bronchoconstriction in ski-mountaineers. Int. J. Sports Med. 2005, 26, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Hallstrand, T.S.; Curtis, J.R.; Koepsell, T.D.; Martin, D.P.; Schoene, R.B.; Sullivan, S.D.; Yorioka, G.N.; Aitken, M.L. Effectiveness of screening examinations to detect unrecognized exercise-induced bronchoconstriction. J. Pediatr. 2002, 141, 343–348. [Google Scholar] [CrossRef]
- Hunt, E.B.; Murphy, B.; Murphy, C.; Crowley, T.; Cronin, O.; Hay, S.; Stack, M.; Bowen, B.; Ronan, N.J.; Greene, E.; et al. A Study To Assess The Prevalence Of Exercise-Induced Bronchoconstriction In Inter-County Hurling. Ir. Med. J. 2017, 110, 655. [Google Scholar]
- Kippelen, P.; Caillaud, C.; Coste, O.; Godard, P.; Préfaut, C. Asthma and exercise-induced bronchoconstriction in amateur endurance-trained athletes. Int. J. Sports Med. 2004, 25, 130–132. [Google Scholar]
- Kukafka, D.S.; Lang, D.M.; Porter, S.; Rogers, J.; Ciccolella, D.; Polansky, M.; D’Alonzo, G.E. Exercise-induced bronchospasm in high school athletes via a free running test: Incidence and epidemiology. Chest 1998, 114, 1613–1622. [Google Scholar] [CrossRef] [Green Version]
- Langdeau, J.B.; Day, A.; Turcotte, H.; Boulet, L.P. Gender differences in the prevalence of airway hyperresponsiveness and asthma in athletes. Respir. Med. 2009, 103, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leuppi, J.D.; Kuhn, M.; Comminot, C.; Reinhart, W.H. High prevalence of bronchial hyperresponsiveness and asthma in ice hockey players. Eur. Respir. J. 1998, 12, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levai, I.K.; Hull, J.H.; Loosemore, M.; Greenwell, J.; Whyte, G.; Dickinson, J.W. Environmental influence on the prevalence and pattern of airway dysfunction in elite athletes. Respirology 2016, 21, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Lund, T.; Pedersen, L.; Larsson, B.; Backer, V. Prevalence of asthma-like symptoms, asthma and its treatment in elite athletes. Scand. J. Med. Sci. Sports 2009, 19, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Molphy, J.; Dickinson, J.; Hu, J.; Chester, N.; Whyte, G. Prevalence of bronchoconstriction induced by eucapnic voluntary hyperpnoea in recreationally active individuals. J. Asthma 2014, 51, 44–50. [Google Scholar] [CrossRef]
- Norqvist, J.; Eriksson, L.; Söderström, L.; Lindberg, A.; Stenfors, N. Self-reported physician-diagnosed asthma among Swedish adolescent, adult and former elite endurance athletes. J. Asthma 2015, 52, 1046–1053. [Google Scholar] [CrossRef]
- Osthoff, M.; Michel, F.; Strupler, M.; Miedinger, D.; Taegtmeyer, A.B.; Leuppi, J.D.; Perret, C. Bronchial hyperresponsiveness testing in athletes of the Swiss Paralympic team. BMC Sports Sci. Med. Rehabil. 2013, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.P.; Cosmar, D.; Phillips, G.; Kaeding, C.; Best, T.M.; Mastronarde, J.G. Screening for exercise-induced bronchoconstriction in college athletes. J. Asthma 2012, 49, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, L.; Winther, S.; Backer, V.; Anderson, S.D.; Larsen, K.R. Airway responses to eucapnic hyperpnea, exercise, and methacholine in elite swimmers. Med. Sci. Sports Exerc. 2008, 40, 1567–1572. [Google Scholar] [CrossRef]
- Rundell, K.W.; Spiering, B.A.; Evans, T.M.; Baumann, J.M. Baseline lung function, exercise-induced bronchoconstriction, and asthma-like symptoms in elite women ice hockey players. Med. Sci. Sports Exerc. 2004, 36, 405–410. [Google Scholar] [CrossRef]
- Rundell, K.W.; Spiering, B.A.; Judelson, D.A.; Wilson, M.H. Bronchoconstriction during cross-country skiing: Is there really a refractory period? Med. Sci. Sports Exerc. 2003, 35, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sallaoui, R.; Chamari, K.; Chtara, M.; Alaranta, A.; Manai, Y.; Ghedira, H.; Amri, M. Asthma in Tunisian elite athletes. Int. J. Sports Med. 2007, 28, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Sallaoui, R.; Chamari, K.; Mossa, A.; Tabka, Z.; Chtara, M.; Feki, Y.; Amri, M. Exercise-induced bronchoconstriction and atopy in Tunisian athletes. BMC Pulm. Med. 2009, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallaoui, R.; Zendah, I.; Ghedira, H.; Belhaouz, M.; Ghrairi, M.; Amri, M. Exercise-induced bronchoconstriction in Tunisian elite athletes is underdiagnosed. Open Access J. Sports Med. 2011, 2, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Pohjantähti, H.; Laitinen, J.; Parkkari, J. Exercise-induced bronchospasm among healthy elite cross country skiers and non-athletic students. Scand. J. Med. Sci. Sports 2005, 15, 324–328. [Google Scholar] [CrossRef]
- Seys, S.F.; Hox, V.; van Gerven, L.; Dilissen, E.; Marijsse, G.; Peeters, E.; Dekimpe, E.; Kasran, A.; Aertgeerts, S.; Troosters, T.; et al. Damage-associated molecular pattern and innate cytokine release in the airways of competitive swimmers. Allergy 2015, 70, 187–194. [Google Scholar] [CrossRef]
- Stenfors, N. Self-reported symptoms and bronchial hyperresponsiveness in elite cross-country skiers. Respir. Med. 2010, 104, 1760–1763. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, R.N.; Teixeira, L.R.; Costa, L.A.; Martins, M.A.; Mickleborough, T.D.; Carvalho, C.R. Exercise-induced bronchoconstriction in elite long-distance runners in Brazil. J. Bras. Pneumol. 2012, 38, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Romberg, K.; Bjermer, L.; Tufvesson, E. Exercise but not mannitol provocation increases urinary Clara cell protein (CC16) in elite swimmers. Respir. Med. 2011, 105, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.P.; Kaeding, C.; Phillips, G.; Jarjoura, D.; Wadley, G.; Mastronarde, J.G. Prevalence of exercise-induced bronchospasm in a cohort of varsity college athletes. Med. Sci. Sports Exerc. 2007, 39, 1487–1492. [Google Scholar] [CrossRef]
- Kippelen, P.; Larsson, J.; Anderson, S.D.; Brannan, J.D.; Delin, I.; Dahlen, B.; Dahlen, S.E. Acute effects of beclomethasone on hyperpnea-induced bronchoconstriction. Med. Sci. Sports Exerc. 2010, 42, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.J.; Tufvesson, E.; Anderson, S.D.; Romer, L.M.; Bjermer, L.; Kippelen, P. Effect of terbutaline on hyperpnoea-induced bronchoconstriction and urinary club cell protein 16 in athletes. J. Appl. Physiol. 2013, 115, 1450–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, A.J.; Romer, L.M.; Kippelen, P. Self-reported Symptoms after Induced and Inhibited Bronchoconstriction in Athletes. Med. Sci. Sports Exerc. 2015, 47, 2005–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, A.J.; Bood, J.R.; Anderson, S.D.; Romer, L.M.; Dahlén, B.; Dahlén, S.E.; Kippelen, P. A standard, single dose of inhaled terbutaline attenuates hyperpnea-induced bronchoconstriction and mast cell activation in athletes. J. Appl. Physiol. 2016, 120, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Rundell, K.W.; Anderson, S.D.; Spiering, B.A.; Judelson, D.A. Field exercise vs laboratory eucapnic voluntary hyperventilation to identify airway hyperresponsiveness in elite cold weather athletes. Chest 2004, 125, 909–915. [Google Scholar] [CrossRef]
- Vliagoftis, H.; Dimitriadou, V.; Boucher, W.; Rozniecki, J.J.; Correia, I.; Raam, S.; Theoharides, T.C. Estradiol augments while tamoxifen inhibits rat mast cell secretion. Int. Arch. Allergy Immunol. 1992, 98, 398–409. [Google Scholar] [CrossRef]
- Kim, M.S.; Chae, H.J.; Shin, T.Y.; Kim, H.M.; Kim, H.R. Estrogen regulates cytokine release in human mast cells. Immunopharmacol. Immunotoxicol. 2001, 23, 495–504. [Google Scholar] [CrossRef]
- Vasiadi, M.; Kempuraj, D.; Boucher, W.; Kalogeromitros, D.; Theoharides, T.C. Progesterone inhibits mast cell secretion. Int. J. Immunopathol. Pharmacol. 2006, 19, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Cruz, S.; Mendoza-Rodríguez, Y.; Nava-Castro, K.E.; Yepez-Mulia, L.; Morales-Montor, J. Gender-related effects of sex steroids on histamine release and FcεRI expression in rat peritoneal mast cells. J. Immunol. Res. 2015, 2015, 351829. [Google Scholar] [CrossRef]
- Zierau, O.; Zenclussen, A.C.; Jensen, F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol. 2012, 3, 169. [Google Scholar] [CrossRef] [Green Version]
- Shirasaki, H.; Watanabe, K.; Kanaizumi, E.; Konno, N.; Sato, J.; Narita, S.; Himi, T. Expression and localization of steroid receptors in human nasal mucosa. Acta Otolaryngol. 2004, 124, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Mempel, M.; Schober, W.; Behrendt, H.; Ring, J. Gender difference, sex hormones, and immediate type hypersensitivity reactions. Allergy 2008, 63, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Zaitsu, M.; Narita, S.; Lambert, K.C.; Grady, J.J.; Estes, D.M.; Curran, E.M.; Brooks, E.G.; Watson, C.S.; Goldblum, R.M.; Midoro-Horiuti, T. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol. Immunol. 2007, 44, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, S.; Pergola, C.; Dehm, F.; Rossi, A.; Gerstmeier, J.; Troisi, F.; Pein, H.; Schaible, A.M.; Weinigel, C.; Rummler, S.; et al. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J. Clin. Investig. 2017, 127, 3167–3176. [Google Scholar] [CrossRef] [Green Version]
- Guhl, S.; Artuc, M.; Zuberbier, T.; Babina, M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp. Dermatol. 2012, 21, 878–880. [Google Scholar] [CrossRef]
- Pace, S.; Sautebin, L.; Werz, O. Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem. Pharmacol. 2017, 145, 1–11. [Google Scholar] [CrossRef]
- Nyman, M.J.; Eskola, O.; Kajander, J.; Vahlberg, T.; Sanabria, S.; Burns, D.; Hargreaves, R.; Solin, O.; Hietala, J. Gender and age affect NK1 receptors in the human brain—a positron emission tomography study with [18F]SPA-RQ. Int. J. Neuropsychopharmacol. 2007, 10, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Taziaux, M.; Swaab, D.F.; Bakker, J. Sex differences in the neurokinin B system in the human infundibular nucleus. J. Clin. Endocrinol. Metab. 2012, 97, E2210–E2220. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, S.; Swasey, C.H.; Loader, J.E.; Dakhama, A.; Joetham, A.; Ohnishi, H.; Balhorn, A.; Miyahara, N.; Takeda, K.; Gelfand, E.W. Estrogen determines sex differences in airway responsiveness after allergen exposure. Am. J. Respir. Cell Mol. Biol. 2008, 38, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Sathish, V.; Martin, Y.N.; Prakash, Y.S. Sex steroid signaling: Implications for lung diseases. Pharmacol. Ther. 2015, 150, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Behan, M.; Wenninger, J.M. Sex steroidal hormones and respiratory control. Respir. Physiol. Neurobiol. 2008, 164, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helenius, I.J.; Tikkanen, H.O.; Sarna, S.; Haahtela, T. Asthma and increased bronchial responsiveness in elite athletes: Atopy and sport event as risk factors. J. Allergy Clin. Immunol. 1998, 101, 646–652. [Google Scholar] [CrossRef]
- Didier, A.; Mazieres, J.; Kouevijin, G.; Tetu, L.; Rivière, D. [Sport and atopy] [article in French]. Revue Maladies Respiratoires 2003, 20, 727–734. [Google Scholar]
- Aggarwal, B.; Mulgirigama, A.; Berend, N. Exercise-induced bronchoconstriction: Prevalence, pathophysiology, patient impact, diagnosis and management. NPJ Prim. Care Respir. Med. 2018, 28, 31. [Google Scholar] [CrossRef]
- PausJenssen, E.S.; Cockcroft, D.W. Sex differences in asthma, atopy, and airway hyperresponsiveness in a university population. Ann. Allergy Asthma Immunol. 2003, 91, 34–37. [Google Scholar] [CrossRef]
- Carey, M.A.; Card, J.W.; Voltz, J.W.; Arbes, S.J.; Germolec, D.R.; Korach, K.S.; Zeldin, D.C. It’s all about sex: Gender, lung development and lung disease. Trends Endocrinol. Metab. 2007, 18, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Weiler, J.M.; Brannan, J.D.; Randolph, C.C.; Hallstrand, T.S.; Parsons, J.; Silvers, W.; Storms, W.; Zeiger, J.; Bernstein, D.I.; Blessing-Moore, J.; et al. Exercise-induced bronchoconstriction update-2016. J. Allergy Clin. Immunol. 2016, 138, 1292–1295. [Google Scholar] [CrossRef] [Green Version]
- Koper, I.; Hufnagl, K.; Ehmann, R. Gender aspects and influence of hormones on bronchial asthma—Secondary publication and update. World Allergy Organ. J. 2017, 10, 46. [Google Scholar] [CrossRef]
- Mirdal, G.M.; Petersson, B.; Weeke, B.; Vibits, A. Asthma and menstruation: The relationship between psychological and bronchial hyperreactivity. Br. J. Med. Psychol. 1998, 71, 47–55. [Google Scholar] [CrossRef]
- Araújo, C.G.; Scharhag, J. Athlete: A working definition for medical and health sciences research. Scand. J. Med. Sci. Sports 2016, 26, 4–7. [Google Scholar] [CrossRef]
- Sacha, J.J.; Quinn, J.M. The environment, the airway, and the athlete. Ann. Allergy Asthma Immunol. 2011, 106, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, S.K. Premenstrual asthma. Indian J. Chest Dis. Allied Sci. 2005, 47, 109–116. [Google Scholar] [PubMed]
- Giersch, G.E.W.; Morrissey, M.C.; Katch, R.K.; Colburn, A.T.; Sims, S.T.; Stachenfeld, N.S.; Casa, D.J. Menstrual cycle and thermoregulation during exercise in the heat: A systematic review and meta-analysis. J. Sci. Med. Sport 2020. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.H.; Cotter, J.D.; Schlader, Z.J.; Stannard, S.R.; Perry, B.G.; Barnes, M.J.; Mündel, T. On exercise thermoregulation in females: Interaction of endogenous and exogenous ovarian hormones. J. Physiol. 2019, 597, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Osumi, H.; Uchizawa, A.; Hamada, H.; Park, I.; Suzuki, Y.; Tanaka, Y.; Ishihara, A.; Yajima, K.; Seol, J.; et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol. Rep. 2020, 8, e14353. [Google Scholar] [CrossRef]
- Constantini, N.W.; Dubnov, G.; Lebrun, C.M. The menstrual cycle and sport performance. Clin. Sports Med. 2005, 24, e51–e82. [Google Scholar] [CrossRef]
- Freemas, J.A.; Baranauskas, M.N.; Constantini, K.; Constantini, N.; Greenshields, J.T.; Mickleborough, T.D.; Raglin, J.S.; Schlader, Z.J. Exercise Performance is Impaired during the Mid-Luteal Phase of the Menstrual Cycle. Med. Sci. Sports Exerc. 2020. [Google Scholar] [CrossRef]
- Kossman, D.A.; Williams, N.I.; Domchek, S.M.; Kurzer, M.S.; Stopfer, J.E.; Schmitz, K.H. Exercise lowers estrogen and progesterone levels in premenopausal women at high risk of breast cancer. J. Appl. Physiol. 2011, 111, 1687–1693. [Google Scholar] [CrossRef]
- De Souza, M.J.; Toombs, R.J.; Scheid, J.L.; O’Donnell, E.; West, S.L.; Williams, N.I. High prevalence of subtle and severe menstrual disturbances in exercising women: Confirmation using daily hormone measures. Hum. Reprod. 2010, 25, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Osman, M. Therapeutic implications of sex differences in asthma and atopy. Arch. Dis. Child. 2003, 88, 587–590. [Google Scholar] [CrossRef] [Green Version]
Author, Year | Method for EIB Diagnosis | Study Population (n = subjects), Sex Ratio | EIB Prevalence |
---|---|---|---|
Ahad, Sandila, and Siddiqui, 2004 [34] | Exercise challenge | Pakistani hockey players (n = 27) Male only | 19% |
Ahad, Sandila, Siddiqui, and Ahmed, 2003 [35] | Exercise challenge | Pakistani athletes (n = 179) Male only | 7% |
Allen et al., 2019 [36] | EVH 1 | Recreational athletes (n = 180) (120:60) M:F | 37% |
Ansley, Kippelen, Dickinson, and Hull, 2012 [37] | EVH and Bronchoprovocation Test (dry powder mannitol) | UK soccer players (n = 65) Male only | 51% |
Becerril-Ángeles et al., 2017 [38] | Exercise challenge | Mexican high school and college athletes of summer sports (n = 208) (115:93) M:F | 7.2% |
Bonini et al., 2015 [39] | Exercise challenge and Bronchoprovocation Test (dry powder mannitol or methacholine) | Italian Olympic Delegation at Summer (Sydney 2000, Beijing 2008, and London 2012) and Winter (Vancouver 2010) Olympics (n = 659) (441:218) M:F | 14.7% |
Bougault, Turmel, and Boulet, 2010 [40] | EVH and Bronchoprovocation Test (dry powder methacholine) | Swimmers and winter sport athletes (n = 45 in each group) (39:51) M:F | 75% in swimmers 40% in winter sport athletes |
Burnett, Burns, Merritt, Wick, and Sharpe, 2016 [41] | Exercise challenge | 80 college athletes (56:24) M:F | 42.5% |
Burnett, Vardiman, Deckert, Ward, and Sharpe, 2016 [42] | Questionnaire | 196 college athletes (56:140) M:F | 28.6% |
Couillard et al., 2014 [43] | Questionnaire, EVH and Bronchoprovocation Test (dry powder methacholine) | 130 athlete swimmers (n = 51 swimmers, n = 10 synchronized swimmers), winter athletes (n = 30 cross-country skiers, n = 11 speed skaters training outdoors, n = 9 biathletes), other endurance sports athletes (n = 10 triathletes, n = 7 cyclists, n = 2 canoe-kayakers) (65:65) M:F | 51% |
Couto et al., 2015 [44] | Bronchoprovocation Test (dry powder mannitol or methacholine) | Portuguese and Norwegian athletes training at high-competitive levels (national, international, or Olympic teams) (n = 324) (107:43) M:F | 46.2% |
Dickinson, McConnell, and Whyte, 2011 [45] | EVH | Elite British athletes (n = 228) Sex not reported | 34% |
Durand et al., 2005 [46] | Exercise challenge | Ski-mountaineering athletes (n = 31) (28:3) M:F | 48.3 % |
Hallstrand et al., 2002 [47] | Exercise challenge | Adolescents participating in organized sports from three suburban high schools (n = 256) (136:120) M:F | 9.4% |
Hunt et al., 2017 [48] | Exercise challenge | N = 92 players from three senior inter-county hurling teams Male only | 9.8% |
Kippelen, Caillaud, Coste, Godard, and Préfaut, 2004 [49] | Exercise challenge | n = 97 athletes Male only | 5.3% |
Kukafka et al., 1998 [50] | Exercise challenge | High school football players (n = 238) Male only | 9% |
Langdeau et al., 2009 [51] | Bronchoprovocation Test (dry powder methacholine) | n = 100 athletes (65:35) M:F | AHR higher in females (60%) vs. males (21.5%), p < 0.0001 |
Leuppi, Kuhn, Comminot, and Reinhart, 1998 [52] | Bronchoprovocation Test (dry powder methacholine) | Elite ice hockey players (n = 26) and floorball players (n = 24) Male only | 34.6% (ice hockey); 20.8% (floorball players) |
Levai et al., 2016 [53] | EVH | 38 boxers (33:5) M:F 44 swimmers (25:19) M:F | 68% (elite swimmers); 8% (boxers) |
Lund, Pedersen, Larsson, and Backer, 2009 [54] | Questionnaire | 329 elite athletes (198:131) M:F | 55% |
Molphy et al., 2014 [55] | EVH | Recreationally active individuals (n = 136) | 13.2% |
Norqvist, Eriksson, Söderström, Lindberg, and Stenfors, 2015 [56] | Questionnaire | n = 402 Swedish elite skiers, orienteers, and former Olympic athletes (cross-country and biathlon) (218:184) M:F | 11% |
Osthoff et al., 2013 [57] | EVH and Bronchoprovocation Test (dry powder mannitol) | n = 44 athletes aiming to participate at the 2008 Beijing Paralympic Games (30:14) M:F | 20% |
Parsons et al., 2012 [58] | EVH | n = 144 athletes from six different varsity sports at a large National Collegiate Athletic Association Division I collegiate athletic program (79:65) M:F | 3% |
Pedersen, Winther, Backer, Anderson, and Larsen, 2008 [59] | EVH and Bronchoprovocation Test (dry powder methacholine) | 16 elite swimmers Female only | 50% |
Pohjantähti et al., 2005 [65] | Exercise challenge | n = 20 healthy elite cross-country skiers (14:6) M:F n = 18 non-asthmatic controls (7:11) M:F | 45% |
Rundell, Spiering, Evans, and Baumann, 2004 [60] | Exercise challenge | United States national ice hockey team players (n = 43) Female only | 21% |
Rundell et al., 2003 [61] | Exercise challenge | n = 18 elite athletes, cross-country skiers (13:5) M:F | 50% |
Sallaoui et al., 2007 [62] | Exercise challenge | n = 107 elite athletes (63:44) M:F | 13% |
Sallaoui et al., 2009 [63] | Exercise challenge | n = 326 athletes (188: 138) M:F | 9.8% |
Sallaoui et al., 2011 [64] | Exercise challenge | n = 107 elite athletes (63:44) M:F | 13% |
Seys et al., 2015 [66] | EVH | Swimmers (n = 26), indoor athletes (basketball/volleyball, n = 13), and controls (not exercising more than 4h/week, n = 15). Swimmers (16:10) M:F Indoor athletes (8:5) M:F Controls (7:8) M:F | 23% of swimmers, 0% of indoor athletes, 1% of controls |
Stenfors, 2010 [67] | EVH and Bronchoprovocation Test (dry powder mannitol or methacholine) | n = 46 Swedish elite cross-country skiers (24: 22) M:F | 17% |
Teixeira et al., 2012 [68] | EVH | 20 Brazilian long-distance runners. Male only | 25% |
Sex/EIB | EIB | Healthy | Marginal Row Total |
---|---|---|---|
Male | 350 (339.03) [0.36] 1 | 779 (789.97) [0.15] | 1129 |
Female | 268 (278.97) [0.43] | 661 (650.03) [0.19] | 929 |
Marginal Column Total | 618 | 1440 | 2058 (Grand Total) |
Atopic Status/Sex | Male | Female | Row Total |
---|---|---|---|
Positive atopic status | 184 (19%) | 139 (14%) | 323 (33%) |
Negative atopic status | 301 (30%) | 356 (36%) | 657 (67%) |
Column Total | 485 | 495 | 980 (Grand Total) |
Atopic status/Sex | Male | Female | Row Totals |
---|---|---|---|
Positive atopic status | 184 (159.85) [3.65] 1 | 139 (163.15) [3.57] | 323 |
Negative Atopic status | 301 (325.15) [1.79] | 356 (331.85) [1.76] | 657 |
Column Totals | 485 | 495 | 980 (Grand Total) |
Atopy/EIB | EIB | Healthy Controls | Total Row |
---|---|---|---|
Atopy | 139 (123.75) [1.88] 1 | 100 (115.25) [2.02] | 239 |
No atopy | 123 (138.25) [1.68] | 144 (128.75) [1.81] | 267 |
Total column | 262 | 244 | 506 (Grand Total) |
EIB Athletes | Atopy | No Atopy | Total Row |
---|---|---|---|
Male | 137 (36%) | 92 (24%) | 229 (60%) |
Female | 58 (15%) | 92 (24%) | 150 (40%) |
Total Column | 195 | 184 | 379 (Grand Total) |
Atopy | No Atopy | Marginal Row Totals | |
---|---|---|---|
Male | 137 (117.82) [3.12] 1 | 92 (111.18) [3.31] | 229 |
Female | 58 (77.18) [4.77] | 92 (72.82) [5.05] | 150 |
Marginal Column Totals | 195 | 184 | 379 (Grand Total) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Bauza, D.E.; Silveyra, P. Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7270. https://doi.org/10.3390/ijerph17197270
Rodriguez Bauza DE, Silveyra P. Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2020; 17(19):7270. https://doi.org/10.3390/ijerph17197270
Chicago/Turabian StyleRodriguez Bauza, Daniel Enrique, and Patricia Silveyra. 2020. "Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 17, no. 19: 7270. https://doi.org/10.3390/ijerph17197270
APA StyleRodriguez Bauza, D. E., & Silveyra, P. (2020). Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 17(19), 7270. https://doi.org/10.3390/ijerph17197270