Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Outcome
2.3. Predictors
2.4. Analyses
2.4.1. Social Determinants of Health
2.4.2. Top Predictors of Unmet Dental Care Needs
2.4.3. Model for Risk Predictor of Unmet Dental Care Needs
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hung, M.; Moffat, R.; Gill, G.; Lauren, E.; Ruiz-Negron, B.; Rosales, M.N.; Richey, J.; Licari, F.W. Oral health as a gateway to overall health and well-being: Surveillance of the geriatric population in the United States. Spec. Care Dentist. 2019, 39, 354–361. [Google Scholar] [PubMed]
- Dorfer, C.; Benz, C.; Aida, J.; Campard, G. The relationship of oral health with general health and NCDs: A brief review. Int. Dent. J. 2017, 67 (Suppl. S2), 14–18. [Google Scholar] [PubMed] [Green Version]
- Scannapieco, F.A.; Cantos, A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontol 2000 2016, 72, 153–175. [Google Scholar]
- Kiyak, H.A.; Reichmuth, M. Barriers to and enablers of older adults’ use of dental services. J. Dent. Educ. 2005, 69, 975–986. [Google Scholar] [PubMed]
- Kim, N.; Kim, C.Y.; Shin, H. Inequality in unmet dental care needs among South Korean adults. BMC Oral. Health. 2017, 17, 80. [Google Scholar]
- Tellez, M.; Zini, A.; Estupiñan-Day, S. Social Determinants and Oral Health: An Update. Curr. Oral. Health Rep. 2014, 1, 148–152. [Google Scholar]
- Fingar, K.R.; Smith, M.W.; Davies, S.; McDonald, K.M.; Stocks, C.; Raven, M.C. Medicaid dental coverage alone may not lower rates of dental emergency department visits. Health Aff. (Millwood) 2015, 34, 1349–1357. [Google Scholar] [PubMed] [Green Version]
- Zwetchkenbaum, S.; Oh, J. More Rhode Island Adults Have Dental Coverage After the Medicaid Expansion: Did More Adults Receive Dental Services? Did More Dentists Provide Services? Rhode Isl. Med. J. (2013) 2017, 100, 51–53. [Google Scholar]
- Stransky, M.L. Unmet Needs for Care and Medications, Cost as a Reason for Unmet Needs, and Unmet Needs as a Big Problem, due to Health-Care Provider (Dis)Continuity. J. Patient Exp. 2018, 5, 258–266. [Google Scholar]
- Adegbembo, A.O.; Leake, J.L.; Main, P.A.; Lawrence, H.P.; Chipman, M.L. The influence of dental insurance on institutionalized older adults in ranking their oral health status. Spec. Care Dentist. 2005, 25, 275–285. [Google Scholar]
- Vargas, C.M.; Dye, B.A.; Hayes, K. Oral health care utilization by US rural residents, National Health Interview Survey 1999. J. Public Health Dent. 2003, 63, 150–157. [Google Scholar] [PubMed]
- Collier, R. United States faces dentist shortage. Can. Med Assoc. J. 2009, 181, E253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campaign PCsD. Children’s Dental Shortages Fuel Major Access Problem; The PEW Center on the States: Washington, DC, USA, 2011. [Google Scholar]
- Edelstein, B.L. Disparities in Oral Health and Access to Care: Findings of National Surveys. Ambul. Pediatrics 2002, 2 (Suppl. S2), 141–147. [Google Scholar] [CrossRef]
- Malecki, K.; Wisk, L.E.; Walsh, M.; McWilliams, C.; Eggers, S.; Olson, M. Oral Health Equity and Unmet Dental Care Needs in a Population-Based Sample: Findings From the Survey of the Health of Wisconsin. Am. J. Public Health 2015, 105, S466–S474. [Google Scholar]
- Quality AfHRa. Medical Expenditure Panel Survey Home. 2019. Available online: https://meps.ahrq.gov/mepsweb/ (accessed on 6 May 2020).
- Kubat, M. An Introduction to Machine Learning. Miroslav Kubat, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 13: 978-3319639123. [Google Scholar]
- Theobald, O. Machine Learning for Absolute Beginners. In Oliver Theobald; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2018; ISBN 13: 978-1549617218. [Google Scholar]
- Marc Peter Deisenroth, A.; Aldo, F.; Cheng, S.O. Mathematics for Machine Learning, 1st ed.; Cambridge University Press: Cambridge, UK, 2020; ISBN 13: 978-1108455145. [Google Scholar]
- Clinton, S. Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; ISBN 13: 978-1975860974. [Google Scholar]
- Alexa, S. Machine Learning: Complete Beginners Guide for Neural Networks, Algorithms, Random Forests and Decision Trees Made Simple; CreateSpace Independently Publishing Platform: Scotts Valley, CA, USA, 2017; ISBN 13: 978-1983423789. [Google Scholar]
- Xin, M. Using Classification and Regression Trees: A Practical Primer; Information Age Publishing: Charlotte, NC, USA, 2018; ISBN 13: 978-1641132374. [Google Scholar]
- Tarek, A. Hands-on Machine Learning with Scikit-learn and Scientific Python Toolkit; Packt Publishing: Birmingham, UK, 2020; ISBN 13: 978-1838826048. [Google Scholar]
- Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python, 1st ed.; David Paper. Apress: New York, NY, USA, 2019; ISBN 13: 978-1484253724.
- Ian, G.; Yoshua, B.; Aaron, C. Deep Learning (Adaptive Computation and Machine Learning Series); The MIT Press: Cambridge, MA, USA, 2016; ISBN 13: 978-0262035613. [Google Scholar]
- Francois, C. Deep Learning with Python, 1st ed.; Manning Publications: Shelter Island, NY, USA, 2017; ISBN 13: 978-1617294433. [Google Scholar]
- Aurelien, G. Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd ed.; O’Reilly Media: Newton, MA, USA, 2019; ISBN 13: 978-1492032649. [Google Scholar]
- The R Project for Statistical Computing. 2019. Available online: https://www.r-project.org/ (accessed on 7 October 2019).
- Python. 2019. Available online: https://www.python.org/ (accessed on 12 October 2019).
- Ku, L.; Broaddus, M. Public and private health insurance: Stacking up the costs. Health Affairs (Project Hope) 2008, 27, w318–w327. [Google Scholar]
- Lee, S.Y.; Kim, C.W.; Kang, J.H.; Seo, N.K. Unmet healthcare needs depending on employment status. Health Policy 2015, 119, 899–906. [Google Scholar]
- Guarnizo-Herreno, C.C.; Wehby, G.L. Explaining racial/ethnic disparities in children’s dental health: A decomposition analysis. Am. J. Public Health 2012, 102, 859–866. [Google Scholar] [PubMed]
- Reid, B.C.; Hyman, J.J.; Macek, M.D. Race/ethnicity and untreated dental caries: The impact of material and behavioral factors. Community Dent. Oral. Epidemiol. 2004, 32, 329–336. [Google Scholar] [PubMed]
- Sabbah, W.; Tsakos, G.; Sheiham, A.; Watt, R.G. The effects of income and education on ethnic differences in oral health: A study in US adults. J. Epidemiol. Community Health 2009, 63, 516–520. [Google Scholar]
- Brothwell, D.J.; Jay, M.; Schonwetter, D.J. Dental service utilization by independently dwelling older adults in Manitoba, Canada. J. Can. Dent. Assoc. 2008, 74, 161. [Google Scholar] [PubMed]
- Chae, S.; Lee, Y.; Kim, J.; Chun, K.H.; Lee, J.K. Factors associated with perceived unmet dental care needs of older adults. Geriatr. Gerontol. Int. 2017, 17, 1936–1942. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | N * | % * | Mean | Standard Deviation * | Median * |
---|---|---|---|---|---|---|
AGE16X | Age (year) | 25,200 (246,354,311) | 46.5 (47.5) | 18.0 (18.2) | 45 (47) | |
TTLP16X | Person’s total income ($) | 22,171 (209,529,021) | 31,402 (38,972) | 20,800 (41,802) | 20,800 (28,000) | |
RACETHX | Race/Ethnicity | |||||
Hispanic | 7273 (58,128,006) | 29.2 (18.0) | ||||
White | 10,467 (194,556,659) | 42.0 (60.2) | ||||
Black | 4536 (39,595,626) | 18.2 (12.3) | ||||
Asian | 1923 (18,459,241) | 7.7 (5.7) | ||||
Other race or multiple race | 706 (12,402,154) | 2.8 (3.8) | ||||
INSCOV16 | Insurance coverage | |||||
Private | 18,553 (216,879,523) | 53.5 (67.1) | ||||
Public | 12,255 (81,653,479) | 35.4 (25.3) | ||||
Uninsured | 3.847 (24,608,684) | 11.1 (7.6) | ||||
HWELLSPE | How well person speaks English | |||||
Very well | 7010 (46,178,975) | 58.0 (65.1) | ||||
Well | 1929 (10,566,967) | 16.0 (14.9) | ||||
Not well | 2013 (9,281,478) | 16.6 (13.1) | ||||
Not at all | 1139 (4,900,558) | 9.4 (6.9) | ||||
BORNUSA | Person born in US | |||||
Yes | 27,040 (276,843,356) | 78.4 (85.9) | ||||
No | 7471 (45,524,308) | 21.6 (14.1) | ||||
DNTINS16 | Have dental insurance | |||||
Yes | 11,834 (139,923,837) | 34.4 (43.7) | ||||
No | 22,565 (180,455,575) | 65.6 (56.3) | ||||
LANGSPK | Language spoken at home other than English | |||||
Spanish | 9947 (49,213,364) | 74.0 (62.6) | ||||
Another language | 3497 (29,375,518) | 26.0 (37.4) | ||||
SEX | Sex | |||||
Male | 16,526 (158,186,085) | 47.7 (49.0) | ||||
Female | 18,129 (164,495,602) | 52.3 (51.0) | ||||
MARRY16X | Marital status | |||||
Married | 12,139 (130,618,832) | 35.0 (40.4) | ||||
Widowed | 1607 (15,549,509) | 4.6 (4.8) | ||||
Divorced | 2945 (27,603,935) | 8.5 (8.5) | ||||
Separated | 768 (5,247,036) | 2.2 (1.6) | ||||
Never married | 9085 (79,512,517) | 26.2 (24.6) | ||||
Under 16—Not applicable | 8102 (64,609,857) | 23.4 (20.0) | ||||
HIDEG | Highest degree | |||||
No degree | 5515 (36,618,014) | 16.1 (11.4) | ||||
GED | 1095 (9,796,007) | 3.2 (3.0) | ||||
High school diploma | 10,805 (107,047,499) | 31.5 (33.3) | ||||
Bachelor’s degree | 3946 (48,164,057) | 11.5 (15.0) | ||||
Master’s degree | 1759 (21,623,234) | 5.1 (6.7) | ||||
Doctorate degree | 425 (5,624,308) | 1.2 (1.7) | ||||
Other degree | 1961 (21,716,535) | 5.7 (6.8) | ||||
Under 16—Not applicable | 8813 (70,802,893) | 25.7 (22.0) |
Variable | Description | Have Unmet Dental Need | p-Value | 95% CI of p-Value | |
---|---|---|---|---|---|
Yes | No | ||||
DNTINS16 | Dental insurance | n (%) | n (%) | <0.001 | 0.000–0.000 |
Yes | 421 (3.6) | 11,310 (96.4) | |||
No | 1248 (5.6) | 20,892 (94.4) | |||
INSCOV16 | Health insurance coverage | n (%) | n (%) | <0.001 | 0.000–0.000 |
Private | 754 (4.1) | 17,565 (95.9) | |||
Public | 702 (5.9) | 11,234 (94.1) | |||
Uninsured | 213 (5.8) | 3461 (94.2) | |||
AGE16X | Age | n (%) | n (%) | <0.001 | <0.001 |
Under 65 years | 1385 (4.7) | 27,911 (95.3) | |||
65 years and over | 284 (6.2) | 4291 (93.8) | |||
SEX | Sex | n (%) | n (%) | <0.001 | <0.001 |
Male | 687 (4.3) | 15,476 (95.7) | |||
Female | 982 (5.5) | 16,784 (94.5) | |||
RACETHX | Race/Ethnicity | n (%) | n (%) | <0.001 | 0.000–0.000 |
Hispanic | 425 (3.8) | 10,635 (96.2) | |||
White | 696 (5.4) | 12,245 (94.6) | |||
Black | 356 (5.7) | 5904 (94.3) | |||
Asian | 92 (3.8) | 2357 (96.2) | |||
Other race or multiple race | 100 (8.2) | 1119 (91.8) | |||
BORNUSA | Person born in the US | n (%) | n (%) | 0.745 | 0.745 |
Yes | 1310 (6.3) | 25,156 (93.7) | |||
No | 358 (5.0) | 7013 (95.0) | |||
HWELLSPE | How well person speaks English | n (%) | n (%) | 0.146 | 0.140–0.154 |
Very well | 292 (4.2) | 6637 (95.8) | |||
Well | 99 (5.2) | 1806 (94.8) | |||
Not well | 101 (5.1) | 1890 (94.9) | |||
Not at all | 46 (4.1) | 1074 (95.9) |
Variable | Description | Have Unmet Dental Need | p-Value | 95% CI of p-Value | |
---|---|---|---|---|---|
Yes | No | ||||
MDDLAY42 | Delayed in getting necessary medical care | n (%) | n (%) | <0.001 | 0.000–0.000 |
Yes | 277 (28.4) | 698 (71.6) | |||
No | 1391 (4.2) | 31,533 (95.8) | |||
PROBPY42 | Family having problems paying medical bills | n (%) | n (%) | <0.001 | 0.000–0.000 |
Yes | 546 (14.7) | 3177 (85.3) | |||
No | 1111 (3.7) | 29,030 (96.3) | |||
MDUNAB42 | Unable to get necessary medical care | n (%) | n (%) | <0.001 | 0.000–0.000 |
Yes | 225 (37.6) | 373 (62.4) | |||
No | 1443 (4.3) | 31,849 (95.7) | |||
PMUNAB42 | Unable to get necessary prescription med | n (%) | n (%) | <0.001 | <0.001 |
Yes | 170 (31.9) | 363 (68.1) | |||
No | 1495 (4.5) | 31,847 (95.5) | |||
ACTLIM31 | Limitation work/Housework/School | n (%) | n (%) | <0.001 | <0.001 |
Yes | 373 (13.9) | 2312 (86.1) | |||
No | 1251 (4.4) | 27,085 (95.6) | |||
REGION31 | Census region | n (%) | n (%) | 0.009 | 0.008–0.012 |
Northeast | 220 (4.2) | 5066 (95.8) | |||
Midwest | 304 (4.8) | 6050 (95.2) | |||
South | 651 (5.1) | 12,067 (94.9) | |||
West | 485 (5.4) | 8524 (94.6) | |||
MNHLTH31 | Mental health status | n (%) | n (%) | <0.001 | 0.000–0.000 |
Excellent | 483 (3.2) | 14,458 (96.8) | |||
Very Good | 392 (4.6) | 8046 (95.4) | |||
Good | 498 (6.5) | 7143 (93.5) | |||
Fair | 217 (11.7) | 1633 (88.3) | |||
Poor | 69 (15.7) | 371 (84.3) | |||
MCRPHO31 | Covered by Medicare managed care | n (%) | n (%) | <0.001 | 0.000–0.000 |
Coverage by Medicare managed care | 148 (8.9) | 1517 (91.1) | |||
Coverage by Medicare—not managed care | 220 (7.5) | 2699 (92.5) | |||
Not covered by Medicare | 1261 (4.5) | 27,040 (95.5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.; Hon, E.S.; Ruiz-Negron, B.; Lauren, E.; Moffat, R.; Su, W.; Xu, J.; Park, J.; Prince, D.; Cheever, J.; et al. Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning. Int. J. Environ. Res. Public Health 2020, 17, 7286. https://doi.org/10.3390/ijerph17197286
Hung M, Hon ES, Ruiz-Negron B, Lauren E, Moffat R, Su W, Xu J, Park J, Prince D, Cheever J, et al. Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning. International Journal of Environmental Research and Public Health. 2020; 17(19):7286. https://doi.org/10.3390/ijerph17197286
Chicago/Turabian StyleHung, Man, Eric S. Hon, Bianca Ruiz-Negron, Evelyn Lauren, Ryan Moffat, Weicong Su, Julie Xu, Jungweon Park, David Prince, Joseph Cheever, and et al. 2020. "Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning" International Journal of Environmental Research and Public Health 17, no. 19: 7286. https://doi.org/10.3390/ijerph17197286
APA StyleHung, M., Hon, E. S., Ruiz-Negron, B., Lauren, E., Moffat, R., Su, W., Xu, J., Park, J., Prince, D., Cheever, J., & Licari, F. W. (2020). Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning. International Journal of Environmental Research and Public Health, 17(19), 7286. https://doi.org/10.3390/ijerph17197286